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Abstract
Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however uni-

versal signal transduction pathways and photocycle mechanisms remain elusive. In particu-

lar, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only

the photoresponsive LOV element without any obvious signal transduction domains. These

sLOV proteins may be ideal models for LOV domain function due to their ease of study as

full-length proteins. Unfortunately, characterization of such proteins remains limited to se-

lect systems. Herein, we identify a family of bacterial sLOV proteins present inMethylocys-
tis. Sequence analysis of Methylocystis LOV proteins (McLOV) demonstrates conservation

with sLOV proteins from fungal systems that employ competitive dimerization as a signaling

mechanism. Cloning and characterization of McLOV proteins confirms functional dimer

formation and reveal unexpected photocycle mechanisms. Specifically, some McLOV

photocycles are insensitive to external bases such as imidazole, in contrast to previously

characterized LOV proteins. Mutational analysis identifies a key residue that imparts insen-

sitivity to imidazole in two McLOV homologs and affects adduct decay by two orders of mag-

nitude. The resultant data identifies a new family of LOV proteins that indicate a universal

photocycle mechanism may not be present in LOV proteins.

Introduction
Light Oxygen Voltage (LOV) domain containing proteins enable organisms to adapt to alter-
ations in environmental stimuli including blue-light, oxygen sensing, and stress responses.
LOV proteins are typically modular in nature, where the stimuli-responsive LOV domain is
coupled to N- or C-terminal signal transduction elements [1–3]. The photoactive LOV domain
then couples changes in environmental variables to affect small molecule chemistry. In LOV
domains this specifically involves the absorption of blue-light by a flavin (FMN or FAD) cofac-
tor to form a covalent adduct with a conserved Cysteine residue. Blue-light induced formation
of the flavin C4a adduct then enables allosteric regulation of signal transduction elements to
regulate diverse biological function [4]. For instance, LOV proteins are involved in blue-light
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regulation of gene expression in Neurospora crassa [5,6] as well as entrainment of circadian
clocks, phototropism, and flowering in Arabidopsis thaliana [7]. In bacteria, LOV proteins
have been shown to regulate pathogenicity and adaptation to environmental stress [8–11]. The
wide range of functional outputs regulated by LOV domain chemistry has led to the advent of
their usage in the field of optogenetics. In these optogenetic systems, the LOV domain imparts
photodynamic control of biological function through the design of engineered proteins [12].
Currently the fidelity of LOV-domain based photoreceptors is limited in part by incomplete
understanding of chemical and structural components of LOV signaling.

Typically LOV proteins have been characterized as being modular in nature with photore-
sponsive LOV components coupled to a wide array of signal transduction elements, including
phosphodiesterases, transcription factors, F-box proteins and histidine kinases [2,4,5,11,13–
15]. More recently, short LOV (sLOV) domains have been identified [16–19]; these harbor
only the photoactive LOV domain, thereby lacking the N- or C-terminal effector domains im-
portant for signal transduction. These are most typically found in bacteria, where sLOV pro-
teins compose 13% of all LOV proteins [18]. Despite their widespread nature in bacteria, the
mechanism of action for sLOV proteins remains poorly explored and is limited to select
systems.

Currently, the best model of sLOV signaling exists in fungal systems, where homologs of the
sLOV protein VVD are involved in circadian function and adaptation to increasing levels of
blue light [20]. In filamentous fungi, circadian regulation of gene transcription is achieved via
competitive dimerization of two LOV containing proteins, VVD andWhite Collar-1 (WC1)
[5,13,21]. In this system, the sLOV protein VVD bears homology to a LOV domain in WC1.
Photoactivation of both proteins leads to both homo- and hetero-dimerization [5,22–24]. WC1
homodimers are active for gene transcription; however, heterodimerization with VVD damp-
ens transcriptional activity [5,6]. In this manner, the sLOV protein can affect gene transcrip-
tion through a process of competitive dimerization. Essential to such a model is strong
homology between the sLOV protein and a LOV domain in a signal-transduction protein that
requires dimerization for function.

Recently, we have identified an analogous regulatory network involving the sLOV protein
ENVOY (ENV1) in Trichoderma reesei. In T. reesei, ENV1 acts in an equivalent signaling node
to VVD, although with distinctly altered mechanisms [25–28]. In ENV1, a two-residue shift in
the position of a key Cysteine residue enables integration of both light and oxidative stress
[25]. Sequence conservation of ENV1 and VVD in fungal circadian clocks suggests a competi-
tive dimer model of sLOV signal transduction may be more widely conserved in biology, where
sLOV proteins may enable both light responsive and oxygen sensitive signaling.

