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Abstract
During the last two decades ferrets (Mustela putorius) have been established as a highly ef-

ficient animal model in different fields in neuroscience. Here we asked whether ferrets inte-

grate sensory information according to the same principles established for other species.

Since only few methods and protocols are available for behaving ferrets we developed a

head-free, body-restrained approach allowing a standardized stimulation position and the

utilization of the ferret’s natural response behavior. We established a behavioral paradigm

to test audiovisual integration in the ferret. Animals had to detect a brief auditory and/or visu-

al stimulus presented either left or right from their midline. We first determined detection

thresholds for auditory amplitude and visual contrast. In a second step, we combined both

modalities and compared psychometric fits and the reaction times between all conditions.

We employed Maximum Likelihood Estimation (MLE) to model bimodal psychometric

curves and to investigate whether ferrets integrate modalities in an optimal manner. Further-

more, to test for a redundant signal effect we pooled the reaction times of all animals to cal-

culate a race model. We observed that bimodal detection thresholds were reduced and

reaction times were faster in the bimodal compared to unimodal conditions. The race model

and MLE modeling showed that ferrets integrate modalities in a statistically optimal fashion.

Taken together, the data indicate that principles of multisensory integration previously dem-

onstrated in other species also apply to crossmodal processing in the ferret.

Introduction
During the last two decades ferrets (Mustela putorius) have become increasingly relevant as an
animal model in different fields in neuroscience [1–24]. Ferrets have been domesticated for
over 2000 years and are easy to handle and train on behavioral tasks [15,25–29]. As a carnivore
ferrets have excellent visual and auditory sensing and are well suited for cross-modal integra-
tion studies. An additional advantage is that the ferret brain shows substantial homologies with
that of other animal models established in neuroscience, such as the cat [10,11,18–20] and the
primate [26]. Extensive work has been performed to map cortical and subcortical regions of
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the ferret brain functionally and anatomically [3,11,17–20,22]. These mapping studies have
shown that ferrets have highly complex sensory cortical systems, making them an interesting
model for the study of sensory processing pathways, response properties and topographies of
sensory neurons. Several studies have addressed multisensory response properties in anesthe-
tized ferrets [2,4,8,14], but multisensory interactions have not yet been studied in a behavioral
preparation in this species.

Substantial effort has been made to uncover principles of multisensory integration in a vari-
ety of species and paradigms [30–35]. Multisensory integration is crucial for animals and influ-
ences behavior in synergistic or competitive ways. Sensory integration can lead to faster
reaction times, better detection rates and higher accuracy values in multi- compare to unimo-
dal conditions [33,36,37]. Specifically, sensory integration increases the reliability by reducing
the variance in the sensory estimate [36,38,39]. The consistent estimate with the lowest vari-
ance is the Maximum Likelihood Estimate (MLE) [40], which can be derived from the weighted
sum of the individual sensory estimates, with weights being inversely proportional to the vari-
ance of the unisensory signals [36,39]. A substantial number of studies indicate that humans
and animals indeed integrate information across sensory modalities in this way
[33,36,38,39,41–46]. For example, Ernst and Banks [36] used a MLE model to predict the re-
sults of a visual-haptic experiment and showed that humans integrate information in a statisti-
cally optimal fashion. Similar results were obtained by application of MLE in a human audio-
visual study [37] and in a vestibular-visual study in macaque monkeys [47]. These studies dem-
onstrate that the MLE is a robust statistical model to predict the crossmodal response and to
test whether subjects integrate information in a statistically optimal fashion. As a results of the
sensory integration process, the accumulation of information in multimodal compared to
unimodal conditions is faster, which in turn leads to decreased reaction times (RT) [48–53].

In the present study, we investigated whether ferrets integrate sensory signals according to
the same principles established for humans [33,54] and non-human primates [47]. Previous
studies in behaving ferrets have used either freely-moving [13,15,55] or head-restrained [26]
animals. Here, we developed a head-free, body-restrained approach allowing a standardized
stimulation position and the utilization of the ferret’s natural response behavior. An additional
demand was that the setup should be sufficiently flexible to allow combination of the behavior-
al protocol with electrophysiological recordings. We established a behavioral paradigm, requir-
ing combination and integration in the auditory and/or visual modality, to investigate features
of uni- and multisensory integration in the ferret and compare it to data reported from other
species. Ferrets were tested in a 2-alternative-choice task requiring them to detect lateralized
auditory, visual, or combined audio-visual targets of varying intensity. We expected the ferrets
to perform more accurate and faster in the bimodal cases, because congruent inputs from two
modalities provide more reliable sensory evidence. We first determined unimodal thresholds
for auditory amplitude and visual contrast detection. Subsequently, we combined both modali-
ties and compared psychometric fits and the RTs between all conditions. We used MLE to
model psychometric curves and to probe whether ferrets integrate visual and auditory signals
in an optimal manner. Furthermore, to test for a redundant signal effect (RSE) we pooled the
RT of all animals in order to calculate a race model and to investigate potential intensity- and
modality-dependent effects [49,56,57].

Materials and Methods
Ferrets were trained in a spatial detection paradigm, which was used to perform two behavioral
experiments. In the first experiment, the animals’ auditory and visual unisensory detection
thresholds were determined. In the second experiment, unimodal and bimodal thresholds were
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assessed in a combined approach, using the unimodal results from the first experiment to ad-
just the test parameters.

