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Abstract
Increasing evidence suggests that the composition of the human gut microbiome is impor-

tant in the etiology of human diseases; however, the personal factors that influence the gut

microbiome composition are poorly characterized. Animal models point to sex hormone-

related differentials in microbiome composition. In this study, we investigated the relation-

ship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 hu-

mans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and

classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex,

BMI, and fiber intake with overall gut microbiome composition and specific taxon abun-

dances were assessed by permutational MANOVA and multivariate logistic regression, re-

spectively. We found that sex was associated with the gut microbiome composition overall

(p=0.001). The gut microbiome in women was characterized by a lower abundance of Bac-

teroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome

composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in

men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respec-

tively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted

q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings

suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in hu-

mans. Better understanding of these relationships may have significant implications for gas-

trointestinal health and disease prevention.

Introduction
The human gastrointestinal tract carries a structured microbial composition consisting of more
than ten-fold the number of human cells in the body [1]. The gut microbiota plays an
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indispensable role in digesting food components and in host immunological response [1, 2].
Comprehensive genomic-based microbiome assessments have identified significant inter-indi-
vidual variation in the composition of the human gut microbiome [3]. Increasing evidence sug-
gests that gut microbiome variation is important in the etiology of gastrointestinal diseases [4, 5]
including cancer [6, 7], as we recently reported [8]. However, significant knowledge gaps remain
in our understanding of personal factors that influence gut microbiome composition. Better un-
derstanding of these personal factors and their relationships with the gut microbiome may have
important implications for disease prevention.

There is increasing evidence that sex steroid hormone levels are associated with the human
gut microbiome [9]; however, the relationships of personal factors associated with these sex ste-
roids in relation to the human gut microbiome has not been studied comprehensively. An animal
study recently reported sex-specific differentials in gut microbiome composition [10]. Adiposity,
a source of sex steroids [11], may play an additional role in forming a sex-specific microbiome
composition, as suggested by animal models and human weight-loss trials [12–15]. Dietary fiber,
a major energy source for gut bacterial fermentation [16], and an influence on systemic estrogen
levels [17], may also shape the gut microbiome. The fiber hypothesis is supported by short-term
dietary interventions [18–22], but there is only sparse data evaluating the impact of long-term di-
etary fiber on the gut microbiome [23, 24]. Given the findings from these early studies, we hy-
pothesize that sex, adiposity, and dietary fiber operate through similar mechanisms, including
hormone mediated pathways, to modulate the human gut microbiome.

To better understand the determinants of the human gut microbiome, we assessed gut micro-
biome composition in fecal samples from 82 subjects in the control group of a case-control study
of colorectal cancer [8]. We investigated the relationship of sex, adiposity, assessed by body mass
index (BMI) [25], and dietary fiber, individually and jointly, to gut microbiome composition and
distribution of specific taxa and found that sex, BMI, and dietary fiber were associated with dif-
ferences in the human gut microbiome.

Methods and Materials

Study population
Samples and data were collected from control group participants in a case-control study of gut
microbiome and colorectal cancer, as recently described [8]. Study participants were originally
recruited at three Washington, D.C., area hospitals (National Naval Medical Center, Walter
Reed Army Medical Center, and George Washington University Hospital) between April 1985
and June 1987, prior to elective surgery for non-oncological, non-gastrointestinal conditions,
including orthopedic or neurosurgical procedures, hernia repairs, vascular procedures, and
other general surgeries [26, 27].

We included 82 subjects for study among 94 participants in the original investigation with
at least 100 mg of lyophilized fecal material available (described below), excluding subjects
with less than 1000 microbial sequence reads and with missing or extreme caloric intake (�500
or�5500kcal/day). None of the eligible subjects reported taking antibiotics during the year
prior to being recruited into the study. The study was approved by the institutional review
boards from New York University School of Medicine and National Cancer Institute and all
participants provided signed written informed consent. All signed written consent forms are
documented and stored at the National Cancer Institute.

