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Abstract
In this study, a novel spatial filter design method is introduced. Spatial filtering is an impor-

tant processing step for feature extraction in motor imagery-based brain-computer inter-

faces. This paper introduces a new motor imagery signal classification method combined

with spatial filter optimization. We simultaneously train the spatial filter and the classifier

using a neural network approach. The proposed spatial filter network (SFN) is composed of

two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each

other with non-linear mapping functions. The proposed method addresses two shortcom-

ings of the common spatial patterns (CSP) algorithm. First, CSP aims to maximize the be-

tween-classes variance while ignoring the minimization of within-classes variances.

Consequently, the features obtained using the CSP method may have large within-classes

variances. Second, the maximizing optimization function of CSP increases the classification

accuracy indirectly because an independent classifier is used after the CSP method. With

SFN, we aimed to maximize the between-classes variance while minimizing within-classes

variances and simultaneously optimizing the spatial filter and the classifier. To classify

motor imagery EEG signals, we modified the well-known feed-forward structure and derived

forward and backward equations that correspond to the proposed structure. We tested our

algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its

multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III.

The evaluation results demonstrate that SFN is a good alternative for classifying motor im-

agery EEG signals with increased classification accuracy.

Introduction
A Brain-Computer Interface (BCI) is an alternative method of communication between a user
and system in which the user does not need to use his/her brain-muscular pathways to control
an external device [1]. Because it is a direct communication method with the brain and outer
world, the BCI system emerges as a useful communication and control method for severely
paralyzed people. In such a system, the user should generate different signal patterns with his
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brain for different commands. Moreover, discriminating these brain patterns (typically EEG)
and translating them to control commands for an electronic device is the most important part
of the BCI system. In Motor Imagery (MI)-based BCI systems, the kinaesthetic imagination of
body movement results in oscillations called event-related synchronization/desynchronization
in the sensorimotor cortex in the μ and β frequency bands [2, 3].

Due to the topographical organization in the motor cortex, different motor imagery tasks
can be identified based on their specific spatial location of related ERD rhythms [4]. However,
due to the volume conduction effect, scalp EEG signals recorded from a specific area involve a
mixture of several cortical sources located in different areas. Thus, raw scalp EEG potentials
have poor spatial resolution [4]. To eliminate the volume conduction effect and reach the actu-
al underlying signal sources, a spatial filtering step is an indispensable technique [5].

Common spatial patterns (CSP) is a very popular and powerful spatial filtering method
used in motor imagery EEG classification [6]. When using band power features, CSP computes
spatial filters, aiming to obtain optimal discrimination between two classes [7]. CSP finds opti-
mal spatial filters that maximize the ratio of average variances that belong to two different clas-
ses. Computationally, CSP is solved by simultaneously diagonalizing the two covariance
matrices of the two classes [8]. A computed CSP spatial filter projects the multi-dimensional
EEG time domain signal to a one-dimensional time domain signal in which the power (vari-
ance) of one class is maximized while the power of the other class is minimized. Unlike PCA,
CSP handles two classes at the same time and simultaneously diagonalizes the covariance ma-
trices of both classes [9]. Moreover, the CSP algorithm was proven to be efficient in BCI com-
petitions [10, 11].

Although CSP is a powerful and simple technique, it has some drawbacks. CSP optimizes
the average power ratio of the two classes, and therefore, it requires only one average covari-
ance matrix for each class. This may be a problem when addressing non-stationary signals
such as EEG signals because the covariance matrix of an EEG signal may change over time due
to artifacts such as changes in EEG electrode-skin impedances, muscular activities or user
background EEG activity [7]. Representing all of the epochs of a class in a training set by only
one average covariance matrix should result in inaccurate spatial filters.

Another disadvantage of CSP is its strict fitness function. CSP does not allow different types
of fitness functions, which may be more useful in different situations [12]. CSP attempts to op-
timize the Rayleigh quotient, i.e., the ratio of average variances of the two classes, which is very
sensitive to outliers that cause over fitting [13].

There are numerous methods for increasing the robustness of CSP. Recently, a method
called regularized CSP (RCSP) has been proposed, which aims to compute more robust spatial
patterns by adding a regularization term to the CSP formula [5, 7, 14]. The RCSP method uses
some a priori knowledge and imposes various constraints in the CSP’s formulation to obtain
more robust spatial filters [12]. For example, Lotte [14] proposed spatially regularized CSP
(SRCSP). He used the a priori knowledge that neighboring neurons tend to have similar func-
tions, which supports the hypothesis that neighboring electrodes should measure similar brain
signals. Another example of regularizing CSP is stationary CSP (sCSP), which was proposed by
Samek et al. [7]. sCSP assumes that non-stationeries in EEG data come from processes that are
not task related, such as eye movements or electrode artifacts. Another study on robust CSP is
CSP-L1 by Wang et al. [8], who attempted to express the CSP formulation in L1 norm. He
states that the original formulation of CSP was L2-norm, which implies that CSP was sensitive
to outliers. Wang attempted to optimize the proposed alternative CSP formulation using an
iterative algorithm.