Animals
Four adult female ferrets (Mustela putorius; Euroferret, Dybbølsgade, Denmark), aged 2 years
(n = 2) and 4 years (n = 2), from two different litters were tested in the experiment. They were
individually housed in a standard ferret cage with enriched environment under controlled am-
bient conditions (21°C, 12-h light/dark cycle, lights on at 8:00 a.m.). The animals had ad libi-
dum access to food pellets. Access to tap water was restricted 8h before the experiments and
the training procedure. All behavioral testing was done during the light cycle between 10:00 a.
m. and 2:00 p.m.

Ethics statement
All experiments were approved by the Hamburg state authority for animal welfare (BUG-H-
amburg; Permit Number: 22/11) and performed in accordance with the guidelines of the Ger-
man animal protection law. All sections of this report adhere to the ARRIVE Guidelines for
reporting animal research [58].

Experimental setup
The experiments were carried out in a dark sound attenuated chamber to ensure controlled
conditions for sensory stimulation. Once per day each ferret performed the experimental task
in a custom-build setup (Fig 1A and 1D). We crafted a flat-bottomed tube to conveniently
house the animal during the experiment. The body of the ferret was slightly restrained by fixa-
tion to three points in the tube via a harness, while the head remained freely movable outside
the tube throughout the session. The semi-circular tube was fixed on an aluminum pedestal to
level the animals’ head at 20cm distance to the center of the LED screen used for visual stimula-
tion (BenQ XL2420T, Taipei, Taiwan). On the front (‘head side’), two convex aluminum semi-
circles were mounted horizontally below and above the animals’ head, respectively, at 150mm
distance. They carried three light-barrier-fibers (FT-FM2), in the center, left and right, respec-
tively, connected to high-speed (sampling interval: 250μs) receivers (FX301, SUNX, Aichi,
Japan). This allowed the detection of the animal head during the experiments. In addition, a
waterspout was co-localized with each light-barrier source. On both sides of the LED screen a
speaker (T1; Beyerdynamic, Heilbronn, Germany) was placed with a 45° angle to the screen
surface and at the height of the horizontal screen midline. A custom made 3-channel water-dis-
penser was installed outside the sound attenuated chamber to avoid acoustical interference
during the experiments. It consisted of three valves from SMC Corporation (Tokyo, Japan), a
Perfusor syringe (Melsungen, Germany) as water reservoir and Perfusor tubing to connect it
with the waterspouts. The setup was controlled by custom-made routines using the Matlab en-
vironment (The Mathworks Inc.; MA, USA) on a MacPro. Behavioral control (light-barriers)
and reward application (water-dispenser) were triggered through NI-PCI-cards (NI-6259 and
NI-6251; National Instruments GmbH, Munich, Germany). The Psychtoolbox and the cus-
tom-written NI-mex-function referred to the same internal clock allowing the precise timing
of behavior and stimulation.

Sensory stimulation
Auditory and visual stimuli were created using the Psychtoolbox (V3) [59] in a Matlab envi-
ronment (The Mathworks Inc.; MA, USA). A white noise auditory stimulus (100ms) with up
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Fig 1. Experimental setup and behavioral task. (A) Schematic of the components of the experimental
setup in a top view: the LED-screen (a) with a speaker (b) on each side, the aluminum pedestal (d), and the
three light-barrier-waterspout combinations (c). The semi-circular acrylic tube with a ferret (e) inside was
placed on the pedestal. (B) Successive phases in the detection task: The inter-trial window (I), the trial
initialization window (II), the event window (III) and the response window (IV). The three circles below each
frame represent the light-barriers (white = unbroken, red = broken). The center of the screen displays a static
visual random noise pattern. (C) Schematic of trial timing. When the ferret broke the central light-barrier (II) for
500ms a trial was initialized and the event window started (III), indicated by a decrease in contrast of the static
random noise pattern. At a random time between 0-1000ms during the event window the auditory and/or
visual stimulus appeared for 100ms either left or right from the center. After stimulus offset the ferret had a
response time window between +100-700ms (IV) to pan its head from the central position to the light-barrier
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to 50dB sound pressure level (SPL) was used for auditory stimulation. It was generated digitally
at 96kHz sample rate on a high-end PCI-audio card (HDSPe AES, RME-Audio, Germany) and
delivered through two ‘T1’ Beyerdynamic speakers (Heilbronn, Germany). Visual stimuli con-
sisted of concentric moving circular gratings (22.5°, 0.2cycles/°, 5Hz) up to 0.38 Michelson
contrast (Cm) shown for 100ms (6 frames @ 60 Hz monitor-refresh rate). The background was
set to half-maximum luminance to avoid global luminance changes at stimulus onset. In the
center of the screen, a static random noise pattern was displayed (7°, Cm between 0 and 1).
During ‘bimodal’ trials, both visual and auditory stimuli were presented synchronously as
described below.