Demographic, lifestyle, and dietary fiber assessment
Demographic information on age, sex, height, weight, and race (White, Black, Hispanic, Asian
or Pacific Islander) were ascertained by structured demographic questionnaires completed
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prior to hospitalization and treatment. BMI was calculated by dividing weight in kilograms by
squared height in meters. Study participants were then classified as normal weight (<25kg/m2)
or overweight or obese (�25kg/m2) based on the WHO definition [28]. Diet intake was as-
sessed using a self-administered 100 item food frequency questionnaire. Long term intake fre-
quency and portion size were queried. Nutrient intakes were derived from frequency and
portion-size responses from the food frequency questionnaire, in which nutrient values per
portion were multiplied by the daily frequency of intake and summed across all relevant food
items, using the US Department of Agriculture pyramid food group serving database [29]. Diet
data was standardized by total calorie intake [30]. Total fiber (5.7–11.3, 11.3–14.5, 14.5–17.6,
18.0–38.7 g/day), fruit and vegetable fiber (1.6–6.5, 6.6–8.8, 8.9–11.7, 11.8–21.9 g/day), bean
fiber (0–0.9, 0.9–1.3, 1.4–2.3, 2.3–10.7 g/day), and grain fiber (1.0–2.5, 2.8–3.5, 3.6–5.1, 5.1–9.7
g/day) were grouped into quartiles. For taxa-specific analyses, total and specific sources of fiber
were treated as continuous values.

Fecal sample collection
Prior to hospitalization and treatment, subjects were asked to collect fecal samples at home,
over a two day period, and store the material in a plastic container, in a Styrofoam chest con-
taining dry ice. Fecal samples were shipped to a USDA laboratory, where the two-day samples
were pooled, lyophilized and stored at a minimum of -40°C in sealed, air-tight containers.

16s rRNA gene sequencing microbiome assay
We extracted DNA from the stored fecal samples using the Mobio PowerSoil DNA Isolation Kit
(Carlsbad, CA) with bead-beating. As we reported previously [8], 16S rRNA amplicons covering
variable regions V3 to V4 were generated using primers (347F-50GGAGGCAGCAGTRRGGAAT0-
30 and 803R 50-CTACCRGGGTATCTAATCC-30) incorporating Roche 454 FLX Titanium adapt-
ers (Branford, CT) and a sample barcode sequence [31]. Amplicons were sequenced with the 454
Roche FLX Titanium pyrosequencing system following the manufacturer’s specifications. Labora-
tory personnel were blinded to personal factor status.

Sequence data processing and taxonomic assignment
Multiplexed, barcorded sequencing data was deconvoluted. Poor-quality sequences were fil-
tered based on sequences less than 200 or greater than 1000 base pairs, missing or mean quality
score<25, or mismatched barcode and primer sequences. Chimeric sequences were removed
with ChimeraSlayer [32]. Filtered sequences were binned into operational taxonomic units
with 97% identity and aligned to fully-sequenced microbial genomes (IMG/GG GreenGenes),
using the QIIME pipeline [33]. Blinded quality control specimens in all sequencing batches (38
aliquots from 9 unmatched parent study control subjects) had good reproducibility, with intra-
class correlation coefficients of 0.90 for principal coordinate analysis, 0.84 for Shannon diversi-
ty index, and 0.43 to 0.59 for relative abundances of major phyla [8].

Statistical analysis
The relationship of overall gut microbiome composition with personal factors (sex, BMI, and
dietary fiber intake) was assessed by principal coordinate analysis (PCoA), based on the un-
weighted (qualitative) phylogenetic UniFrac distance matrix [34]. PCoA plots were generated
using the first two principal coordinates (PCs), according to categories of personal factors.
Adonis [35], which uses permutational multivariate analysis of variance (PERMANOVA), was
used to test statistical significances of association of overall composition with personal factors.
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To control for confounding, we used Generalized Linear Regression where each PC was treated
as the outcome and the personal factors were mutually adjusted. Richness and evenness were
assessed by Shannon’s diversity index and evenness index [36], respectively, and Monte Carlo
permutations were used for assessment of statistical significance [33].

