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Abstract
Topoisomerases are enzymes that alter the topological properties of DNA. Phage T4 en-

codes its own topoisomerase but it can also utilize host-encoded topoisomerases. Here we

characterized 55.2, a phage T4 predicted ORF of unknown function. High levels of expres-

sion of the cloned 55.2 gene are toxic in E. coli. This toxicity is suppressed either by in-

creased topoisomerase I expression or by partial inactivation of the ATPase subunit of the

DNA gyrase. Interestingly, very low-level expression of 55.2, which is non-lethal to wild type

E. coli, prevents the growth of a deletion mutant of the topoisomerase I (topA) gene. In vitro,
gp55.2 binds DNA and blocks specifically the relaxation of negatively supercoiled DNA by

topoisomerase I. In vivo, expression of gp55.2 at low non-toxic levels alters the steady state

DNA supercoiling of a reporter plasmid. Although 55.2 is not an essential gene, competition

experiments indicate that it is required for optimal phage growth. We propose that the role of

gp55.2 is to subtly modulate host topoisomerase I activity during infection to insure optimal

T4 phage yield.

Introduction
The various DNA manipulations that occur during the normal life cycle of a cell can result in
three topologically altered forms of DNA: knots, catenanes, and supercoils [1]. Supercoils de-
scribe a DNA state in which the number of times the strands cross each other differs from that
in an unconstrained DNA molecule. If this number is lower or higher than expected, DNA is
said to be either negatively or positively supercoiled. Processes that require the unwinding or
the rotation of a topologically constrained DNA double helix, such as replication or transcrip-
tion, will lead to the accumulation of compensatory supercoils that hinder polymerase move-
ment [2,3]. Although such torsional stress can be a problem, supercoiling has important
physiological functions. Bacteria, normally maintain their chromosome and plasmids in a
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negatively supercoiled state and this is an important factor in both chromosome compaction
and transcriptional regulation [4,5].

DNA’s diverse topological problems can be resolved by topoisomerases, a family of enzymes
that allow DNA strands or DNA double helices to pass through each other. Type I topoisomer-
ases transiently cut one DNA strand, releasing the superhelical tension, while type II enzymes
cut both DNA strands allowing the ATP-dependent transport of one DNA double helix
through the other [6,7]. Given the universality of DNA topological constraints, it is not surpris-
ing that topoisomerases are found in all three domains of life. In addition, a number of viruses,
both eukaryotic and bacterial, encode their own topoisomerases, [8,9]. Because of their critical
role in determining DNA topology, topoisomerases have become a target of choice for the de-
velopment of antibiotics and anticancer drugs. Consequently, some type II topoisomerase in-
hibitors are employed clinically as potent antibacterial and antitumor agents [10,11].

Escherichia coli has two type I topoisomerases (Topo I and III), and two type II topoisomer-
ases (DNA gyrase and Topo IV). The negative supercoiling of the bacterial chromosome and
plasmids is homeostatically regulated by the counterbalancing activities of Topo I and Topo
IV, both of which remove negative supercoils, and of DNA gyrase, which adds negative super-
coils [12]. Topo III and Topo IV are primarily responsible for the unlinking of sister chromo-
somes during and after replication [13]. Phage T4, which infects E. coli, expresses its own
topoisomerase whose three subunits are encoded by genes 39, 52, and 60 [14,15]. This type II
topoisomerase is not absolutely essential for T4 growth, but topoisomerase mutants display the
so-called DNA-delay phenotype [16–18]. Indeed, the phage topoisomerase is absolutely re-
quired for the early mode of phage DNA replication. In topoisomerase mutant phages, DNA
replication depends instead on the late, recombination-dependent, join-cut-copy replication
pathway (reviewed in [19–21]). In the absence of its own topoisomerase, T4 growth is
completely dependent on host DNA gyrase [22].