In this study, we propose a general framework called spatial filter network (SFN), which cal-
culates optimal spatial filters using a neural network approach. With SFN, each epoch in a
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training set is given to the network for learning the optimal spatial filters, unlike CSP, which
only uses one average covariance matrix for each class. Additionally, SFN is trained to directly
increase the classification accuracy, whereas the purpose of the CSP method is to maximize the
given optimization function, which indirectly increases the classification accuracy. In this
paper, the CSP algorithm is described first. Then, SFN is introduced along with its network
structure and training methods. Finally, both methods are applied to motor imagery data and
the results are compared.

The remainder of this paper is organized as follows. In the Materials and Methods section,
the standard CSP method and its multi-class version are briefly reviewed. Then, the proposed
SFN method and the proposed training methods are described with a simple toy data example.
Finally, the motor imagery data set used in this study and the EEG preprocessing routine are
described. The Results section summarizes the evaluations and the results of the study. The
Discussion section investigates the advantages/disadvantages of the SFN. Finally, the Conclu-
sion section summarizes the study and presents directions for future work.

Materials and Methods

Common spatial patterns
CSP is a widely used technique for obtaining good spatial resolution and discrimination be-
tween different classes of motor imagery signals. In general, a motor imagery experiment con-
sists of epochs, in which the user imagines one type of motor imagery task requested on the
screen. An epoch can be one of two classes: C1 and C2. (i.e., left hand—right hand). Let XC,i 2
R
NxT represent an epoch, where C is the class of the epoch, i is the epoch number belonging to

class C, N is the number of EEG channels, and T is the number of samples in the epoch. Note

that XC,i should be a zero average signal (i.e., band pass filtered). Let ~w 2 R
Nx1 be a vector in N-

dimensional space. A projection of an epoch onto this vector will be

~yC;i ¼ ~wTXC;i ð1Þ

where~yC;i 2 R
1xT denotes the projection of epoch XC,i and T is the transpose operation. The

projected signal power PC,i can be written as follows:

PC;i ¼~yC;i~y
T
C;i ¼ ~wTXC;iX

T
C;i~w ð2Þ

Let RC,i 2 R
NxN be the covariance matrix of the band pass-filtered signal XC,i and �RC 2 R

NxN

be the average covariance matrix of class C:

RC;i ¼
XC;iX

T
C;i

trðXC;iXT
C;iÞ

�RC ¼
1

nC

XnC
i2C

RC;i ð3Þ

where tr is the trace function and nC is the number of epochs in C. Let the average power of
class C be �PC . Then, �PC is calculated as follows:

�PC ¼
1

nC

XnC
i2C

~wTXC;iX
T
C;i~w ¼

1

nC

XnC
i2C

~wTRC;i~w ¼ ~wT �RC~w ð4Þ

For the two classes (C = 1,2) case, CSP searches for the maximum power ratio of the classes
on the projected w axis. Thus, the average power of one class is maximized while that of the
other class is minimized. In other words, the spatial filter should maximize the following
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Rayleigh quotient problem [7]:

arg max
~w

~wT �R1~w
~wT �R2~w

ð5Þ

For any ~w that maximizes Eq (5), the denominator can be set to a constant value c by a sca-
lar coefficient without changing the ratio. Thus, maximization of the Rayleigh quotient can be
retranslated into a constrained optimization problem:

maximize ~wT �R1~w; subject to ~wT �R2~w ¼ c ð6Þ

The above constrained optimization problem can be solved using the Lagrange multiplier
method [15]:

Lðl; ~wÞ ¼ ~wT �R1~w � lð~wT �R2~w � cÞ ð7Þ

@Lðl; ~wÞ
@~w

¼ 2~wT �R1 � lð2~wT �R2Þ ¼ 0 ð8Þ

where λ is the Lagrange multiplier. Because �RC is a symmetric matrix, the above equation can
be written as a standard eigenvalue problem:

ð�R2

�1�R1Þ~w ¼ l~w ð9Þ

According to Eq (9), w, which maximizes the Rayleigh quotient, is the eigenvector that corre-

sponds to the largest eigenvalue of ð�R2

�1�R1Þ.
The CSP spatial filterWCSP 2 R

MxN matrix is constructed by takingM = 2m (M� N) eigen-
vectors corresponding to them largest andm smallest eigenvalues:

WCSP ¼ ½~wl1
; :::~wlm

::::::~wlN�mþ1 ; :::~wlN
�T ð10Þ

where wλi is the eigenvector that corresponds to the eigenvalue λi. Any epoch XC,i is spatially fil-
tered by