Detection task
The ferrets were trained to solve a spatial detection task, as shown in Fig 1B and 1C. To initialize
a trial the ferret had to maintain a central head position by breaking the central light-barrier for
500ms. This caused the random noise pattern in the center of the screen to decrease contrast
and indicate to the animal that the stimulus-window (up to 1000ms) had started. During this
interval the animal had to further maintain a central head position. A stimulus was presented
for 100ms on the left or on the right side, respectively, starting at a random time in this window.
The stimulus could be a unimodal visual (circular grating), unimodal audio (white noise burst)
or temporally congruent bimodal stimulus (further details see below). After stimulus offset, the
animal had to respond within 600ms by panning its head to the respective side. If the response
was correct the animal received a water reward (~80μl) at that position and could immediately
start the next trial. If the response was too early (before stimulus onset or within 100ms after
stimulus onset), incorrect (wrong side) or omitted (no response), the trial was immediately ter-
minated, followed by a 2000ms interval during which no new trial start was allowed.

General procedure
Following the habituation to the harness, tube and setup all ferrets learned to detect unimodal
stimuli. Two of the animals were trained in the auditory task first and then the visual; the other
two were trained in reverse order. After completion of the training and reaching of sufficient
performance, we presented stimuli of both modalities during the same sessions and determined
the individual detection threshold. Twenty different stimulus amplitudes (0-50dB SPL;
0–0.38Cm) were chosen in a 1down/3up staircase procedure [60], i.e., if the animal solved the
trial correctly (hits) the stimulus amplitude decreased by one step for the next trial, down to
the minimum, whereas false responses (misses, or omitted responses) led to a 3 step increase.
No change occurred for responses that were issued too early (rash trials). In each trial either
the auditory or the visual stimulus was presented in a pseudo-randomized fashion with indi-
vidual staircases. To avoid a side- or modality-bias, each modality-side-combination was titrat-
ed to an equal number of hits within each session. Due to the huge combinatorics of
conditions, each ferret had to complete 10–15 sessions to accumulate a sufficient number of tri-
als per amplitude level. The data of each animal were pooled and treated as one sample, i.e., ses-
sion information was discounted during further analysis. Sensory thresholds were determined
by fitting a Weibull function to the data for each ferret individually.

In a subsequent set of measurements, we combined simultaneous stimulus presentation
in both modalities. To this end, we fixed the stimulus in one modality at the amplitude

on the side of the stimulation. Subsequently, the inter-trial screen (I) appeared again. During the whole
session the screen’s global luminance remained unchanged. (D) Three-dimensional rendering of the
experimental setup. Labeling of the components as in (A).

doi:10.1371/journal.pone.0124952.g001
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where the tested animal had an accuracy of 75% during the unimodal testing and varied the
amplitude in the other modality according to the staircase procedure described above. In
these bimodal sessions we again included the unimodal conditions, such that we obtained
four different stimulation classes: unimodal auditory (A), unimodal visual (V), auditory sup-
ported by visual (Av), visual supported by auditory (Va). These four stimulation conditions
were presented in a pseudo-randomized fashion and separate staircases during the sessions.
All ferrets completed 10–12 sessions and the threshold was determined for each ferret by fit-
ting a Weibull function to the data.

Data Analysis
All offline data analysis was performed using custom written scripts in Matlab (The Mathworks
Inc., MA, USA).

Psychometrics. We evaluated the accuracy values (P) for all N stimulus amplitude classes
(a) with at least 6 hit trials in total on both sides using Eq (1).

Pa ¼
Na;h

ðNa;o � Na;rÞ
ð1Þ

Here, a denotes the amplitude of the stimulus, Na,h (hit trials) was defined as the number of
correct response trials for stimulus amplitude a, Na,o (onset trials) was the number of trials for
stimulus amplitude a where the animal reached stimulus onset time, and Na,r (rash trials) as
the number of trials for stimulus amplitude a were the animal gave a response before the re-
sponse window had started (up to 100ms after stimulus onset), assuming the animal was guess-
ing and not responding based on sufficiently collected sensory evidence. We estimated the
detection threshold by fitting a Weibull function to Pa,

Fa ¼ 1� exp�ðlaÞk ð2Þ
here k signifies the form-parameter and λ represents the scale-parameter. The number of trials
were used as weights during the fitting procedure. Due to the fact that every animal had differ-
ent thresholds in the respective modalities, we calculated the standard deviation of each fit by
using a delete-d jackknife method, were d = 20% corresponds to the number of sessions exclud-
ed per run, i.e. 2 or 3, respectively.

Modeling cross-modal interaction. In order to quantify the cross-modal interaction, we
used the MLE approach. Therefore we utilized the audio and visual accuracy from the multi-
modal experiment for all existing stimulus intensities. Assuming a model of a hidden Gaussian
representation of the sensory input in the brain we estimated the variance (σ) for all points
based on the Fa values form the Weibull function,

s ¼ s0

inverf ðFaÞ
ð3Þ

where ‘inverf’ equates to the inverse error function and σ0 an unknown scale factor. As in the
following calculation of σbi it drops out we can set it arbitrarily to a value of 1. The next step
was to combine both unimodal variances to derive the bimodal variance (σbi) according to

sbi ¼
smod � sfixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
mod þ s2

fix

q ð4Þ

where σmod represents the variance for the modality which intensity were modulated and σfix
for the modality that was fixed at 75% threshold. Subsequently, we used the inverse value of the
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bimodal variance in an error function (erf) to determine the bimodal accuracy (5).