Through the isolation of large collections of nonsense and temperature-sensitive mutants,
phage T4 was the first organism in which nearly all the essential genes were identified [16,23].
In addition to the 62 essential genes, the genome was also known to encode auxiliary proteins,
increasing the total number of characterized genes to 156. However, the T4 genome is pre-
dicted to have 289 protein-coding genes (open reading frames ORF); nearly all of these addi-
tional 126 genes have no known function [24]. Since most of these new unknown T4 genes
have no detectable homology to any known proteins, they were considered databases orphans
(ORFans). Nevertheless, many of them are present in the genomes of other related T4-like
phages [25]. Since lytic phages are among the most abundant organisms on the planet [26,27],
these numerous and diverse ORFans represent an enormous reservoir of unchartered genetic
information, the so-called “dark matter of the biosphere” [26,28].

We previously identified several T4 ORFans whose ectopic expression significantly inhib-
its E. coli growth [29]. As described above, many DNA transactions require the resolution of
DNA topological issues. Thus, we considered the possibility that some of the T4 ORFans
might be involved in the control of phage DNA topology possibly in conjunction with the
host topoisomerases. We report here on the characterization of gene 55.2, a toxic T4 ORFan
that affects supercoiling regulation in E. coli and whose inactivation reduces phage T4 proge-
ny production.

Materials and Methods

E. coli and phage strains, plasmids and growth conditions
The bacterial strains and phage strains used in this study are listed in Table 1; the plasmids are
listed in S1 File. The construction of the strains, plasmids and genomic DNA library are
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described S1 File. Unless otherwise stated, all E. coli strains were cultivated at 37°C in LB, M9
minimal (M9), or M63 minimal (M63) medium [30] supplemented with amino acids and car-
bon source as indicated. For growth on solid medium, 1.5% bacteriological agar was included.
Antibiotics were used at the following concentrations: ampicillin (Ap), 200 μg ml-1; chloram-
phenicol (Cm), 30 μg ml-1; kanamycin (Kn), 40 μg ml-1; spectinomycin (Sp), 50 μg ml-1; and tet-
racycline (Tc), 7.5 μg ml-1.

Plasmid based lethality assay
Plasmid based lethality assays were performed as previously described [31]. Briefly, bacteria
were cultivated overnight in LB with Kn and Ap to maintain both the 55.2 and the topA plas-
mids. The next morning, saturated cultures were diluted 1/80 in M63 medium supplemented
with 0.2% glucose and Kn but without Ap and grown to A600 nm = 0.4, before spreading

Table 1. E. colia and T4 strains.

Strain Genotype Reference

AS1047 MG1655 Δ lacIZYA::frt pAST111 [31]

AS1050 MG1655 Δ lacIZYA::frt Δ topA::apra pAST111 [31]

BE Prototrophic [32]

BL21(DE3) F- ompT gal dcm lon hsdSB λ(DE3) [32]

BP199 W3110 gyrB221(CouR) gyrB203(ts) [13]

BW25113 F- Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) rph-1 Δ(rhaD-rhaB)568
hsdR514

CGSC

CL001 W3110 parE10(ts) [13]

CR63 F+, supD, lamB63 lab collection

DHB3 MC1000 malFΔ 3 phoAΔ (PvuII) phoR [33]

DB503 MC4100 malE16-1 Δ ara714 lab collection

DB870 MG1655 Δ ara714, ydeA::kan this study

DH5α F- Δ(argF-lac)169, φ80dlacZ58(ΔM15), ΔphoA8, glnV44, deoR481,
rfbC1, gyrA96(NalR), recA1, endA1, thiE1, hsdR17

CGSC

JW0204-2 BW25113 ΔrnhA733::kan [34]

MC1000 F- araD139 Δ (araA-leu)7697 Δ (lac)X74 rpsL150 galE15 galK16 relA1
thi

[35]

MC4100 F- araD139 Δ (argF-lac)U169 flhD5301 fruA25 relA1 rpsL150 rbsR22 Δ
(fimB-fimE)632 deoC1 thi

[36]

MG1655 F- rph-1 CGSC

W3110 F- IN(rrnD-rrnE)1 rph-1 CGSC

YM63 BW25113 PlacZ-topA76(ts) zci-2234::cat this study

YM64 BW25113 PlacZ-topA76(ts) zci-2234::cat ΔtopB761::kan this study

T4+ T4D [16]