Relationships relating specific taxa abundance to sex and BMI were assessed by Mann-
Whitney-Wilcoxon test. To visualize relationships of specific sources of fiber (bean, fruit and
vegetable, and grain) with gut microbiome taxa (genus), we developed a heatmap based on
unsupervised classification of Spearman correlation coefficients (R package, gplots; R version
2.15.3). To control for confounding in these analyses, we used logistic regression, considering
high vs. low taxon abundance (median value cut-off) as the outcome and fiber types as
the predictors.

False discovery rate (FDR) adjusted q-values were calculated for comparisons of taxa [37].
To minimize the number of null hypotheses that had to be corrected for, we limited these anal-
yses to the three major phyla, Actinobacteria, Bacteroidetes, and Firmicutes (at least 50% of
samples positive, with at least 1% median abundance). All analyses were carried out using SAS,
version 9.3 (SAS Institute, Cary, NC) unless otherwise specified.

Results
Among the 82 subjects included for study, 62.2% were men and 85.4% were white (Table 1).
Their age ranged from 30–83 years (58.4±13.2 [mean ± standard deviation]). This study
population included 46.3% former smokers and 9.8% current smokers. Mean intake of total
dietary fiber was 14.1 grams per day. From the 82 immediately frozen fecal samples, gut

Table 1. Population Characteristics.

Characteristic Total (N = 82) Men (N = 51) Women (N = 31) p-value1

Age (Years, Mean±SD) 58.4±13.18 58.0±13.58 59.2±12.67 0.71

BMI (Kg/M22, Mean±SD) 25.0±4.06 25.6±3.49 23.8±4.69 0.03

Race (%)2 0.35

White 85.4 88.2 80.6

Black 12.2 7.8 19.3

Hispanic 1.2 2.0 ~

Asian or Pacific Islander 1.2 2.0 ~

Smoking Status (%) 0.04

Never 43.9 35.3 58.1

Former 46.3 56.9 29.0

Current 9.8 7.8 12.9

Sequence Batch (%) 0.50

1 34.1 57.1 64.8

2 65.9 42.9 35.2

Sources of Fiber (Estimated Daily, Mean±SD)

Total Dietary Fiber (grams) 14.1±5.11 14.3±5.24 13.8±4.95 0.07

Bean(grams) 1.8±1.62 2.1±1.79 1.3±1.15 0.003

Fruit and Vegetables(grams) 9.4±4.22 8.6±3.89 10.7±4.46 0.01

Grain(grams) 3.9±1.63 3.8±1.62 4.0±1.69 0.82

1All characteristics were compared by sex using either Chi square or Mann-Whitney-Wilcoxon tests. All analyses were carried out using SAS software

(version 9.3).
2Race was grouped as White and Other for Chi square test.

doi:10.1371/journal.pone.0124599.t001
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microbiome was assessed by multiplexed 16S rRNA gene sequencing with amplification of
the hyper-variable V3 to V4 region. In total, 331,288 high-quality 16S rRNA sequence reads
(4,040±1,843 [mean ± standard deviation] sequences per sample) were binned to operational
taxonomic units and subsequently assigned taxonomy.

Sex was significantly associated with gut microbiome composition overall (unweighted Uni-
Frac p = 0.001, Fig 1A, Table 2); sex was specifically associated with the first principal coordi-
nate, after we adjusted for other confounding factors (Table 3, p = 0.0001). Women tended to
have a lower abundance of Bacteroidetes (5.5% in women [n = 31] vs. 11.4% in men [n = 51],
FDR corrected q = 0.07) (Fig 1B).

BMI (�25 kg/m2 [n = 32] vs.<25 kg/m2 [n = 50]) was associated with gut microbiome
community composition with marginal statistical significance (Fig 2A, p = 0.05, Table 2).
When we stratified by sex, the relationship of BMI with overall gut microbiome composition
was significant in women (p = 0.03, Fig 3A, Table 2) but not in men (Fig 3B, p = 0.29, Table 2).
In women, Shannon diversity indices were lower in the overweight and obese subjects (n = 10)
compared to normal weight subjects (n = 18) (Fig 3C, p = 0.03). In women, there was also a
tendency for Bacteroidetes abundance to be lower in overweight and obese subjects, compared
to normal weight subjects (Fig 3E).