accuracybi ¼ erf ð 1
sbi

Þ ð5Þ

Reaction time. The RT was defined as the time difference between stimulus-onset and the
time point when the animal panned its head out of the central light-barrier. Only intensity clas-
ses with at least 6 successful responses (hits) were included in the RT analyses. To quantify the
RT differences between the corresponding amplitudes from uni- and bimodal stimulation we
computed the Multisensory Response Enhancement (MRE) [49] as follows:

MRE ¼ minðRTA ;RTV Þ � RTAV

minðRTA ;RTV Þ
ð6Þ

with RTA and RTV referring to the observed mean RT for the auditory and visual stimuli, re-

spectively. RTAV is the mean RT for the corresponding bimodal stimulus.
We calculated a race model [56] to evaluate potential RSE. In our study, accuracy varied

across subjects and sensory conditions. In order to compare reaction times across subjects and
compute the race model for all related modality combinations we introduced ‘subjective inten-
sity classes’ (SIC) as determined by the accuracy fit in different unimodal conditions (0–74%,
75–89% and 90–100% indicating low, medium and high performance accuracy, respectively).
This ensured a sufficient number of trials per SIC and additionally normalized for inter-indi-
vidual differences in the range of stimulus amplitudes. Intensity and modality effects on the RT
were tested applying the same grouping approach and computing a two-way ANOVA.

Results
Four ferrets were trained in a lateralized audiovisual spatial detection task until they accom-
plished to solve the detection task in both modalities at high supra-threshold stimulus ampli-
tudes (audio = 50dB SPL, visual = 0.38 Cm). The training was discontinued once the animals
showed a stable baseline performance (>90%) across 5 consecutive days with high accuracy
levels (audio = 92±1%, visual = 92±1%; mean±SEM). Two of the animals learned first the audi-
tory (26 and 16 days training, respectively) and then the visual task (training for 28 days in
both animals). The two other ferrets acquired the modalities in the opposite sequence (11 and
19 days for the visual and 14 and 14 days for the auditory modality, respectively). All animals
achieved high performance levels demonstrating the viability of the training paradigm.

In all experiments for the determination of sensory thresholds we pooled results from left
and right stimulation sides to calculate the accuracy values for all amplitudes. Testing for a later-
ality bias by comparing hit performance on both sides with a paired t-test revealed no significant
bias (unimodal experiment: all animals = p>0.05; bimodal experiment: all animals = p>0.05).

Determination of unimodal thresholds
In the first experiment we determined the 75% accuracy threshold for detection of visual and
auditory stimuli in a unimodal setting for each individual ferret (Fig 2), with an individual
range of stimulus amplitudes for each animal. Ferrets performed on average 12 (±2) sessions
(104±26 trials±SEM/session) in the unimodal experiment. Before pooling the sessions, we test-
ed each ferret for non-stationarity effects across sessions by comparing the variance of the first
three sessions at 84% accuracy threshold against the one of the last three sessions. We used
three sessions as a minimum to ensure a sufficient number of trials for a proper Weibull
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function fit. No animal showed a non-stationarity in any modality (p>0.05 Two-sample t-test,
2-sided). The pooled data could well be described by a Weibull function (r2 = 0.56–0.92, Fig 2).

Determination of uni- and bimodal thresholds
In the second experiment, the two crossmodal stimulation conditions were added to the ses-
sions. One modality’s intensity was fixed at 75% threshold, as determined from the unimodal
experiment (Fig 2) while the other modality was varied in amplitude according to a staircase
procedure. All ferrets participated in 12 (±1) multimodal sessions (111±37 trials±SEM/ses-
sion). Like for the unimodal sessions, we again tested for non-stationarity effects between the
first and the last sessions by comparing the 84% accuracy threshold variance as determined by

Fig 2. Detection task performance of the unimodal experiment. (A) Data for performance in the unimodal
auditory detection task. (B) Data for the unimodal visual detection task. Each row represents one animal (1–
4). Each dot represents the average performance of N trials (diameter) for the tested auditory amplitudes (dB
SPL) or visual contrasts (Cm). The data are fitted by a Weibull function. Numbers within the panels indicate
the amplitude values corresponding to the 75% and 84% thresholds, respectively. The blue shaded area
around the fit indicates the standard deviation. The unmasked parts of the graphs indicate the range of the
actually tested stimulus amplitudes.

doi:10.1371/journal.pone.0124952.g002
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the Weibull fit. Since the introduction of bimodal classes reduced the relative number of unim-
odal stimulus presentations during each session, we had to pool minimum across the first and
last 5 sessions, respectively, to generate a proper Weibull fit. No animal showed non-stationar-
ity across the bimodal sessions (2-sided two-sample t-test; p>0.05). Subsequently, we calculat-
ed the accuracy for each amplitude where at least 6 trials had been performed and the
psychometric curves were fit using a Weibull function (Fig 3). The pooled data could well be
described by a Weibull function (r2 = 0.39–0.90, Fig 3).