ZC;i ¼WCSPXC;i ð11Þ

where ZC,i 2 RMxT is the spatially filtered signal. Band power (variance) is used as a feature for
the classifier. For an epoch i, the CSP feature vector is given by

f~cspkC;i ¼ log
varðZk

C;iÞP2m
l¼1 varðZl

C;iÞ

 !
k ¼ 1; 2; . . .M ð12Þ

where f~cspkC;i is the k
th feature of feature vector f~cspC;i 2 R

Mx1 that belongs to epoch i and Zk
C;i is

the kth row of ZC,i. Here, the logarithm of the variance ratio is calculated to approximate the
distribution of the features to a normal distribution [9]. Next, the features are used to train a
linear classifier.

Extending CSP to multiclass
The optimization function of CSP is defined for two classes. When there are more than two
motor imagery classes (e.g., left hand, right hand, foot, tongue, etc..), the CSP method requires
some modifications. Extending CSP to multiclass is achieved via a combination of classes, ei-
ther converting a multiclass problem to several binary problems or computing CSP for one
class versus all other classes, called One Versus the Rest (OVR) CSP [16]. The OVR-CSP
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method aims to maximize the power of one class versus the total power of the rest of the clas-
ses. The OVR-CSP for class c is calculated as follows:

~wc ¼ arg max
~w

~wT �Rc~wXC
j 6¼c

~wT �Rj~w
ð13Þ

where C is the total number of classes and ~wc is the vector that maximizes the Rayleigh ratio be-
tween class c and the other classes. The CSP matrix is constructed by calculating the above
equation for all classes. Note that OVR-CSP is a generalization for the CSP method, which is
equal to (Eq 5) for the two classes (C = 2) case.

Spatial filter network (SFN)
In this section, the proposed spatial filter network (SFN) model is introduced. SFN is depicted
in Fig 1. SFN consists of a spatial filter layer (Layer-1) and a classification layer (Layer-2),
which are connected to each other with non-linear mapping functions. Layer-1 is formed with
a spatial filtering matrixW and feature extraction functions. The input-output relations of the
spatial filter layer are given below:

ymðtÞ ¼

XN
n¼1

Wnm~xðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

W2
nm

s ¼ ~wT
m

k ~wm k
~xðtÞ ð14Þ

where~xðtÞ 2 R
Nx1 is the input data at time t of the EEG epoch with N channels and T samples,

0 < t � T . ~wm 2 R
Nx1 is themth column of the spatial filter matrixW 2 RNxM, in which each

Fig 1. Structure of the proposed spatial filter network (SFN).

doi:10.1371/journal.pone.0125039.g001
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column is a spatial filter and ym(t) is the output data at time t for themth spatial filtering output.
~wm is divided by its norm to ensure that the input signal is spatially filtered with unit norm fil-
ters. Thanks to the 1=k~wmk block, SFN searches for optimal spatial filters over the surface a
hypersphere in N dimensions. As shown in Fig 2, the training algorithm, which moves ~wm by
dw, actually moves the spatial filter over the hypersphere.

Spatial filtering is an important step in motor imagery classification. Redundant data that
belong to irrelevant channels are weakened with spatial filtering. Spatial filtering is applied to
the input data, and outputs~ymðtÞ are stored until all samples in one epoch are counted. After
the spatial filtering phase, Layer-1 calculates the feature vector to be an input for Layer-2.

fm
~¼ logðvarð~ymÞÞ ¼ log

1

T

XT
t¼1
ðymðtÞ � m~ymÞ

2

 !
m ¼ 1; 2; :::M ð15Þ

where var() is the variance operation and log() is the natural logarithm function. Because input

data X are zero mean, m~ym
will be zero.~f 2 R

Mx1 is the feature vector for a given epoch. Note

Fig 2. A representative figure of searching the optimal spatial filter over the hypersphere of unit radius.

doi:10.1371/journal.pone.0125039.g002
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that the logarithm is used as in CSP to approximate the distribution of the features to a normal
distribution [9].

Layer-2 of SFN is the classification layer. AnM-dimensional input feature vector (f) is
mapped to an O-dimensional output vector z. The input-output relation of Layer-2 is given
below:

~z ¼ VT~f þ~b ð16Þ

~f ¼ tanhð~zÞ ð17Þ

where V 2 R
MxO is the weight matrix,~b 2 R

Ox1 is the bias vector, tanh() is the tangent hyper-

bolic function used for clamping~z to the range (−1, + 1), and ~f is the network output. Labeling
of an input epoch Xk differs for binary and multi-category cases. For the two classes (binary)
case, a single output neuron (O = 1) with a threshold value is used. Because tanh is used as an
activation function, the threshold value will be 0. For a multi-classes case, the number of output
neurons should be equal to the number of classes (O = C). In this case, the class label of an

input epoch Xk is assigned by selecting the output neuron with the highest ~f value among all
output neurons.