Sources of dietary fiber intake tended to be associated with the gut microbiome. Fiber from
fruits and vegetables (p = 0.06) and from beans (p = 0.06) were marginally associated with
overall gut microbiome composition (Fig 4A, Table 2). The relationships of total fiber, fiber
from fruits and vegetables, and fiber from grains were particularly stronger in women
(p = 0.005, p = 0.05, p = 0.01, respectively, Table 2). Fiber from beans was strongly related to

Fig 1. Gut microbiome according to sex. (A) Unweighted principal coordinate analysis plot of the first two principal coordinates categorized by sex.
Ellipses were added to plots using the R package, latticeExtra (R version 2.15.3). (B) Relative abundance of the three major phyla. Mann-Whitney-Wilcoxon
test was used to test for overall differences using SAS software (version 9.3). Nominal p-values are listed below each phylum.

doi:10.1371/journal.pone.0124599.g001
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overall gut microbiome in men (p = 0.01, Table 2). Unsupervised classification showed that in-
take of fiber from fruits and vegetables clustered notably with class Clostridia (Cluster 1, Fig 4B,
S1 Table). Multivariate logistic regression, adjusting for confounding, further supports this

Table 2. PERMANOVA1 analysis of personal factors with the unweighted UniFrac distance matrix.

Factor F statistic P-value

Main Analysis

Sex 1.49 0.001

BMI2 1.12 0.05

Total Fiber3 1.08 0.14

Fruit & Vegetable Fiber3 1.13 0.06

Bean Fiber3 1.13 0.06

Grain Fiber3 1.08 0.15

Men

BMI2 1.04 0.29

Total Fiber3 1.01 0.41

Fruit & Vegetable Fiber3 1.08 0.10

Bean Fiber3 1.17 0.01

Grain Fiber3 0.99 0.48

Women

BMI2 1.17 0.03

Total Fiber3 1.26 0.005

Fruit & Vegetable Fiber3 1.13 0.05

Bean Fiber3 0.97 0.64

Grain Fiber3 1.19 0.01

1Adonis, which uses permutational multivariate analysis of variance (PERMANOVA), was used to test

statistical significances of association of overall composition with personal factors. All analyses were

carried out using the QIIME pipeline.
2BMI was categorized as normal weight (<25 kg/m2) versus overweight or obese (�25 kg/m2).
3Total and specific sources of dietary fiber were categorized as low (quartiles 1–3) versus high (quartile

4) intake.

doi:10.1371/journal.pone.0124599.t002

Table 3. Univariate andmultivariate linear regressions1 for personal factors and unweighted principal coordinates (PC).

PC 1 Estimate±SD P-Value PC 2 Estimate±SD P-Value

Individual Factors

Sex -0.11±0.02 4.81 × 10–5 0.01±0.02 0.76

BMI -0.03±0.03 0.27 0.004±0.02 0.86

Fruit & Vegetable -0.01±0.01 0.21 -0.01±0.01 0.36

Bean 0.01±0.01 0.45 0.004±0.01 0.72

Grain 0.01±0.01 0.39 -0.004±0.01 0.69

Combined Factors2

Fruit & Vegetable 0.003±0.01 0.82 -0.02±0.01 0.11

Sex -0.10±0.02 0.0001 0.02±0.02 0.44

1 All estimates were computed using generalized linear regression models where principal coordinates were treated as outcomes and all personal factors

treated as predictor variables. All analyses were carried out using SAS software (version 9.3).
2 Fiber from fruits and vegetables, sex, race, and age were included jointly in multivariate regression models.

doi:10.1371/journal.pone.0124599.t003
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relationship (Table 4, OR for high vs. low Clostridia abundance = 1.24, p = 0.009 and FDR ad-
justed q = 0.09). We noted a second cluster of fiber from bean intake with members of Actino-
bacteria phylum (Table 4, OR = 2.24, p = 0.006 and FDR adjusted q = 0.05), and
Bifidobacteriales order (OR = 1.65, p = 0.04 and FDR adjusted q = 0.43). No clear associations
were observed between intake from grain fiber and microbial taxa (Table 2). Results of fiber in-
takes with specific microbial taxa were consistent in men and in women.