Fig 3. Detection task performance of the bimodal experiment. (A) Data for the stimulus conditions
auditory-only (A) and auditory stimulation supported by a visual stimulus (Av). (B) Data for the stimulus
conditions visual-only (V) and visual stimulation supported by an auditory stimulus (Va). Each row represents
one ferret (1–4). Each dot represents the average performance of N trials (diameter) at a given auditory
amplitude (dB SPL) or visual contrast (Cm). The data are fitted by aWeibull function. The uni- and bimodal fit
is represented by the blue and red line, respectively. The shaded area around the fit indicates the standard
deviation. Δ84 displays the relative amount of threshold shift of the bimodal compared to the unimodal
psychometric function at a performance of 84%. A positive shift indicates a threshold decrease. The black
curve represents the MLEmodel. The unmasked parts of the graphs indicate the range of the actually tested
stimulus amplitudes.

doi:10.1371/journal.pone.0124952.g003
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The comparison of the unimodal 75% thresholds between both experiments revealed a
slight increase from the uni- to the multimodal experiment, except in animal 2 which showed a
decrease (Table 1). However, the differences were smaller than one of the respective amplitude
steps in the staircase procedure. Furthermore, two of the animals (1 and 4) did not reach a per-
formance above 90±5% in the highest intensities in one modality (audio and visual, respective-
ly). These findings indicate that the bimodal experiments were slightly more demanding,
presumably because four stimulation conditions were presented compared to the unimodal ex-
periment with only two stimulation conditions.

Because different values were used for the lower bounds in uni- (50%) and crossmodal
(75%) fitting, we employed the 84% threshold for comparison of performance between uni-
and crossmodal settings. All fits to the bimodal psychometric functions showed a left shift
compared to their unimodal complements, except for animal 2 in the V-Va comparison (am-
plitude decrease ±SEM: A-Av = 5.3±1.5; V-Va = 0.06±0.03; for absolute values see Table 1).
This demonstrates a decrease in detection thresholds in all ferrets, except for animal 2 in the
Va condition where the auditory stimulus had no augmenting effect. For quantification we cal-
culated the relative shifts at the 84% performance-level between the uni- and bimodal psycho-
metric fit (Δ84 in Fig 3). A positive number indicates a lower threshold as determined by the
bimodal fit, i.e., an increase in bimodal detection performance. On average, there was a shift
(±SEM) of 15±5%, indicating an effective bimodal integration.

Maximum likelihood estimates
To investigate whether ferrets integrate the two sensory modalities in a statistically optimal
fashion, we computed a MLE model and compared the r2-difference between the empirical
data (Fig 3, red) and model (Fig 3, black). The range of the difference Δbimodal-MLE was -1 to
49% (mean difference ±SEM 14±6). In four cases the MLE matched the bimodal psychometric
function and the difference of the explained variance between the empirical fit (Fig 3) and the
MLE was 10% or less (A1: ΔVa-MLE = 8%; A2: ΔVa-MLE = 2%; A3: ΔAv-MLE = 1% and ΔVa-MLE =
-1%). For one condition (animal 1: ΔAv-MLE = 11%) the MLE underestimated the empirical fit
at the highest stimulus amplitudes (Fig 3A). This may be caused by the low unimodal perfor-
mance at high stimulus amplitudes, since the MLE model depends on the unimodal

Table 1. Comparison of threshold values for uni- and bimodal experiments.

Amplitude values @ 75% Amplitude values @ 84%

unimodal Exp. bimodal Exp. unimodal Exp. bimodal Exp.

A A A A Av

1 39 40 42 45 41

2 27 30 29 32 26

3 25 28 27 33 31

4 31 31 33 34 25

V V V V Va

1 0.08 0.08 0.10 0.10 0.09

2 0.09 0.08 0.11 0.09 0.09

3 0.07 0.10 0.09 0.18 0.12

4 0.15 0.19 0.19 0.25 0.10

The amplitude values at the 75% and 84% thresholds (in dB SPL for A and Av; Cm for V and Va) in the unimodal and bimodal experiments (columns) for

all animals (rows 1–4).

doi:10.1371/journal.pone.0124952.t001
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performance. This argument also holds true for the Va case (ΔVa-MLE = 15%) of animal 4 (Fig
3B, bottom panel). If the animal had shown a unimodal performance comparable to that previ-
ously measured in the unimodal experiment, the MLE model would be similar to the empirical
bimodal fit. In the other two cases the MLE underestimated the empirical fit in the intermedi-
ate amplitude ranges (animal 2: ΔAv-MLE = 25% and animal 4: = 49%, Fig 3). Overall, the MLE
modeling results support the conclusions drawn from the comparison of the 84% performance
threshold between uni- and bimodal conditions. The results indicate that ferrets integrated the
two modalities as good or even better than predicted by the MLE estimator (Fig 3).

Reaction time analysis
One of the most important benefits of multisensory integration is the reduction of RTs for bi-
modal stimuli compared to unimodal stimulation. The measured RT varied during the multi-
sensory experiment with target amplitude in all modality types. In all stimulus conditions and
all animals, RT showed a significant negative correlation with stimulus amplitude (range A: r =
-0.17 to -0.41; V: r = -0.25 to -0.45; Av: r = -0.21 to -0.44; Va: r = -0.34 to -0.46; all correlations:
p< 0.01; Fig 4). RT significantly increased with decreasing amplitude (ANOVA p< 0.05) in
all but one condition (animal 1: audio-alone, ANOVA p> 0.05). This is an expected finding,
because the signal-to-noise ratio (SNR) decreases with decreasing stimulus amplitude and the
internal signal processing is slower for low SNR.