Herein, we identify an analogous system of LOV proteins in the bacteriaMethylocystis. Ge-
nome analysis ofMethylocystis species identifies conservation of two LOV domain-containing
proteins (Fig 1). One is a sLOV protein that bears homology to T. reesei ENVOY (ENV1). The
second is a modular LOV protein housing an N-terminal ARAC domain coupled to both a
Helix-turn-Helix (HTH) and C-terminal LOV domain. A high degree of homology between
the sLOV protein and the C-terminal LOV component suggests mechanisms analogous to fun-
gal signaling networks. Cloning, expression, and characterization ofMethylocystis LOV pro-
teins confirms functional dimer formation and unique chemical signaling mechanisms.
Specifically, kinetic and thermodynamic characterization ofMethylocystis LOV photocycles re-
veal a residue substitution that can block base catalysis, thereby indicating that functional stud-
ies of diverse sLOV proteins may shed light on alternative photocycle pathways and signaling
mechanisms that may aid in the improved design of optogenetic devices.

Methylocystis sLOV Proteins Alter Base-Catalysis
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Fig 1. Model for competitive dimerization. (A) Sequence alignments of LOV proteins inMethylocystis compared to fungal analogues and the LOV 2
domain of Avena sativa Phototropin (AsLOV2). Comparisons of a LOV-transcription factor inMethylocystis (McLOV-TF) andMethylocystis rosea (McLOVr-
TF) demonstrate high homology to sLOV proteins in the respective organisms (McLOVn, McLOVr). Key elements required for signal transduction are
conserved in the fungal sLOV proteins Trichoderma reesei ENVOY (ENV1) andNeurospora crassa Vivid (VVD) as well as fungal LOV transcription factors N.
crassaWhite-Collar 1 (WC1) and T. reesei Blue-light receptor 1 (BLR1). These elements are not conserved in AsLOV2 or short LOV domains from P. putida
(PpLOV) or R. sphaeroides (RsLOV). Specifically, a key hinge region is conserved in all bacterial and fugal proteins (light green) within the NCap. Two
additional residues are absolutely conserved that form key contacts in organization of the NCap hinge region. Core signaling regions of the LOV domain
(blue) are conserved in all species. Residues absolutely conserved in all species (*) are noted, residues conserved in fungal and bacterial species, but not
AsLOV2 are shown (^) as well as strongly conserved elements (:). (B) Domain architecture inMethylocystis LOV proteins. (C) SEC of McLOVr (black),
McLOVn (green) and 337-TF (blue). All elute as dimers with apparent molecular weights (MW) of 35 kDa (McLOVr), 33.5 kDa (McLOVn) and 32 kDa
(337-TF). The expected MW of a monomer was 17 kDa. Some preparations of McLOVn contain a significant monomeric fraction. Two distinct peaks with
apparent MWs of 34 kDa and 17 kDa are observed.

doi:10.1371/journal.pone.0124874.g001
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Results
In the fungal sLOV model, the key features facilitating competitive dimerization are a LOV
transcription factor (LOV-PAS-Zn-finger; LOV-TF) and a sLOV protein that exhibit homolo-
gy within their respective LOV domains. We recently identified a similar signal transduction
pathway in Trichoderma that links stress responses, metabolism, and blue-light signaling
[25,29]. To search for similar signal transduction pathways in bacterial species we searched for
sLOV proteins with high homology to ENVOY (ENV1) from Trichoderma reesei.