Discussion
In this study, we found that women had significantly different gut microbiome composition
overall and particularly lower Bacteroidetes abundance, compared with men. BMI was associ-
ated with altered microbiome community composition. Greater intake of fiber from fruits and
vegetables and from beans was associated with greater Clostridia and Actinobacteria
abundances, respectively.

We identified significant sex differentials in gut microbiome composition and abundance of
specific taxa. Our findings are consistent with an earlier targeted study of fluorescent in situ hy-
bridization, reporting lower abundance of Bacteroidetes in women than men [38]. Further-
more, studies in mice showed that Bacteroidetes abundance is lower in female rodents [39],
with sex differences in gut microbiome not appearing until after puberty [10, 39], supporting a
role for hormonal and other host factors related to sexual maturity in shaping the gut micro-
biome. In addition to hormone-microbiome relationships, sex may impact the gut microbiome

Fig 2. Gut microbiome according to BMI. (A) Unweighted principal coordinate analysis plot of the first two principal coordinates categorized by BMI (<25
kg/m2,�25 kg/m2). Ellipses were added to plots using the R package, latticeExtra (R version 2.15.3). (B) Relative abundance of the three major phyla. Mann-
Whitney-Wilcoxon test was used to test for overall differences using SAS software (version 9.3). Nominal p-values are listed below each phylum.

doi:10.1371/journal.pone.0124599.g002
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Fig 3. Gut microbiome according to BMI in women andmen separately.Unweighted principal coordinate analysis plot of the first two principal
coordinates categorized by BMI (<25 kg/m2,�25 kg/m2) in (A) women and (B) men. Ellipses were added to plots using the R package, latticeExtra (R version
2.15.3). Alpha rarefaction plots of Shannon diversity indices grouped by normal weight (<25 kg/m2; open circles) and overweight/obese (�25 kg/m2; red
circles) status for women (C) and for men (D). Statistical significance was assessed by non-parametric Monte Carlo permutations (QIIME). (E) Relative
abundance of Firmicures and Bacteroidetes. Mann-Whitney-Wilcoxon test was used to test for overall differences using SAS software (version 9.3).

doi:10.1371/journal.pone.0124599.g003
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through alterations in gut transit time, which is reported to be greater for women than men
[40, 41].

We found significant differences in gut microbiome composition by BMI particularly in
women. Ley et al., reported that genetically modified obese mice carried less Bacteroidetes than
lean mice [12] and later in humans, that weight-loss diets in obese subjects increased Bacteroi-
detes abundance [13]. Consistent with this, Turnbaugh et al. reported significantly reduced
Bacteroidetes in obese compared to normal weight female twins [14]. Although mechanisms
are unclear, adipose tissue is a source of estrogen production in obese individuals [11], and es-
trogen-microbiome associations have been suggested [9]; consistent with our findings of inter-
relationships between sex, BMI, and gut microbiota composition. Our findings provide further
support for a role of BMI in shaping the gut microbiome and points to potential sex-specific ef-
fects. Further study with larger subject numbers will help to elucidate the role of sex and BMI
in influencing the gut microbiome composition. Furthermore, since obesity is a significant risk
factor of many chronic diseases [52,53], including colorectal cancer [54], these findings may
also point to potentially harmful microbes.