To reduce the dimensionality and compare reaction times across subjects we used ‘subjec-
tive intensity classes’ (SIC) (see Material and Methods). To quantify RT changes reflecting po-
tential multimodal enhancement effects, we calculated the MRE for all uni- and bimodal
stimulus pairs and summed these according to the SICs. The average MRE of both modalities
was slightly positive (Av = 3.59%; Va = 0.06%). However, about one-third of the cases (7 out of
24, Table 2) showed a negative MRE. Such negative MRE values, which indicate that the aver-
age unimodal RT is faster than the average RT of the bimodal condition, occurred only in the
low and medium SIC. In the highest SIC, the MRE was consistently positive. Overall, the MRE
results suggest a multimodal enhancement effect in the high and medium and an interfering ef-
fect in the lower SIC.

To investigate a potential RSE we calculated a race model on the pooled RTs according to
the SICs. The race model assumes that during multimodal stimulation no modality integration
happens, but that signals of either modality are processed independently. Whichever of the two
leads to a result first triggers and determines the response, i.e., the head movement towards the
detected stimulus. Therefore, the bimodal cumulative distribution function (CDF) of the RT
can be modeled by sampling from the unimodal RT CDFs. Afterwards the modeled bimodal
RT CDF can be compared with the empirical bimodal RT CDF (see Fig 5). If the empirical RT
CDF is faster in 20–50% of the percentiles compare to the modeled RT CDF the race model
can be rejected and modality integration is suggested [61]. For a detailed explanation of the
race model see Ulrich et al. [56].

We computed the relative (%) deviation from the linear unimodal combination for all stimu-
lus conditions (Fig 6) for each SIC. If this difference for the empirical bimodal CDF is in 20–50%
of the cases negative the race model can be rejected (Miller and Ulrich, 2003). The biggest effect
of the supportive value occurred in the highest intensity group, because there the change was
negative compare to the combined unisensory CDF in the lower percentiles (upper row, Fig 6).
In the 75–89% SIC no percentile of the crossmodal combinations was negative (middle row Fig
6) and in the lowest intensity-group the bimodal and the supportive value RTs were similar (bot-
tom row Fig 6), i.e., the benefit of the redundant signal seems to diminish with decreasing inten-
sity group. However, in the medium and high performance classes the bimodal RT seemed to be
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closer to the combined CDF than each of the unimodal distributions. For the high SICs, the dis-
tributions suggest that the race model can be rejected at a descriptive level. Overall, these results
are compatible with the notion that, for higher SICs, multisensory integration processes are lead-
ing to RT gains beyond what can be predicted from the fastest unimodal responses.

Fig 4. Reaction time data from the bimodal experiment. (A) Data for the stimulus conditions auditory-only (A) and auditory stimulation supported by a
visual stimulus (Av). (B) Data for the stimulus conditions visual-only (V) and visual stimulation supported by an auditory stimulus (Va). Each row represents
one ferret (1–4). RT ± SEM are shown as a function of stimulus amplitude (red = bimodal, blue = unimodal). Each data point represents the RT average for all
hit trials recorded at that amplitude. Asterisks indicate significant differences between uni- and bimodal conditions (t-test: * = p < 0.05, ** = p < 0.01, *** =
p < 0.001). Below each pair of uni- and bimodal RTs the Multisensory Response Enhancement (MRE) is shown as numerical values. In each panel, Pearson
correlation coefficient and regression line for both data sets are shown. The two vertical lines mark the borders between the subject intensity classes (left of
first line: 0–74%, between the lines 75–89%; right of the second line 90–100% performance).

doi:10.1371/journal.pone.0124952.g004
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To investigate intensity, modality and interaction effects on a more global scale we pooled
the RT of all animals according to subjective intensity classes and calculated a two-way
ANOVA, with modality and intensity as main factors (Fig 7). This revealed main effects in
both factors (Modality: F(3, 4632) = 18.84 (p< 0.001); Intensity: F(2, 4633) = 310.65
(p< 0.001)) and an interaction effect (Modality�Intensity: F(6, 4624) = 3.93 (p< 0.01)). A
post hoc t-test (Holm-Bonferroni corrected) revealed significant differences between and with-
in performance classes (Fig 7), respectively. The post hoc t-tests between the intensity groups
and modalities were all highly significant (p< 0.001). This result suggests that the ferrets’ RTs
increase as the intensity of the stimulus gets weaker and significantly decrease in the multimod-
al compared to the unimodal classes.

Discussion
How information from different modalities is integrated has been a subject of intense research
for many years. Here we asked if ferrets integrate sensory signals according to the same princi-
ples established for other species [31,33,35–39,47,62,63]. We expected the ferrets to perform
more accurately and with lower RTs in the bimodal cases, because congruent inputs from two
modalities provide more reliable sensory evidence [62,64–66]. As predicted, bimodal detection

Table 2. Reaction time: average MRE.