ClassðXkÞ ¼ arg max
c

ð~fk
c Þ c ¼ 1; 2; :::C ð18Þ

Because the class label is generated by selecting the maximum output value, the resulting
classifier is called a linear machine, in which no ambiguous region exists. A linear machine di-

vides the feature space into C decision regions, with ~�c being the largest discriminant if Xk in
region Rc [17].

Training of SFN
We used two methods to train the SFN: Backpropagation [18] and Levenberg-Marquardt. Both
methods use partial derivatives to optimize the spatial filter coefficientsWij. For the Backpro-
pagation method, the coefficients are updated after each epoch is presented to SFN, whereas
for the Levenberg-Marquardt method, updating is performed after all epochs in the training
set are presented to the network. For both methods, the error function is calculated according
to the network output and the class label of the epoch presented to the network. Additionally,

the initial weights forW, V and~b are set randomly with a normal distribution σ = 0.1 and μ =
0.

Error function. SFN requires an error function E to optimize the spatial filterWnm and
classifier coefficients Vmo. E should be minimum when SFN successfully discriminates different

classes in the training set. We used the Euclidean distance between the target class vector ~Tc

and SFN output vector~z as the error measure. The error value of the kth epoch is given by:

Ek ¼ 1

2

XO
o¼1
ðekoÞ2 ¼

1

2

XO
o¼1
ð~fk

o � ~Dk
oÞ2 ; 1 � k � K ð19Þ

where k is the current epoch number presented to the SFN, ~fk
o is the o

th output of the SFN, ~Dk
o

is the oth element of the target vector when the kth epoch is given to the network, and K is the
total number of epochs in the training set. SFN is trained iteratively such that the total error of
the network for the training class should be minimized.
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Backpropagation method. The Backpropagation (BP) method adapts all weights of a neu-
ral network to minimize the error on a set of vectors belonging to a pattern recognition prob-
lem [19]. The BP learning rule is based on gradient descent. The weights are initialized with
random values and changed in a direction to reduce the error [17]. In this study, the BP meth-
od is used to optimize both the spatial filter layer and the classifier layer. In a classical pattern
recognition problem, a feature vector is given to the feed-forward neural network and the
weights of the network are updated according to the feature’s class and the network’s output.
However, the proposed training method accepts all of the samples in an epoch and updates the
weights when an epoch is completely given to the network. For each layer, the learning rule of
SFN is given by

Wnm ¼ Wnm � m
@E

@Wnm

Vmo ¼ Vmo � m
@E
@Vmo

~bo ¼~bo � m
@E

@~bo

ð20Þ

where Vmo andWnm are the weights of the classifier and spatial filter layers, respectively, bo is
the bias value for the second layer of the network, and μ is the learning rate parameter. The par-
tial derivatives for each layer are calculated using the chain rule:

@E
@Vm;o

¼ @E

@~fo

@~fo

@~zo

@~zo
@Vm;o

ð21Þ

@E

@~bo

¼ @E

@~fo

@~fo

@~zo

@~zo
@~bo

ð22Þ

@E
@Wn;m

¼
XO
o¼1

@E

@~fo

@~fo

@~zo

@~zo
@~f m

XT
t¼1

@~f m
@~ymðtÞ

@~ymðtÞ
@Wn;m

ð23Þ

Note that the error of any output propagates to all weights in the spatial filter layer. Because
the classifier layer output and error value are calculated after all of the samples in one epoch
are counted, backpropagation should be calculated after the epoch is fully presented to the
SFN. The required backward equations (derivatives) are given in Eqs (24)–(28):

@E

@~fo

¼ ~fo � ~D ð24Þ

@~fo

@~zo
¼ 1� ð~foÞ2 ð25Þ

@~zo
@Vm;o

¼~f m
@~zo
@~f m
¼ Vm;o

@~zo
@~bo

¼ 1 ð26Þ
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@~f m
@~ymðtÞ

¼ 1

1

T

XT
t¼1
ð~ymðtÞÞ2

2

T
~ymðtÞ ð27Þ

@~ymðtÞ
@Wnm

¼ k~wmk~xnðtÞ �Wnm~ymðtÞ
k~wmk2

ð28Þ

With the BP method, the weights (W, V and~b) are updated after each epoch. Training SFN
with backpropagation is listed in Algorithm 1. Here, itr refers to the iteration number,MAX-
ITR is the maximum number of iterations, EMIN is the minimum error value to continue itera-

tions, andW0, V0 and~b0 are the initial values forW, V and~b, respectively.