Fig 4. Gut microbiome according to dietary fiber intake. (A) Unweighted principal coordinate analysis plot of the first two principal coordinates
categorized by fruit and vegetable fiber intake (Low: 1.6–11.7 g/day [equivalent to quartile 1–3], High: 11.7–21.9 g/day [quartile 4]). Ellipses were added to
plots using the R package, latticeExtra (R version 2.15.3). (B) A heatmap based on unsupervised classification of Spearman correlations between the relative
abundance of taxa (genus level) and three dietary fiber sources using the R package, gplots, (R version 2.15.3). For this analysis, only genera that were
present in�15% of samples were included. Taxa belonging to Clostridia (Cluster 1, *) and Bifidobacteriales (Cluster 2, °) are marked.

doi:10.1371/journal.pone.0124599.g004
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We found that specific sources of dietary fiber were differentially associated with the gut
microbiome. Dietary fiber is a heterogeneous and complex mixture of different combinations of
monosaccharides [42]. Fiber from fruit and vegetable intake was related to the gut microbiome
composition, noted by an increased abundance of the Clostridia class; these findings are sup-
ported by two studies of long-term dietary fiber intake [23, 24]. Fiber may be enhancing gram-
positive bacteria, including Clostridia [43], by reducing the gut transit time and pH [44, 45].
Clostridia are also an important class of dietary fiber fermenters where the major products are
the potentially anti-carcinogenic short chain fatty acids [46, 47]. We recently reported signifi-
cantly lower abundances of Clostridia in colorectal cancer patients compared to control subjects
from this same study population [8]. Our observation here of an association between bean fiber

Table 4. Odds Ratio1 of having higher relative abundances of taxa by total and specific fiber intake.

Total Fruit & Vegetable Bean Grain
OR OR OR OR
(95% CI) p q2 (95% CI) p q2 (95% CI) p q2 (95% CI) p q2

Firmicutes 1.19 0.46 0.46 1.09 0.20 0.60 1.14 0.42 0.66 0.90 0.45 0.66

(0.75–1.90) (0.96–1.24) (0.83–1.57) (0.68–1.19)

Bacilli 1.01 0.87 0.87 1.00 0.97 0.97 0.97 0.85 0.97 1.05 0.72 0.97

(0.90–1.10) (0.90–1.13) (0.70–1.31) (0.80–1.39)

Clostridia 1.15 0.03 0.12 1.24 0.009 0.09 1.09 0.58 0.97 1.06 0.68 0.97

(1.01–1.20) (1.05–1.47) (0.08–1.49) (0.79–1.42)

Clostridium3 1.12 0.12 0.92 1.19 0.07 0.60 1.12 0.89 0.95 1.03 0.86 0.95

(0.97–1.30) (0.98–1.43) (0.69–1.82) (0.73–1.45)

Blautia 1.04 0.49 0.92 1.02 0.83 0.95 1.56 0.02 0.51 0.88 0.40 0.85

(0.94–1.15) (0.88–1.17) (1.07–2.27) (0.65–1.19)

Clostridium 0.95 0.28 0.92 0.89 0.09 0.64 1.43 0.06 0.60 0.80 0.13 0.74

(0.86–1.04) (0.78–1.02) (0.98–2.07) (0.59–1.07)

Coprococcus 1.16 0.01 0.17 1.23 0.009 0.46 1.15 0.36 0.83 1.15 0.33 0.83

(1.03–1.31) (1.05–1.43) (0.85–1.58) (0.86–1.54)

Dorea 1.01 0.86 0.92 1.00 0.99 0.99 1.64 0.03 0.51 0.95 0.72 0.95

(0.92–1.11) (0.87–1.14) (1.05–2.57) (0.71–1.26)

Bacteroidetes 0.76 0.26 0.39 0.87 0.06 0.27 0.90 0.53 0.66 1.08 0.59 0.66

(0.48–1.22) (0.76–1.01) (0.66–1.23) (0.81–1.43)

Bacteroidaceae 0.95 0.28 0.70 0.93 0.26 0.87 0.89 0.48 0.91 1.10 0.50 0.91

(0.86–1.04) (0.82–1.06) (0.65–1.23) (0.83–1.46)

Porphyromonadaceae 0.89 0.04 0.40 0.89 0.08 0.60 0.58 0.02 0.57 0.96 0.77 0.91

(0.80–0.99) (0.78–1.02) (0.37–0.91) (0.73–1.27)

Actinobacteria 1.36 0.22 0.39 0.97 0.74 0.74 2.24 0.006 0.05 1.17 0.29 0.65

(0.83–2.25) (0.86–1.11) (1.27–3.96) (0.87–1.59)