T4 K10 38amB262 51amS29 nd28 (denA) rIIPT8 (ΔdenB-rII) [37]

T4 K10
55.2

K10 55.2 (ATG-> ACA) this study

T4 39 T4D 39amEA29 R.H. Epstein’s
collection

T4 55.2 T4D 55.2 (ATG-> ACA) this study

T4 39 55.2 T4D 39amEA29 55.2 (ATG-> ACA) this study

aAll strains are E. coli K-12 derivatives except BE and BL21(DE3), which are E. coli B strains.

doi:10.1371/journal.pone.0124309.t001
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dilutions on M63 agar plates supplemented with 0.2% glucose, Kn, 600 μM IPTG, and 80 μg
ml-1 X-Gal. Colonies were counted and photographed after 36 h at 37°C.

Purification of gp55.2-His6
The protein was expressed from pMCN1 in BL21(DE3) cells. Exponentially growing bacterial
cultures were induced with 0.2% arabinose for 2 hours at 37°C. The protein was purified from
frozen cell pellets on Ni-NTA agarose (#30210, Quiagen) according to manufacturer instruc-
tions. Eluted fractions containing the His–tagged protein were desalted on a PD-10 column
(GE Healthcare) equilibrated in TKDG buffer (50mM Tris pH 7.4, 100mM KCl, 1mM DTT,
10% glycerol) and concentrated on a centricon microconcentrator (3 kDa molecular weight
cut-off, #4202, Amicon). Protein concentration was determined by Bradford assay (Bio-Rad
Protein Assay) and purity (>99%) was assessed by Coomassie brilliant blue staining of proteins
separated by SDS-polyacrylamide gel electrophoresis.

Electrophoretic Mobility Shift Assay (EMSA)
EMSA were performed with form I and form I’ DNA of plasmid pDB29 prepared as described
below; linear DNA was obtained by restriction digestion with EcoRV. Plasmid DNA (0.3 μg, 79
fmol) were incubated with the indicated amounts of gp55.2-His6 in EMSA Buffer (50 mM Tris,
100 mMKCl, 1 mM β-mercaptoethanol, 1 mg ml-1 Bovine serum albumin (BSA), 10% glycerol,
pH 7.5 at 25°C) for 30 min at 37°C. Samples were then electrophoresed at 3V cm-1 through
0.8% agarose gels in 1x TBE (90 mM Tris, 90 mM boric acid, 2.5 mM EDTA) for 20 h at 4°C
with constant buffer recirculation. Gels were stained with ethidium bromide and photographed
under UV light using an E-BOX VX5 system (Vilber Lourmat, France) or a Chemi Doc MP
system (Bio-Rad Laboratories)