Genome analysis revealed thatMethylocystis bacteria contain two LOV proteins with mod-
erate homology to ENV1, including the presence of a key Cysteine residue required for signal
transduction in fungal sLOV proteins (Fig 1A and 1B) [25]. These include a LOV-TF contain-
ing an Amido-transferase (ARAC), Helix-Turn-Helix (HTH) and LOV domains (McLOVn-
TF), and a sLOV protein (McLOVn) that retain high homology within their respective LOV
domains (40% Identity, 56% similar). These fit our candidate search as LOV-HTH proteins
typically require dimerization to regulate gene transcription [30]. Closer examination of se-
quence alignments ofMethylocystis LOV proteins in relation to fungal competitive dimeriza-
tion pathways, as well as the LOV2 domain of Avena sativa Phototropin 1 (AsLOV2) and
other sLOV proteins in Pseudomomas and Rhodobacter sphaeroides reveals intriguing regions
of conservation. In particular, fungal LOV proteins signal through conformational changes
within a motif N-terminal to the core LOV domain (NCap) [3,23–25]. In the Ncap, a short
turn motif involving a Cys residue required for signal transduction is conserved in fungal LOV
proteins and those inMethylocystis (Fig 1A). In contrast, the turn motif (similar residues en-
compassing residues 21–24 (McLOVr numbering), including a Cys residue), as well as two ad-
ditional NCap residues (Pro12, Asp20) are absolutely conserved inMethylocystis and fungal
LOV proteins. The turn motif and Pro12 are not present in AsLOV2 or other sLOV proteins.
Although McLOV proteins contain a C-terminal Jα helix that may be involved in signaling, the
helix bears poor homology to those in sLOV proteins and AsLOV2. In these regards,Methylo-
cystis LOV proteins retain elements required for regulation of transcription through competi-
tive dimerization in fungal LOV proteins. Based on these similarities we became interested in
examining the solution characteristics and photochemistry of sLOV proteins inMethylocystis.

To examine mechanisms of signal transduction withinMethylocystis LOV proteins, we
cloned, expressed, and characterized McLOVn and McLOVn-TF, as well as a McLOVn homo-
log from the related bacteriumMethylocystis rosea (McLOVr) (Fig 1). We focused primarily on
two goals. 1) Certify that the LOV domains are competent for dimerization. 2) Verify the pro-
teins are functional LOV domain containing photoreceptors and provide detailed
photochemical characterization.

Initial cloning of LOV proteins inMethylocystis focused on the isolated LOV domains from
McLOVn and McLOVn-TF and the corresponding sLOV protein inM. rosea (McLOVr).
McLOV proteins were cloned from genomic DNA and expressed in E. coli. Low expression of
the proteins from genomic DNA led us to examine related proteins inM. rosea and design
codon optimized constructs for E. coli expression. Due to improved protein expression from
these constructs, most protein was obtained using codon optimized DNA. Further, although
ideally we would like to study the transcription factor as a full-length (FL) construct, the FL
protein expressed as insoluble inclusion bodies and was rather studied as the isolated LOV do-
main. Thus, McLOVn-TF was N-terminally truncated leaving a construct composed of resi-
dues 337–490 (337-TF) (Fig 1B). These proteins were studied in detail to reveal the oligomeric
state, adduct lifetimes, and photocycle properties. The combined data suggests that currently
presumed photochemical mechanisms may not be retained in all LOV proteins particularly
with respect to the involvement of a base-catalyzed reversion process.

Methylocystis sLOV Proteins Alter Base-Catalysis
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McLOV proteins are dimeric
All constructs readily purify from E. coli with a bound flavin cofactor and demonstrate spectra
consistent with formation of a C4a adduct (Fig 2A–2C). Size exclusion chromatography (SEC)
of LOV constructs reveals that McLOVn, McLOVr, and 337-TF are constitutively dimeric
under dark state conditions (Fig 1C). Interestingly, in some McLOV purifications, a monomer-
ic peak is present even at very high concentrations (Fig 1C). Such behavior has been observed
in fungal LOV proteins that demonstrate sensitivity to oxidative stress [23]. We have been un-
able to determine the cause of a monomeric fraction in some preparations so far; however, con-
servation of key Cys residues that impart sensitivity to oxidative stress in other systems may be
involved [23,25]. Thus, allMethylocystis LOV proteins are competent for dimerization and
may partake in a model of competitive dimerization. Unfortunately, the photocycle lifetimes of
all constructs were too fast to resolve any differences in oligomeric status following photo-exci-
tation (see below). The limitations of the fast photocycles may be remedied through the design
of rate altering variants, however that first requires a more thorough understanding of the

Fig 2. McLOV photocycles and kinetics. (A-C) McLOV proteins all demonstrate spectra consistent with C4a adduct formation. Dark-state spectra (black)
are consistent with oxidized flavin. Illumination with blue light bleaches the 450 nm absorption bands (red). Subtle differences in degrees of photoactivation in
McLOVn (A), 337-TF (B) and McLOVr (C) are indicated by residual presence of absorption bands centered around 450 with vibrational bands at 425 and 478
nm. (D-F) McLOVn (D), 337-TF (E) demonstrate first order kinetics as demonstrated by an absorbance trace at 450 nm and their respective residual plots. In
contrast McLOVr (F) is best fit with a biexponential function.

doi:10.1371/journal.pone.0124874.g002
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LOV photocycle. Such knowledge may lead to the design of rate-altering variants for future
structural studies.