Bifidobacteriales 1.01 0.82 0.84 0.97 0.62 0.92 1.65 0.04 0.43 1.12 0.46 0.86

(0.92–1.12) (0.84–1.11) (1.02–2.68) (0.83–1.52)

Coriobacteriales 0.93 0.17 0.32 0.88 0.08 0.43 0.98 0.92 0.92 1.01 0.92 0.92

(0.83–1.03) (0.76–1.01) (0.72–1.35) (0.76–1.36)

1All estimated OR’s and 95% CI’s were computed using multivariate logistic regression models where low and high relative abundances were treated as

outcome and fiber intake treated as continuous variables of interest. Low and high groups were based on median value. Age, sex, race, and smoking

status were controlled for. All analyses were carried out using SAS software (version 9.3).
2False discovery rate adjusted q-value.
3Taxa treated as absent/present because they were <80% present across all 82 samples.

doi:10.1371/journal.pone.0124599.t004
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intake and Actinobacteria abundance, particularly Bifidobacteriales, is supported by a short-
term randomized trial which showed that fiber found in legumes, including beans [48, 49], in-
creased the number of Bifidobacteria [19]. However, additional randomized, crossover studies
have shown that concentrations of Bifidobacteria increase with other types of fiber treatments
[18, 20, 21]. While the majority of studies are based on short-term randomized trials of high
fiber supplements, our study adds to the growing body of evidence [23, 24] that usual long-term
fiber intake influences the gut microbiome.

We also observed sex-specific effects on the relationship between dietary fiber intake and
the gut microbiome. While mechanisms are not well understood, dietary fiber has been shown
to influence the systemic levels of estrogen [17]. Dietary fiber is considered beneficial for
human health [55] and is also an important energy source for gut bacterial fermentation [56].
Dietary fiber may be acting through sex hormone mediated pathways to influence the human
gut microbiome.

Several limitations in our study should be considered. The study subjects are not representa-
tive of the general population, as they were awaiting elective surgeries for non-oncological and
non-gastrointestinal conditions [8]. Measurement error is an inherent limitation in dietary in-
take assessment and may have attenuated the true relationship. We controlled in the statistical
analysis for possible confounding factors, although other unmeasured factors may have influ-
enced the observed relationships. For example, dietary fiber intake may mark for intake of
foods that are rich in vitamins, minerals, and phytochemicals, or may be a marker of a healthy
lifestyle. Stool samples, as used here, are not entirely representative of whole gut microbial
composition [50], but obtaining alternative gut tissue biospecimens in healthy subjects is not
feasible. Furthermore, archived stool samples may not be optimal compared to freshly collected
samples, although our blinded quality control assay indicated good reliability (intraclass corre-
lation coefficients = 0.84–0.90 for overall gut microbiome composition and 0.43–0.59 for
major taxa) [8] and the identified major taxon distributions were within ranges of other pub-
lished studies [51, 52]. We also cannot exclude the possibility that our findings may be due to
chance because of the small sample sizes, particularly in our subset analysis.

This study has several strengths. The assessments on demographic, lifestyle, and dietary fac-
tors provide the ability to assess the relationship of these factors with the gut microbiome,
while controlling for multiple comparisons. Complementing previous short-term intervention
studies of high fiber supplement intake [18–22], this study provides useful information on as-
sociations of usual long-term daily fiber intake with differences in the gut microbiome in free-
living people. Finally, our analysis of specific sources of fiber helps to better understand the
fiber and gut microbiome relationship.

We found that sex, BMI, and source of dietary fiber are associated with differences in the
gut microbiota. There is increasing evidence of a relationship between gut microbiota and gas-
trointestinal diseases [4, 5], including colorectal cancer [6–8], and other diseases, such as dia-
betes [53, 54]. These personal factors are important in an overlapping spectrum of chronic
diseases [55–58] and may partly operate through common microbial pathways influencing
hormone profiles [11, 17] and gut transit [44]; our findings may have implications for
disease prevention.
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