DNA relaxation and supercoiling assays
Covalently closed, negatively supercoiled circular DNA (form I) of plasmid pDB29 [38] was
obtained by standard alkaline lysis procedure, followed by cesium chloride density gradient
centrifugation [39]. Covalently closed, relaxed circular DNA (form I’) was prepared by incubat-
ing form I DNA with wheat germ topoisomerase I (Promega, #M285) according to manufac-
turer instruction. All plasmid DNAs were extracted with phenol/CHCl3 and ethanol
precipitated before being used as substrates in supercoiling reactions. For relaxation assays, E.
coli Topo I was purchased from New England Biolabs (#M0301) and reactions were performed
in 1x CutSmart buffer with 0.6 μg of form I pDB29 DNA (158 fmol). The indicated amounts of
gp55.2-His6 were first incubated with DNA for 15 min at 37°C, then the indicated amounts of
Topo I were added and samples were incubated at 37°C for 15 min. Reactions were terminated
as described [40]. Briefly, EDTA was added to 25mM and samples were incubated for 2 min at
37°C; then, SDS and proteinase K were added to 1% and 100 μg/ml, respectively, and the sam-
ples were incubated for an additional 15 min at 37°C. DNA products were extracted with phe-
nol/CHCl3 and electrophoresed at 2V cm-1 through 0.8% agarose gels in 1x TBE buffer for 48 h
at 4°C with constant buffer recirculation. Gels were stained and photographed as explained
above. For supercoiling assays, E. coli DNA gyrase was purchased from New England Biolabs
(#M0306) and reactions were performed in 1x Gyrase buffer with 0.6 μg of form I’ pDB29
(158 fmol). The indicated amounts of gp55.2-His6 were first incubated with DNA for 15 min
at 37°C, then the indicated amounts of DNA gyrase were added and reactions were further
incubated at 37°C for 30 min. Reactions were terminated and analyzed as described for the
relaxation assays.
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In vivo analysis of plasmid topoisomers
To obtain monomeric molecules, plasmids were linearized and self-circularized in large liga-
tion volumes. The ligations were transformed into the appropriate strains and independent
clones were purified and used for subsequent analyses. Equal amounts (A600nm) of exponential-
ly growing bacterial cultures were quickly chilled by mixing them with equal volumes of ice-
cold growth medium and transferred on ice. DNA was extracted by standard alkaline lysis pro-
cedure, followed by phenol/CHCl3 extraction and ethanol precipitation. The nucleic acid pel-
lets were dissolved in TE buffer with 2 μg ml-1 RNAse A and analyzed on 0.8% agarose/ TBE
gels with 1 or 1.5 μg ml-1 chloroquine (CLQ) as described in the previous section. Loaded vol-
umes were adjusted to account for the difference in plasmid copy number between 55.2-ex-
pressing and control strains. After electrophoresis, gels were washed thrice for 15 min with
0.5x TBE, stained with ethidium bromide (1 μg ml-1) in H2O for 1 hour, destained 20 min with
1mMMgSO4, and photographed as described above. The migration of the same plasmid DNA
samples on gels with two different CLQ concentrations allowed us to determine which bands
correspond to more negatively supercoiled plasmids [41]. Densitometric analyses were per-
formed on unsaturated images using the MultiGauge (v.3) software (Fujifilm LifeScience). The
data were normalized to total amount of DNA in each lane. Two-dimensional gel (2D) gel
analyses were performed as previously described [42] using 0.8% agarose/ TBE gels with 1.5 μg
ml-1 and 25 μg ml-1 CLQ in the first and second dimension, respectively.

Plasmid copy number quantification
Plasmid DNA was extracted from equal amounts of bacteria (A600nm) by standard alkaline lysis
procedure and resuspended in TE buffer. Equal volumes were linearized with an appropriate
restriction enzyme, ran on standard agarose TAE gels, and visualized with ethidium bromide.
Unsaturated images were analyzed using the MultiGauge (v.3) software (Fujifilm LifeScience)
and signals were calibrated using a standard curve of diluted High Mass DNA ladder (Invitro-
gen) loaded on each gel.

Intracellular phage growth and phage competition assays
Intracellular phage growth assays were performed as previously described [29] with the follow-
ing modifications. CR63 bacteria were grown in M9 medium supplemented with 50 μg ml-1

tryptophan and 0.4% glucose without (M9) or with 1% casmino acids (M9S) to a concentration
of 1 x 108 cfu ml-1 and placed on ice. Before infection, bacteria were prewarmed for 10 min and
infection (t = 0) was started by mixing bacteria with an equal volume of phages diluted in the
corresponding growth media. Phage growth was carried at the indicated temperature with vig-
orous agitation. Competition assay were performed with CR63 cells grown in M9S. For each
growth cycle, an aliquot of bacteria was prewarmed 10 min at 37°C, mixed with an equal vol-
ume of phage diluted in M9S (1 x 106 pfu ml-1, multiplicity of infection (moi) = 0.01), and
growth was carried at 37°C with vigorous agitation. After 45 min, the cultures were lyzed with
a drop of CHCl3 placed one ice for 10 min, transferred to another tube, and kept at 4°C. Be-
cause the average burst size under these conditions was 130, the lysates were diluted 65 times
in M9S and directly used to carry the next growth cycle. The titer of each lysate was determined
to ensure that the moi of the next growth cycle never exceeded 0.1.