0–74% 75–89% 90–100% 0–74% 75–89% 90–100%

MRE Av MRE Va

1 -6.00 4.33 8.00 1.00 -0.67 2.22

2 5.50 6.33 5.50 -20.50 -19.00 4.40

3 -9.40 -3.00 3.63 -18.75 3.00 8.50

4 15.00 4.00 9.20 10.00 12.50 18.00

Multisensory Response Enhancement (MRE) computed for the RTs from all animals (rows) and stimulus conditions of the bimodal experiment according

to Eq 6. (see Methods). The MRE’s were sorted by the subjective intensity classes (SIC; columns from left to right). Av: auditory supported by visual; Va:

visual supported by auditory.

doi:10.1371/journal.pone.0124952.t002

Fig 5. Racemodel example. Analysis of RT CDFs from animal 4. High visual SIC CDFs are shown for
unimodal visual stimulation (V, blue), auditory stimulation at 75% (A75%, green), auditory stimulus supported
by visual stimulation (Av, red) and the combination of both unimodal CDFs (V+A75%, black). In this case the
race model gets rejected, because the empirical bimodal CDF (red) is ‘faster’ than the modeled CDF (black).

doi:10.1371/journal.pone.0124952.g005
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thresholds were reduced and RTs were faster in the bimodal compared to unimodal conditions,
demonstrating multimodal integration effects. Furthermore our results on MLE modeling sug-
gest that ferrets integrate modalities in a statistically optimal fashion.

Methodological considerations
Previous studies in behaving ferrets have used either freely-moving [1,13,15,55] or head-re-
strained [26] animals. Here, we developed a head-free, body-restrained approach allowing a
standardized stimulation position and the utilization of the ferret’s natural response behavior.
The setup is especially suited for psychometric investigations because the distance between ani-
mal and the stimulus sources remains constant across trials. The high inter-trial-consistency
and the fixed animal position allow the combination of behavioral protocols with neurophysio-
logical recordings comparable to head-restrained approaches [26]. An additional advantage is
the usage of a screen instead of a single light-source for the visual stimulation [1,31], enabling

Fig 6. Reaction time: racemodel results. The RTs were sorted by the SICs (rows) and both modalities (A: audio, B: visual) pooled across all animals. The
X-axis displays the cumulative reaction time differences to the race model for each modality (± SEM). A value of 0 at the X-axis corresponds to the prediction
from the combination of both unimodal CDF’s. The blue curve displays the unimodal condition, the green curve the RTs at the supportive value and the red
curve the bimodal class, respectively.

doi:10.1371/journal.pone.0124952.g006
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the spatially flexible presentation of a broad variety of visual stimuli. Similar to other ferret stud-
ies [13,55], one limitation of our approach lies in the relatively low number of trials collected
per session. We therefore had to pool data from different sessions to obtain a sufficient number
of trials for the fitting of psychometric functions. Merging of sessions was justified by the ab-
sence of non-stationarity effects and the high amount of variance explained by the fits. This also
indicates a low day-to-day variability of perceptual thresholds. Our results complement that of
an earlier study in ferrets demonstrating that measured thresholds were not affected by trial-to-
trial fluctuations in the animals’ decision criterion [1]. Overall, these findings suggest that the
experimental design presented in this study is well suited for psychophysical investigations.

Establishing links across species, our behavioral paradigm was inspired by previous human
psychophysical studies which showed that temporally congruent crossmodal stimuli enhance
detection [62,64–66]. Frassinetti et al. [62] adopted an animal approach [51] to humans and
obtained similar results in terms of multisensory enhancement effects. Another study form
Lippert and colleagues [64] showed that informative congruent sounds improve detection
rates, but this gain disappears when subjects are not aware of the fact that the additional sound
offers information about the visual stimulus. They concluded that cross-modal influences in
simple detection tasks are not exclusively reflecting hard-wired sensory integration mecha-
nisms but, rather, point to a prominent role for cognitive and contextual effects. This contrasts
with more classical views suggesting that information form different sensory modalities may be
integrated pre-attentively and substantially rely on automatic bottom-up processing [35]. Our
observation of the inter-experiment threshold increase for the unimodal conditions might sug-
gest possible contextual effects. A possibility is that, in the second experiment, the inclusion of
the bimodal conditions may have created a contextual, or motivational, bias of the animals to-
wards solving the bimodal trials because more sensory evidence was provided. This could also
explain why the performance in the unimodal conditions of the bimodal experiment did not
reach 95–100% accuracy even at the highest intensities, unlike in the unimodal experiment.

Taken together, our study demonstrates that the implemented behavioral paradigm is suit-
able to determine uni- and bimodal thresholds and to operationalize multisensory integration

Fig 7. Reaction time: two-way ANOVA results. The reaction times (RT) pooled by subjective intensity
classes (0–74%, 75–89%, 90–100%). The X-axis displays the three performance classes and the Y-axis
shows the RT in milliseconds ± SEM. The solid lines represent the unimodal, the dashed lines the bimodal,
red indicates the audio and blue the visual modalities (*: p < 0.05; **: p < 0.01; ***: p < 0.001; Holm-
Bonferroni corrected). +++, significant differences between performance classes within each modality (Holm-
Bonferroni corrected); red and blue asterisks, significant differences between uni- and bimodal conditions in
one performance class (Holm-Bonferroni corrected); green asterisk, significant difference between the two
unimodal conditions.

doi:10.1371/journal.pone.0124952.g007
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processes. Possible contextual and attention-like effects seem hard to elucidate by pure psycho-
metrics, but simultaneous electrophysiological recordings could provide valuable insights into
the underlying brain processes during the task.