Photochemistry of LOV proteins fromMethylocystis
All constructs purify with bound flavin and exhibit photobleaching in response to blue light
(Fig 2). The dark-state spectra are consistent with an oxidized flavin with a broad absorption at
450 nm and shoulder peaks at 425 and 478 nm. The peak at 450 nm is the result of a S0-S1 elec-
tronic transition typical of the oxidized flavin. There is an additional absorption band in the
UV-A region around 350 nm due to a S0-S2 electronic transition that facilitates adduct scission
under illumination with broad spectrum light sources. Light excitation bleaches the 450 nm ab-
sorption band leading to a single peak centered around 390 nm, consistent with blue-light in-
duced formation of a cysteinyl-flavin C4a adduct. In theMethylocystis LOV constructs, we are
unable to completely form the light-state adduct; rather, illumination generates an equilibrium
mixture between light- and dark-adapted states [7]. The different degrees of photoactivation
likely result from different quantum yields of adduct formation as well as the rapid recovery
observed in these proteins. To further clarify factors affecting LOV photocycles inMethylocys-
tis species, we conducted a comprehensive analysis of the kinetics of adduct decay in
all constructs.

Methylocystis LOV proteins are fast-cycling
Studies of LOV proteins have revealed that the rate of adduct decay under dark-state condi-
tions can range from seconds to days [31]. In turn the variance in adduct lifetimes can affect
sensitivity to light fluence that dictates the steady-state ratio between light and dark-adapted
states [7]. Kinetic analysis of LOV proteins inMethylocystis reveals adduct decay proceeds with
first order kinetics in all constructs tested (Fig 2). Rate constants and time constants for all con-
structs can be found in Table 1. The rate constants of these species are quite fast compared to
fungal species, but consistent with those observed in fast cycling phototropins [2,31]. Specifi-
cally, the isolated sLOV protein McLOVn exhibited mono-exponential decay with a light-state
lifetime of 38 seconds. McLOVr typically displays biexponential kinetics with a fast component
(80 seconds) comprising 43% of the species and a slow component (180 seconds) 57% of the
species. For Arrhenius and Eyring analysis we used the fast component (see below). The adduct
lifetime of 337-TF was 130 seconds (Table 1), similar to the average time constant for McLOVr.
Given the high homology to slow cycling fungal LOV proteins, we set out to examine what fac-
tors led to the fast photocycle. We specifically focus on two experiments. 1) Eyring and Arrhe-
nius parameters for adduct decay. 2) The effect of small molecule bases on adduct recovery.
Previous research in other LOV proteins indicates that solvent access to the active site can be
probed using small molecule bases.

Table 1. Kinetics of thermal reversion for LOV constructs and variants at 296 K.

Construct Time Constant (s) Δ‡ ΔS‡ Protection factor (a)

McLOVn 38 +/- 3 51 kJ/mole -102 J/mol*K NA

McLOVr 80 +/- 5 (fast 43%) 180 +/-5 (slow) 53 kJ/mole -104 J/mol*K NA

337-TF 130 +/- 5 71 kJ/mole -44 J/mol*K NA

McLOVr T27I 12300 +/- 100 - - 30

doi:10.1371/journal.pone.0124874.t001
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McLOV photocycle kinetics are entropically compensated
To better understand the photocycles of these sLOV proteins, we performed Arrhenius and
Eyring analysis of dark state recovery. Typical energies of activation for fast cycling LOV do-
mains (t1/2~30–1000 sec) are on the order of 70–100 kJ/mol [7]. In contrast, the temperature
dependence of McLOVn kinetics reveals an uncharacteristically low activation energy of 52 kJ/
mol (Fig 3). Eyring analysis indicates the low enthalpy of activation (51 kJ/mol) is compensated
by a large unfavorable entropy of activation (-102 J/mol�K), allowing for a low energy of activa-
tion and weak temperature dependence of the rate of adduct scission (Table 1 and Fig 3). Such
entropic compensation has been observed in circadian clock photoreceptors, where it may
function to decrease the temperature dependence of photocycle kinetics [7]. Similarly, the