Determination of the ratio of 55.2+ to total phage
Aliquots from each phage lysates (�1 x 105 pfu) were used as a template for amplification with
primers 55.3up (5’-GGAAATTTAAATGAATCCTGAATC) and 55.1dn (5’-AGACCTATCTTAAAGCATAGAG)
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using the Taq DNA polymerase (Invitrogen) following manufacturer’s instruction. Aliquots of
the PCR were digested with BsrGI, which cuts only at the mutated 55.2 initiation codon in the
amplified fragment. Restriction digests were run on 1% agarose/TAE gels, stained with ethid-
ium bromide, imaged under UV light, and the intensity values of the DNA bands were deter-
mined on unsaturated images using the Multi Gauge 3.0 software (FujiFilm). The K10/ (K10-
55.2 + K10) ratios were calculated by dividing the intensity value of the undigested band by the
cumulated intensity values of the undigested band and the two bands resulting from BsrGI di-
gestion. We confirmed the accuracy of the PCR-restriction determination by testing a standard
curve prepared with known amounts of K10 and K10-55.2 phage. In addition, the ratio of se-
lected growth cycle lysates was confirmed by the determination of the genotype of individual
plaques (n = 20).

Results

Ectopic expression of cloned phage T4 gene 55.2 inhibits irreversibly E.
coli growth
Using vectors expressing T4 genes under the control of an inducible arabinose PBAD promoter,
we previously demonstrated that the ectopic expression of the 55.2ORFan was deleterious for
E. coli growth [29]. Such plasmids confer an arabinose sensitive phenotype (AraS) on the carri-
er host strain. In these experiments, performed with a medium copy number plasmid derived
from ColEI, the residual expression of 55.2 from the PBAD promoter in the absence of arabinose
induction was sufficient to affect bacterial growth. Initial growth after dilution of the stationary
phase cultures was delayed compared to that of bacteria harboring an empty vector control
(S1A Fig). Furthermore, the colony forming units (cfu) in saturated cultures were 10-fold
lower than in the controls (S1B Fig). To minimize the effects of residual expression from the re-
pressed PBAD promoter, the 55.2 ORFan sequence was cloned into pBAD101, a low-copy in-
ducible vector with a pSC101 derived replicon [43]. This essentially abolished the phenotypes
observed with the original construct in the absence of arabinose. However, in arabinose-in-
duced conditions, 55.2 expression still prevented bacterial colony formation. Growth curve as-
says showed that the addition of arabinose led to a slow growth arrest that was complete only
by 3 h (Fig 1A). However, a reversibility assay demonstrated that even after only one hour of
55.2 induction, there was a ~100 fold decrease in the capacity of induced cells to form colonies
in the absence of arabinose (Fig 1B). Thus 55.2 has an irreversible bactericidal action.