Algorithm 1 Pseudo-code for BP algorithm

itr 0, W W0, V V0,~b  ~b0

while itr + + < MAXITR and E > EMIN do
Select an epoch from training set
Calculate network output (Eqs 14–17)
Calculate error function E (Eq 19)

Calculate @E/@Vmo,@E=@~bo and @E/@Wnm (Eqs 21–23)
Update network weights (Eq 20)

end while

Levenberg–Marquardt method. The Levenberg–Marquardt (LM) algorithm [20, 21] iter-
atively generates a solution for minimizing a non-linear problem. It is fast and has stable con-
vergence [22]. Unlike the steepest descent method that the back-propagation algorithm uses,
the LMmethod is an approximation to Newtons Method [23]. Let Eð~qÞ be the total error that
is iteratively minimized by the proposed method:

Eð~qÞ ¼ 1

2

XK
k¼1

XO
o¼1
ðekoÞ2 ð29Þ

where eko is the error at the output o for the epoch number k and~q 2 R
NMþOðMþ1Þ is the vector of

all weights forming the SFN:

eko ¼ Dk
o � fk

o
ð30Þ

~q ¼ ½W11;W12:::WNM;V11;V12; :::;VMO; b1; b2; ::::bO� ð31Þ

The Levenberg–Marquardt method aims to minimize Eð~qÞ according to the following update
rule:

~qiþ1 ¼~qi � ðJTi Ji þ mIÞ�1Ji~ei ð32Þ

where i is the iteration number,~e 2 R
KO is a vector that holds the errors of all outputs, J 2

R
(NM+O(M+1))x(KO) is the Jacobian matrix, and μ is called the combination coefficient. When μ

is very small, the algorithm works as the Gauss-Newton method, but when μ is large, the
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algorithm turns to the steepest descend [23] method.~e and J are introduced below:

e ¼ ½e11; e12; :::; e1O:::; eK1 ; eK2 ; :::; eKO�T ð33Þ

J ¼

@e11
@~q1

@e11
@~q2

:::
@e11

@~qNMþOðMþ1Þ

@e12
@~q1

@e12
@~q2

:::
@e12

@~qNMþOðMþ1Þ
::: ::: ::: :::

@e1O
@~q1

@e1O
@~q2

:::
@e1O

@~qNMþOðMþ1Þ
::: ::: ::: :::

@eK1
@~q1

@eK1
@~q2

:::
@eK1

@~qNMþOðMþ1Þ

@eK2
@~q1

@eK2
@~q2

:::
@eK2

@~qNMþOðMþ1Þ
::: ::: ::: :::

@eKO
@~q1

@eKO
@~q2

:::
@eKO

@~qNMþOðMþ1Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð34Þ

When calculating the Jacobian matrix, the chain rule is applied to @e=@~q, and the following
equations are obtained:

@eo
@Vmo

¼ @eo
@~fo

@~fo

@~zo

@~zo
@Vmo

ð35Þ

@eo
@~bo

¼ @eo
@~fo

@~fo

@~zo

@~zo
@~bo

ð36Þ

@eo
@Wnm

¼ @eo
@~fo

@~fo

@~zo

@~zo
@~f m

XT
t¼1

@~f m
@~ymðtÞ

@~ymðtÞ
@Wnm

ð37Þ

Note that from (Eq 30), @eo/@ϕo equals -1. Other terms may be calculated using Eqs (24)–
(28). At the end of each epoch, the network outputs and error values are calculated, and then
the Jacobian matrix is constructed. The LMmethod updates the network weights after all of
the epochs in the training set are presented to the SFN. μ is increased or decreased with each it-
eration such that the convergence rate is adjusted. Additionally, if the total error of the network
increases with new weights after updating, the LM algorithm sets the weights to their previous
values and slows the convergence rate. Training of SFN with the LMmethod is demonstrated
using the Algorithm 2. Here, μ0 is the initial value for the combination coefficient μ and β is the
multiplier (divider) of μ for increasing (decreasing) it. For other terms, please refer to the de-
scription of the BP Algorithm 1. Note that, depending on the convergence of the network, the
algorithm slightly changes to the steepest-descend or Gauss-Newton method by adjusting the
value of μ.
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Algorithm 2 Pseudo-code for LM algorithm

itr 0, μ μ0, W W0, V V0,~b  ~b0

while itr + + < MAXITR and E > EMIN do
for all epoch in Training Set do

Calculate network output (Eqs 14–17)
Calculate error for all outputs eko (Eq 30)
Calculate Jacobian matrix rows for the current epoch (Eq 34)

end for
Calculate total error (Eq 29)
if Eitr < Eitr−1 then

μ μ/β
else

μ μ � β
Revert to previous weights qitr qitr−1

end if
Calculate new weights vector qitr (Eq 32)