Fig 3. Arrhenius and Eyring analysis of McLOV proteins. Arrhenius (A,C,E) and Eyring (B,D,F) of
McLOVn (A,B), 337-TF (C,D), and McLOVr (E,F) constructs. All measurements were carried out in triplicate,
and error bars are shown as standard deviations relative to the mean. McLOVn and McLOVr both depict
weak temperature dependence that indicates low entropies of activation with entropic compensation. In
contrast 337-TF, has markedly increased enthalpies of activation (71 kJ/mole vs. ~50 KJ/mole) with a
decrease in the entropic penalty (-44 J/mole*K vs. ~ -100 J/mole*K).

doi:10.1371/journal.pone.0124874.g003
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McLOVn homolog McLOVr exhibits a low enthalpy of activation (53 kJ/mol) that is compen-
sated by an unfavorable entropy of activation (-104 J/mol�K). Such similarities in the energetic
parameters of adduct scission suggest evolutionary conservation of residues dictating the ener-
gy landscape during adduct scission. Given the high degree of similarity between McLOVn and
the 337-TF (58% identical, 77% similar), we expected 337-TF to also exhibit a low enthalpy of
activation that is entropically compensated; however, 337-TF demonstrates a markedly higher
enthalpy of activation (71 kJ/mole) with a modest unfavorable entropy of activation (-44 J/
mol�K). To examine whether these unique energetic parameters reflect additional alteration to
the reaction landscape, we examined all constructs for the effect of small molecule bases on
adduct decay.

External bases do not catalyze McLOVn and McLOVr
Scission of the Cysteinyl-C4a adduct has been shown to be catalyzed by small molecule bases
such as imidazole [32]. These base catalysis studies in combination with solvent-isotope effects
have led to a general model of adduct decay, where abstraction of the flavin N5 proton is rate
limiting [31,32]. Currently, the intrinsic base is unknown. Notably, although LOV proteins are
catalyzed by small molecule bases, the dependence of adduct decay on base concentration var-
ies widely within the LOV family. Differences in sensitivity to base catalysis can often be ex-
plained via differences in solvent access to the active site, where an increase in solvent
accessibility correlates to faster photocycles kinetics and sensitivity to small molecule bases
[31,33]. We wanted to examine similar phenomena in McLOV proteins.

In contrast to other LOV domains, the dark state reversion process is not base catalyzed in
McLOVn or McLOVr (Fig 4A and 4B). Addition of imidazole concentrations up to 150 mM
has no effect on the rate of adduct scission at pH 8.0. Such behavior is surprising as most LOV
proteins demonstrate remarkable base catalysis at 10–100 fold lower concentrations [7,34].
Even more surprising, despite high sequence conservation 337-TF demonstrates a large depen-
dence of adduct decay on external bases (Fig 4).

Several factors could contribute to the divergent dependence of adduct decay on small mole-
cule bases. These include: 1) No involvement of proton abstraction in the rate determining
step. 2) A lack of solvent accessibility to the protein active site. We exclude this as a possibility,
due to the fact that exclusion of solvent from the active site would lead to a slow rate of adduct
decay, which is not observed. 3) The presence of an intrinsic base that renders external bases
ineffective at accelerating adduct decay. To examine these factors further we conducted solvent
isotope studies, as well as examined McLOV proteins for residues that could attenuate solvent
accessibility or function as an intrinsic base.

Solvent isotope studies have been widely used in LOV proteins to examine the kinetics of
adduct formation and adduct scission. SIEs have been reported of up to 5 for adduct formation
and 2–4 for adduct decay [31,33,35]. Proton inventory studies confirm that a single proton
transfer event, presumably involving N5 of the isoalloxazine ring, is rate limiting [31]. If such a
proton transfer event is not rate limiting in McLOVn, McLOVr, and 337-TF, then we should
observe little or no SIE. In contrast, McLOVn and McLOVr demonstrate SIEs of 3.4 and 2.5,
respectively. Both values are consistent with a primary SIE, indicating that N5 deprotonation
likely remains rate-limiting in these systems.