Optimal modality integration
This is the first study on behaving ferrets to quantify multimodal enhancement effects and to
test for optimal modality integration. The results of our bimodal experiment show clear multi-
sensory enhancement effects. The left shift of the psychometric function and the variance reduc-
tion, derived at 84% accuracy, demonstrate increased detection rates and enhanced reliability
for lower test-intensities in the bimodal stimulation conditions, indicating that the ferrets indeed
integrate information across modalities as shown for other species [31,35,37,47,54,63–65]. MLE
modeling is typically used in multisensory integration to test the hypothesis that the integrative
process is statistically optimal by fitting the parameters of the model to unisensory response dis-
tributions and then comparing the multimodal prediction of the model to the empirical data.
Studies on humans have shown that different modalities get integrated in a statistical optimal
fashion. For example, Battaglia et al. [37] found that human subjects integrate audio and visual
modalities as an optimal observer. The same is true for visual and haptic integration [36], and
integration of stereo and texture information [39,67]. Furthermore, Alais and Burr [38] could
show that the ventriloquist effect is based on near-optimal sensory integration. Rowland and
colleagues showed statistical optimal integration in the cat for audio-visual perception [63] and
Gu et al. [47] could demonstrate the same principle in macaques for visual and vestibular senso-
ry integration. Similar to the abovementioned studies, our results on MLE modeling suggest
that ferrets integrate modalities in a statistically optimal fashion. Surprisingly, in two of our
cases the MLE underestimates the empirical fit, which is counterintuitive because the MLE pro-
vides already the maximum estimate. A potential explanation might be that multisensory benefit
is larger for somemodalities compared to others, as suggested by the modality precision hypoth-
esis by Welch andWarren [68]. These hypotheses states that discrepancies are always resolved
in favor of the more precise modality, i.e. the modality with the highest SNR gets weighted
higher in the final sensory estimate. Battaglia and coworkers [37] showed that humans have a
bias towards the visual modality in a multisensory spatial detection task. Finally, it could be
caused by a low unimodal performance in the intermediate intensities since the MLEmodel de-
pends on the unimodal performance. In summary, the MLEmodel provides evidence that fer-
rets merge modalities in a near-optimal fashion, similar to other species [36–38,47,67].

Multisensory response enhancement
In a second analysis approach we compared RTs of the uni- and bimodal stimulation condi-
tions and computed a race model to test a RSE. Our main results are in line with findings from
other species. Previous work in humans revealed that subjects respond faster to bimodal com-
pared to unimodal stimuli [49,64]. Miller [53] showed that this RT gain is a result of a modality
integration effect and not only a product of the fastest processed modality. Gleiss and Kayser
[31] demonstrated that additional non-informative white noise decreases RT in a visual detec-
tion task in rats. The effect size of the RT gain increased when the light intensity decreased. In
our study the influence of amplitude on RT is directly related to the SNR, i.e., the internal signal
processing is faster for high SNR. For high intensities of the varying modality (>75% unimodal
performance), the SNR should be higher compared to the fixed supporting modality. Decreas-
ing the intensity of the variable modality leads to a continuous decrease of its SNR (until 0),
such that for low intensities the RT is completely determined by the amplitude of the support-
ing modality. Interestingly, some MRE values were negative in the lower and intermediate
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subjective intensity classes. This is due to the fact that the MRE model uses the fastest unimodal
RT for calculation and the RT of the supporting values is faster than the average bimodal RT.
The variable modality seems to have a competitive effect on the RT at low intensities, because
the average bimodal RT is slower than the RT of the supportive value.

In addition to the MRE analysis, we computed a race model for the RT data. The race model
tests RT effects in a more sophisticated way, by comparing a modeled bimodal RT CDF with
the empirical bimodal RT CDF. In our dataset, the benefit of the redundant signal increased
from low to high SIC. Data reached the criterion to reject the race model only in the high SIC.
In the intermediate and low SIC the linear unimodal combination was faster compared to the
empirical bimodal conditions. Nevertheless, in the intermediate SIC the bimodal percentiles
were closer to the linear combination than the unimodal groups, indicating a minor gain of the
supportive value and therefore a multisensory enhancement effect. In contrast, in the low SIC
the bimodal group matches the supporting value group, implying that the supportive value is
the driving modality in the sensory process [57,61].

Conclusions
In conclusion, our data demonstrate that basic principles of multisensory integration, such as
enhancement effects of bimodal stimuli on detection rates, precision and RT apply to crossmo-
dal processing in the ferret brain. The race model and MLE modeling provide evidence that fer-
rets integrate modalities in a statistically optimal fashion. To quantify this in more detail more
advanced behavioral paradigms would be required where the stimulus onset varies across mo-
dalities and a broader range of stimulus amplitudes of supporting modality can be covered.

The setup we have developed to test ferrets in uni- and bimodal conditions is similar to
human and non-human primate tasks, and can be combined in future research with ap-
proaches for the study of the underlying neural processes. Our behavioral paradigm could be
combined with neuroscientific approaches such as, e.g., optogenetics or in vivo imaging [69].
Furthermore, the same setup could be used to implement more complex behavioral paradigms
such as discrimination or go/no-go tasks [26]. Moreover, the setup would also be suitable to in-
vestigate aspects of sensory processing other than multisensory integration relating, e.g., to al-
tered developmental conditions [7,12,24], to top-down influences on sensory processing, or to
large-scale communication across distinct sensory regions during different behavioral para-
digms. Altogether, our results describe a highly multifunctional experimental approach, which
may further enhance the viability and suitability of the ferret model.
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