Update network weights W, V and~b (Eq 31)
end while

Running SFN with toy data
In this section, we test the SFN using generated toy data for 2 and 4 classes. Each class in the
generated data has a different covariance matrix. For visualization purposes, the dimensions of
the toy data and the size of the output neuron of the spatial filter layer were set to 2 (N = 2,
M = 2). Note that the class label of an epoch in the toy data was randomly selected. Therefore,
the number of epochs for each class will be approximately identical. Additionally, epoch data
were generated with zero mean, fixed covariance matrices specific to each class using the
Matlab commandmvnrnd [24]. For both data sets, the epoch dimension (NxT) was set to
2x100 and the total number of epochs (K) was set to 100. SFN was trained with the BP and LM
algorithms. The network parameters are as follows: μ = 10−3 for the BP method and μ0 = 100, β
= 2 for the LMmethod. Both methods successfully converged to the desired error value
(EMIN = 10−3). As expected, the LM algorithm converged faster than the BP algorithm. The
convergence of the two methods for the 2-classes case is shown in Fig 3.

Fig 4 presents the input data and the SFN output data for the 2-classes case. In this Figure,
(a) illustrates the log-variance feature of the input data:

f1ðXkÞ ¼ logðvarð½Xk
11;X

k
12; ::::X

k
1T �ÞÞ

f2ðXkÞ ¼ logðvarð½Xk
21;X

k
22; ::::X

k
2T �ÞÞ

ð38Þ

where Xk is the kth epoch. Each red (circle) and blue (plus) point represent the epoch with class
1 or 2, respectively. In (b), the input data calculated by principle components are enclosed with
ellipses. Note that the input data have the same variance in each dimension. (c) Shows the ef-
fect of the SFN spatial filter layer, i.e., scattering of spatially filtered data (f km). The spatial filter
layer successfully separates the two classes. Here, the black dashed line shows the between-class
border created by SFN classifier layer. In (d), the effect of SFN spatial filtering is shown with
enclosing ellipses. Note that spatial filtering manipulates the data, in which the features that be-
long to any class have maximum variance in one dimension, and they have minimum variance
in the other dimension.

The SFN output for the 4-classes toy data is shown in Fig 5. In (a), the log-variance features
of the 4 classes are shown. (b) Illustrates the enclosing ellipses for each class. The spatial filter
output is given in (c). As for the 2-classes case, the spatial filter layer of SFN has two outputs
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Fig 4. Input data and SFN output data for toy data with 2 classes. (a) log-variance feature for 2-dimensional input data. Note that each point represents
an epoch that belongs to class 1 (red circle) or class 2 (blue plus). (b) Enclosing ellipses represent the input data. (c) SFN spatial filter layer output (f) with
generated class border (black dashed line) of the classifier layer. (d) Enclosing ellipses represent the spatially filtered input data (y).

doi:10.1371/journal.pone.0125039.g004

Fig 3. Convergence of Backpropagation and Levenberg–Marquardt algorithms to the desired error (EMIN, dashed line) for 2 classes toy data
example.

doi:10.1371/journal.pone.0125039.g003
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(M = 2) such that we are able to visualize the output data. However, a larger output dimension
may be used for data with more complex scattering. Because the SFN classifier has 4 outputs
(O = 4), there are 4 class borders, which are drawn in (c). Note that, as a result of the selected
target vectors in the one-versus-rest style, each borderline separates one class from the other
classes. As shown in (d), the spatial filter layer manipulated the input data such that each class
will have a different variance vector.

EEG data sets
In this study, we used two publicly available EEG motor imagery data sets: BCI competition III
Data Set IVa and BCI competition III Data Set IIIa [11]. Data Set IVa consists of EEG record-
ings of 5 subjects who performed motor imagery of the right hand and foot. A total of 118 elec-
trodes were used for recording EEGs with a sample rate of 100 Hz. There are 280 trials for each
subject. However, the numbers of training and test sets differ for each subject: 168, 224, 84, 56

Fig 5. Input data and SFN output data for toy data with 4-classes. (a) log-variance feature for 2-dimensional input data. Note that each point represents
an epoch that belongs to class 1 (red circle), class 2 (blue plus), class 3 (green asterisk) or class 4 (yellow cross). (b) Enclosing ellipses represent the input
data. (c) SFN spatial filter layer output (f) with generated class borders (black dashed lines) of the classifier layer. (d) Enclosing ellipses represent the
spatially filtered input data (y).

doi:10.1371/journal.pone.0125039.g005
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and 28 trials are the sizes of the training sets for subjects labeled as aa, al, av, aw and ay, respec-
tively, and the remaining trials form the test set. Note that no validation set was used for net-
work training, and we applied the test set after SFN approached the target error value with the
training set in the training phase. However, we limited the iteration number and minimum
error value to avoid over-fitting.