Since SIEs are consistent with N5 deprotonation being rate limiting, and the adduct decay
rate is inconsistent with solvent exclusion from the active site, we presume that an intrinsic
base may attenuate base catalysis in these systems. To probe such a possibility we examined
McLOVn, McLOVr, and 337-TF sequences for residues that could either function as an intrin-
sic base or facilitate proton transfer from N5. A candidate residue was identified adjacent to

Methylocystis sLOV Proteins Alter Base-Catalysis
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Fig 4. External bases do not catalyze someMcLOV proteins. (A,B) Both McLOVn (A) and McLOVr (B)
show no dependence of adduct decay on imidazole concentration. In contrast, a Thr27Ile demonstrates
spectra consistent with LOV chemistry (E) with a 100-fold decrease in the rate of adduct decay (F). The
Thr27Ile variant causes an imidazole concentration dependent rate of adduct scission (C). Thus, Thr27
renders McLOV proteins insensitive to imidazole catalysis. (D) In contrast, 337-TF is imidazole sensitive
despite containing a Thr at a position equivalent to 27. (G) A LOV structure (modeled from ENVOY PDB:
4WUJ) containing a Thr at a position equivalent to 27. Thr27 can coordinate a hypothetical water molecule
between the N5 position on flavin, C61 and Q124 (McLOVr numbering). In all figures, error bars represent the
standard deviation of the mean for experiments conducted in triplicate.

doi:10.1371/journal.pone.0124874.g004
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the active site flavin and a conserved Gln residue required for LOV function. McLOVn,
McLOVr, and 337-TF contain a Thr residue at position 27 (McLOVr numbering), where LOV
proteins typically contain a hydrophobic residue (lle or Val) [31]. The site is well positioned ad-
jacent to the N5 position, creating a small pocket lining N5 of the isoalloxazine ring, conserved
Gln124 (McLOVr numbering), and Thr27 (Fig 4). Consistent with a role in affecting adduct
decay, a Thr27Ile variant leads to a 100-fold decrease in the rate of adduct decay (Table 1 and
Fig 4). In addition, a Thr27Ile variant modestly restores base catalysis in adduct decay (Fig 4C).
Specifically, an increase of imidazole from 0 mM to 200 mM leads to a greater than 2-fold effect
on the rate of adduct decay, consistent with a solvent-accessibility factor of 30. Such a value is
consistent with weak base-catalysis as observed in other circadian clock LOV domains (ZTL,
VVD) [7]. Notably, the high imidazole sensitivity of 337-TF indicates that a Thr at position 27
is not the sole factor influencing base catalysis, as 337-TF demonstrates a large solvent accessi-
bility factor (a = 10000). We conclude that a unique residue substitution in the vicinity of the
flavin N5 position greatly alters base catalysis, including rendering some sLOV proteins insen-
sitive to base catalysis. Thus, examination of sLOV proteins in disparate systems indicates that
mechanisms of LOV photocycles may not be universally conserved.

Discussion
LOV domain chemistry has been studied in detail in several systems [31–33,36]. Although
some debate in regards to photocycle intermediates remains, a consensus mechanism involves
the formation of a radical intermediate [2,35,37–39]. In LOV proteins, excitation with blue-
light allows formation of a flavin singlet state that rapidly undergoes intersystem crossing. The
resultant triplet state then induces electron transfer, presumably from the active site Cysteine,
to form a semiquinone intermediate. Proton transfer from the Cys residue to the N5 position
of the isoalloxazine ring is coupled to radical recombination resulting in formation of the C4a-
adduct signaling state. Upon return to the dark, the adduct spontaneously decays on the order
of seconds to days to allow sensitivity to environmental light fluence [7]. Currently, research
has examined the adduct-lifetime and discovered several factors key to stabilization of the sig-
naling state. These include: 1) Alteration of the flavin reduction potential to favor reduced
semiquinones [31]. 2) Steric stabilization of the C4a adduct [40]. 3) A decrease in solvent acces-
sibility to the N5 position of the isoalloxazine ring [31] and 4) Alteration of H-bonding net-
works to the active site flavin [7,33,36]. The latter two are believed to affect the rate limiting
abstraction of the N5 proton by endogenous or exogenous bases, however the precise mecha-
nism of proton abstraction remains elusive.

Herein we have identified a family of LOV proteins in bacteria that may provide insight into
signal transduction by sLOV proteins as well as variability in the photocycle landscape across
the LOV family. sLOV proteins withinMethylocystis bear homology to LOV-TF proteins, both
of which exist as constitutive dimers under dark-state conditions. These proteins may in turn
be capable of dictating light responses through regulation by competitive dimerization as ob-
served in fungal systems. Moreover, chemical characterization of these proteins provides evi-
dence to the natural base-catalysis mechanisms that may dictate LOV photocycle kinetics.

Implications for base catalysis
To the best of our knowledge, all LOV proteins that have been characterized demonstrate ad-
duct decay pathways that are base catalyzed. In contrast, McLOVn and McLOVr are insensitive
to external base concentrations. Examination of the LOV active site revealed an active site Thr
that is well positioned to either activate a conserved glutamine as an intrinsic base, or to recruit
and coordinate a base to the protein active site (Fig 4G). In McLOVn and McLOVr, the

Methylocystis sLOV Proteins Alter Base-Catalysis
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presence of Thr27 is essential to the abolishment of base catalysis and contributes dramatically
to the fast photocycle present in these proteins. In contrast 337-TF exhibits strong base cataly-
sis even in the presence of a Thr at the equivalent position. We propose that the Thr27 position
directs the role of exogenous (imidazole) and endogenous bases in LOV catalysis. The diver-
gent behavior in McLOV proteins in turn is likely coupled to nearby residues or alteration of
N- C-terminal extensions to the LOV core. Such large effects on imidazole catalysis have been
observed in other systems [34]. We further propose that the divergent dependence on imidaz-
ole allows McLOV proteins to function as model proteins for understanding the base-catalyzed
mechanism present in all LOV proteins. We specifically address two proposed theories involv-
ing base catalysis in light of our data on McLOV proteins.

Small bases such as imidazole have been previously proposed to facilitate proton abstraction
from the light state adduct [32]. These studies identified two plausible mechanisms for proton
abstraction. The first suggests that an ordered solvent channel conserved in all LOV structures
functions as a proton shuttle [41]. In such a model, imidazole acts as an external base that acti-
vates peripheral ordered water to facilitate proton transfer from N5. The second suggests that
imidazole can act directly from the active site to abstract the N5 proton [31]. The second mech-
anism is supported by proton inventory measurements that implicate a single proton transfer
event in the rate determining step in adduct decay. The mechanism is further supported by res-
idue substitutions in the fungal LOV protein VVD that removes steric hindrance present in the
LOV active site [31]. These substitutions enhance base catalysis in VVD and lead to a concen-
tration dependence that fits a single site saturation model. Importantly, other LOV proteins
demonstrate unsaturateable base catalysis. Even VVD variants that exhibit saturation must be
modeled with a second unsaturateable component. In these regards, a direct site of action may
not be a complete model.

Alternatively, the first mechanism proposes that ordered water directs base catalysis. Al-
though known LOV structures conserve an ordered solvent channel leading to the flavin active
site, no ordered water has been observed within H-bonding distances to N5 [41]. Further, such
a mechanism contradicts proton inventory studies in several LOV systems. Thus, such a mech-
anism may not be accurate.

Based on our studies here, we propose an alternative hybrid mechanism. We propose that
ordered water may function as an intrinsic base in LOV proteins. However, the ordered water
near N5 is transient in nature and cannot be observed in existing LOV structures. The transient
ordered water could then be activated by imidazole that acts in a single site of low affinity near
the periphery of the conserved solvent channel. Such a mechanism is consistent with existing
mutational data in VVD that requires mutation of an Ile residue near the periphery of the sol-
vent channel to impose a saturateable model [31]. Moreover, introduction of an active site Thr
in McLOV proteins may increase the occupancy of ordered water near N5 rendering base catal-
ysis pathways comparatively inefficient. In such a system, water ordered by Thr27, Gln124,
and N5 are directly activated by the surrounding protein, thereby out competing a very low af-
finity site for base catalysis. Importantly, such a function would also be dependent on the orien-
tation of Gln124 as well as interactions to the N/Ccaps. Thus, Thr27 acts in a key position to
have the capacity to alter imidazole catalysis in divergent manners. Importantly, a lack of crys-
tal structures of McLOV proteins renders examination of ordered water in LOV proteins com-
plicated. Future structural studies may shed light on the role of ordered water in base catalysis
of LOV proteins. Combined, our studies highlight the importance of studying LOV proteins
from novel environmental niches as they can facilitate our understanding of the global LOV
photocycle mechanism as well as allosteric regulation of LOV function. Such studies can shed
light on new mechanisms for optogenetic tool development and improvement of existing
optogenetic devices.
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Materials and Methods