Data Set IIIa is a four classes data set with a 60-channel EEG signal sampled at 250 Hz and
recorded from 3 subjects. The class labels are left hand, right hand, foot and tongue. For each
subject, there are minimum 60 trials per class; however, some of the trials are marked with re-
jected trial. Detailed information about the data sets may be found on the web site of the third
BCI competition [25] and in the related paper of Blankertz et al. [11].

Preprocessing, network configuration
We applied the same preprocessing steps for both data sets: i) We used EEG electrodes that
roughly cover the motor cortex. Selected electrodes for the two data sets are shown in Fig 6.
The numbers of electrodes are 23 and 29 for the the two classes data set (BCIC III-IVA) and
for the four classes data set (BCIC III-IIIA), respectively. ii) The EEG signal is band bass fil-
tered with a 8–30 Hz 5th-order Butterworth filter. iii) For each trial, we used EEG signals in the
time segment between 0.5s–2s after the instruction cue. Furthermore, trials marked with re-
jected trial were excluded. The preprocessing phase is illustrated in Fig 7.

We used one-versus-rest CSP for comparison with SFN. As a classifier to classify the output
of OVR-CSP, we selected linear discriminant analysis (LDA), which is a popular classifier in
MI classification. OVR-CSP may be configured via setting the number of spatial filters for each
class (m). In this study, we tested OVR-CSP with various values form along with various spa-
tial filter layer matrix widths (M) for SFN. We trained SFN with the LMmethod because of its
convergence speed. SFN was configured as follows: μ0 = 100, β = 2, EMIN = 10−1 and
ITRMAX = 1000.

Fig 6. Selected electrodes (black circles) for BCI competition III Data Set IIIa (a) and BCI competition III Data Set IVa (b).

doi:10.1371/journal.pone.0125039.g006
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Results
Figs 8 and 9 show the SFN accuracies for subjects of BCIC-III-IVA and BCIC-III-IIIA, respec-
tively. For any subject andm value, the accuracy of OVR-CSP is constant for every running of
the algorithm because OVR-CSP does not accept any hyper parameter and because it does not
need an initial weight setting. However, because the initial weights were set randomly, the ob-
tained accuracies vary at each running of the SFN. Therefore, SFN accuracies were plotted with
box plots, where the box boundaries represent the upper and lower 25% quantiles of the input
data (outliers were excluded), which was obtained by running the proposed algorithm 30 times
for each user andm value. The bold lines inside the boxes represent the median values. Note
that the total number of spatial filters (M) for OVR-CSP is a multiple of the number of classes.
Therefore, the OVR-CSP method was run withM = [2, 4, 6, 8, 10] for the 2 classes data set BCI-
C-III-IVA and withM = [4, 8, 12, 16, 20] for the 4 classes data set BCIC-III-IIIA. The
OVR-CSP accuracies for thoseM values are indicated with black dots in figures.

Although the classification accuracies vary significantly across subjects, it is clear that SFN
increases the classification accuracy for most of the subjects in both data sets. For example, for
subject k6b, whose classification results are the poorest in the 4 classes data set, SFN increases

Fig 7. Preprocessing phase for EEG data sets.

doi:10.1371/journal.pone.0125039.g007

Fig 8. Accuracy of SFN and OVR-CSP over the subjects of data set BCIC-III-IVA.

doi:10.1371/journal.pone.0125039.g008
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the accuracy by approximately 12%. Even though the proposed method may fall behind the
multi-class CSP, it may achieve better accuracies in some trials (see the vertical lines above
each box). Because the initial weights of SFN are set randomly, the accuracy for any subject
andM value vary across each running of the algorithm. This situation may be improved with
better and more robust selection of the initial network weights, which provides constantly
higher results. However, increasing the robustness of the initial weight selection is beyond the
scope of this paper.

Discussion

Spatial Filters
The spatial filter layer of SFN aims to maximize the separability of the obtained features that
belong to different classes. Thus, we expect each column ofW, which is the weight matrix of
SFN layer 1, to lighten a special area over the coverage of electrodes. We illustrate the spatial fil-
ters of the CSP and SFN methods in Fig 10 for 2 and 4 classes. Here, the upper and lower rows
display the spatial filters of the SFN and CSP methods, respectively. Gray tones describe the ab-
solute value of the illustrated spatial filter because the sign of the spatial filter weights does not
affect the obtained energy features. Because the target functions of CSP and SFN are not identi-
cal, there are some differences between the the spatial filters obtained with these methods.
However, both methods provide physiologically satisfying results. For example, right-hand
motor imaginary is localized in the left hemisphere of the sensory-motor-cortex area, which is
suitable with the Homunculus figure given in [26].

While CSP works with the average covariance matrices to calculate the spatial filters, SFN
optimizes its spatial filters and classifier by handling each epoch in the training set. Therefore,
spatial filters obtained with SFN provide better spatial filters that increase the between-class
variance while decreasing within-class variance, thereby increasing the ratio of between-class
variance and within-class variance, which is called the Fischer discriminant criterion or separa-
tion [27].