Cloning
LOV constructs were either cloned from genomic DNA (Methylocystis Rockwall, kindly pro-
vided by Lisa Stein, University of Alberta) or synthetic DNA codon optimized for E. coli ex-
pression (Methylocystis rosea andMethylocystis Rockwall). Complete DNA sequences of
McLOVn, McLOV-TF and McLOVr are provided in supporting information (S1 Sequence).
Constructs were cloned by PCR amplification. Following amplification, PCR product was run
on a 1% agarose gel to verify PCR product. PCR product was subjected to gel purification prior
to digestion with Xho1 and Nco1 restriction enzymes. Digested DNA was ligated into a 6-His
Parallel vector with ampicillin resistance. The resulting ligation reaction was transformed into
DH5α E. coli cells and grown on LB-agar plates containing 200 μg/ml ampicillin. DNA was
then isolated via miniprep (Promega). Isolated DNA was confirmed to contain insert by a re-
striction digest test prior to DNA sequencing (genewiz).

Expression
Proteins were expressed in E. coli BL21(DE3) cells grown at 37°C. After the cells reached a den-
sity (OD600) greater than 0.5, the temperature was reduced to 18°C, and protein expression was
induced with 200 μM IPTG. Cell pellets were harvested by centrifugation and stored in buffer
(50mMHepes, 100mMNaCl 10% Glycerol, pH 8) at -80 C.

Purification
Cell pellets were thawed at room temperature prior to sonication. Cell lysate was clarified via
centrifugation at 16,000 rpm to remove cellular debris. Lysate was then applied to a 5 ml Ni-
NTA affinity column to isolate the His6 tagged protein; the protein was washed and eluted
with 20 mM and 300 mM imidazole, respectively. The eluted protein was then incubated with
TEV (Tobacco Etch Virus Protease) overnight to remove the His6 affinity tag. Cleaved protein
was buffer exchanged to eliminate residual imidazole, then subjected to another round of affin-
ity purification to eliminate His6-TEV. Finally, the desired protein was isolated with size exclu-
sion chromatography (Superdex 75 GE-Healthcare) prior to concentration to 5–10 mg/ml
characterization.

Photochemical characterization
All experiments were conducted in a quartz cuvette with a pathlength of 1.0 cm. The absor-
bance was measured at 450nm and 478nm to follow recovery from the light state back to the
dark state after photobleaching. Prior to kinetic characterization dark-state samples were
illuminated with a 5 mW 473 nm blue laser until a steady-state light/dark ratio was achieved.
Recovery was measured at 0.5 s intervals, using the absorption values recorded at 450 and
478 nm. All kinetic traces were corrected for baseline drift by subtraction of the absorbance at
600 nm.

Eyring and Arrhenius analyses
All protein constructs were characterized with temperature dependent kinetics ranging from
15–36°C followed by Arrhenius and Eyring data analysis to extrapolate rate constants, activa-
tion energy, and entropy of activation. All kinetic studies followed procedures outlined above.
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Base catalysis
Base catalysis and determination of solvent accessibility factors were conducted as outlined in
Pudasaini et al. [7]. We briefly summarize the methodology here. Constructs were studied for
their response to base catalysis by varying the concentration of imidazole within the range of
0–150 mM. We note that higher concentrations were tested, but in many cases led to protein
instability. Kinetic parameters were extracted by measuring the absorbance at 450 and 478 nm
as outlined above. A solvent accessibility factor (a) was calculated using methods published
previously[34]. Briefly

rate ¼ a � ðk½adduct�½base�Þ ð1Þ
The slope of a plot of k vs. base concentration is equivalent to:

slope
½adduct� ¼ a ð2Þ

The slope was calculated using the concentrations of both protein and imidazole in units of
Molarity. All calculations were made with a protein concentration of 10 μM.

Solvent isotope effect measurements
All SIE experiments were conducted by first exchanging H2O buffer (50mMHepes, 100mM
NaCl 10% Glycerol, pH 8) for an equivalent buffer prepared with D2O. Buffer exchange was
completed via 3 successive 10-fold dilutions into D2O buffer followed by concentration to
5–10 mg/ml. The samples were than analyzed for their rate constants via the methodology de-
fined above. SIE are reported as kH/kD.

Supporting Information
S1 Sequence. Complete DNA and protein sequences for all constructs cloned fromMethy-
locystis are provided.
(PDF)
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