Fig 11 shows an example about separation of classes by using CSP and SFN spatial filters.
Separation values for CSP and SFN features are given on the figure. As expected, SFN provides
much higher separation value with proper organization of features (i.e. features belong to dif-
ferent classes separated in feature space) Class border given for CSP method was found by
using LDA classifier while it was directly calculated for SFN algorithm.

Fig 9. Accuracy of SFN and OVR-CSP over the subjects of data set BCIC-III-IIIA.

doi:10.1371/journal.pone.0125039.g009
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Convergence of network
We analyzed the convergence behavior of the network. As previously stated, the Levenberg-
Marquardt (LM) method is used for training. Because the LMmethod has superior conver-
gence properties, as proven in previous papers [28, 29], we expect SFN to converge to a desired
error value. Fig 12 displays the mean error at each iteration for multiple training experiments
with subjects AA and K3B. SFN reaches the desired error at each experiment for both of the
subjects. However, the average number of iterations until convergence is higher for subject
K3B of the data set BCIC-III-IIIA, which is a 4 classes data set.

Fig 10. Illustration of spatial filters obtained with the SFN and CSPmethods. Head figures are displayed for subject AA of data set BCIC-III-IVA (left)
and subject K3B of dataset BCIC-III-IIIA. Each column corresponds to a class of the given data set.

doi:10.1371/journal.pone.0125039.g010

Fig 11. Features extracted with CSP (left) and SFN (right) from the training set of subject av. Blue: class 1, red: class 2. Dashed lines represents the
class borders.

doi:10.1371/journal.pone.0125039.g011
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Training time
Because SFN learns the training set iteratively, the training time is longer than that for any di-
rect method, such as CSP. Fig 13 plots the average training times for subject aa in the BCI-
C-III-IVA data set versus the number of spatial filters (M). This figure also plots the training
time across each subject, where each subject has a different number of training sets. As shown
in this figure, the required time for training the network increases linearly with the size of the
SFN weight matrices and the number of epochs in the training set. The algorithm was run on a
single-core Intel

1

Xeon
1

CPU operating at 2 GHz.

Fig 12. Converge behavior of the SFN.Network had been trained 15 times for subject AA (on the left) and for subject K3B (on the right). Resulting mean
error value at each iteration until convergence for each training experiment is displayed in different colors.

doi:10.1371/journal.pone.0125039.g012

Fig 13. Training time of SFN. Left: number of spatial filters (M) versus training time for subject aa. Right: number of epochs versus training time for the
subjects of BCIC-III-IVA whenM = 2. SFN was configured with EMIN = 0, ITRMAX = 1000, μ = 100 and B = 2.

doi:10.1371/journal.pone.0125039.g013
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Although the training of SFN takes a long time, once the network is trained, the classifica-
tion time for an epoch is very small. Therefore, a longer training time is not an obstacle for
such a BCI system because training is performed off-line most of the time.

Conclusions
In this study, we presented a combined method called spatial filter network (SFN) that com-
bines spatial filter optimization and classification for motor imagery-based BCIs. The results
indicated that the SFN method is an alternative approach to CSP with increased classification
performance on two and four classes data sets and that it has two main advantages: ability to
handle each single epoch in the training set and combining of spatial filter and classifier in a
single structure. The originality of this paper is the combined optimization of spatial filters and
classifier for single trial EEG motor imagery experiments. To the best of our knowledge, there
are no methodologies in the literature that combine a spatial filter and classifier for
such signals.

The following further work can be considered in future studies: searching for better initial
weights to obtain consistently higher accuracies, studying more robust training methods that
are insensitive to the outliers, and modifying the training algorithm for more efficient and
faster convergence. Additionally, we could study the effect of increasing the number of spatial
filter layers that are connected to each other with non-linear functions. To the best of our
knowledge, multi-layer spatial filters have not previously been studied, and there may be some
interesting results, particularly for dealing with non-stationary signals.

Supporting Information
S1 Video. An animation captured while training SFN for subject av.Number of spatial fil-

ters was set toM = 2 for display purposes. Left: Training set features (~f 2 R
2x1) scattered on

two-dimensional feature space, where each circle represents an epoch that belongs to either
class 1 (blue) or class 2 (red). Class separation value is displayed on the top of the window.
Class border found by classifier layer is plotted with a black dashed line. Note that the two axes
were normalized to the range [0–1] for display purposes. Right: Mean error of the current itera-
tion was plotted with target error value (green horizontal line). Error value is displayed on the
top of the window.
(MP4)

S1 Code. Matlab code for SFN training and classification routines. See README and specif-
ic help texts of the supplied files.
(M)
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