Overexpression of topA, the gene encoding the E. coli topoisomerase I,
suppresses 55.2 toxicity
We searched for E. coli genes that, when present in multiple copies, suppressed the AraS pheno-
type induced by 55.2 expression (multicopy suppressors). Initial attempts using standard E. coli
genomic libraries identified only non-specific suppressors that interfere with PBAD induction.
These non-specific suppressors included genes of the araBAD operon, which encodes enzymes
that degrade arabinose, and ydeA, which encodes a transporter that facilitates arabinose export
[44]. Thus, we prepared a new library from a strain that harbors both araBAD and ydeA dele-
tions. The plasmid library was introduced by electroporation into cells carrying a pBAD101
plasmid with a 55.2 insert and transformants were directly selected on LB plates containing
0.2% arabinose. Plasmids from such suppressor strains were purified and the suppressor activi-
ty of the library plasmids verified. Non-specific suppressors were identified and eliminated as
previously described [29]. After testing the equivalent of� 180 E. coli genomes, we isolated
one plasmid that conferred specific, albeit partial, resistance to 55.2 expression. The 4259 bp
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Fig 1. The toxicity of 55.2 in E. coli is suppressed by an increase in the copy number of topA. (A) Liquid growth assay. Overnight cultures of DB503
cells harboring pBAD101 (ctr) or pDB2114-101 (55.2) plasmids were diluted in fresh LB medium and optical density (A600nm) was measured at the indicated
times. At A600nm = 0.3, cultures were split in two and one half was induced with 0.2% arabinose (vertical arrow). When A600nm reached� 1, cultures were
diluted 10-fold in prewarmed medium plus or minus arabinose. The graph depicts the data of a representative experiment. (B) Reversibility assay. During a
growth curve assay, aliquots of arabinose-induced DB503 cultures, harboring pBAD101 (55.2 –) or pDB2114-101 (55.2 +) plasmids, were withdrawn at the
indicated times, washed in cold media without arabinose, and adjusted to the same A600nm. Serial 10-fold dilutions were spotted on LB plates without
arabinose. (C) DB503 cells transformed with pBAD101 (vector) or pDB2114-101 (55.2) and one of the compatible plasmids, pDB868-2 (vector, 1–2), pDB34-
8-4 (topA, 3–4), or pDB34-8 (topA, 5–6) were streaked on LB plates with or without 0.2% arabinose. (D) Plasmid based lethality assay. Overnight cultures of
AS1047 (topA +) or AS1050 (topA-) transformed with pBAD33-K (55.2 –) or pDB2114-33-K (55.2 +) were diluted and outgrown as indicated in the Materials
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insert of this plasmid contained yciN, topA and part of cysB. Subsequent subcloning revealed
that a region containing the entire topA coding sequence as well as 272 bp sequence upstream
of the initiation codon sufficed for suppression (Fig 1C, streak 4). The product of topA is the
DNA topoisomerase I (Topo I), a type IA topoisomerase that removes excess negative super-
coils introduced by DNA gyrase into the E. coli chromosome and plasmids [45,46].

Incompatibility of low-level expression of 55.2 with reduced expression
of Topo I and Topo III
Since high-level expression of topA partially suppressed the 55.2-induced toxicity, we examined
the effect on E. coli of varying levels of expression of both 55.2 and topA. The viability of topA
null mutants in the absence of compensatory DNA gyrase mutations has long been debated
[47,48]. Recently, it was shown by Rudolph and coworkers that the loss of topA results in a se-
vere growth defect [31]. In their assay, a copy of the topA gene cloned into an unstable mini-F
lac+ plasmid complemented a chromosomal topA deletion. In a lac—strain, loss of the plasmid
could be followed by colony color on X-gal plates. Using this system, we determined the effect
of low-level expression of 55.2 on topA loss. TopA+ and ΔtopA bacteria harboring the topA lac+

mini-F plasmid were transformed with a pBAD vector with or without a 55.2 insert. After out-
growth in the absence of antibiotic selection for the topAmini-F plasmid, bacteria were plated
on minimal X-gal glucose plates with selection for the pBAD plasmid (Fig 1D). In the presence
of a topA+ chromosomal copy (I), most colonies were white indicating that the loss of the
topA+ mini-F plasmid had no effect on growth. In the absence of a topA chromosomal copy
(III), about 65% of the colonies retained the topA+ mini-F plasmid; importantly, the white colo-
nies were notably smaller than the blue. These results confirm that topAmutants have a severe
growth defect. When a 55.2-coding plasmid was present, very few white colonies were observed
(5.5%) and their size was significantly smaller than the white colonies obtained in the absence
of a 55.2-coding plasmid (compare insets IV to III). Thus, the topA function is apparently nec-
essary to tolerate a low-level expression of 55.2 which is non-toxic in wild type cells. These re-
sults were obtained using a 55.2 expressing plasmid with�30 copies per cell and in the
presence of glucose, which represses expression from the PBAD promoter [49]. Consequently,
the level of 55.2 expression that manifests incompatibility in a topA deletion strain is very low.
Significantly, the presence of a 55.2-coding plasmid also reduced the frequency of topA+ mini-
F plasmid loss also in a topA+ genetic background (II). This is consistent with very low levels of
55.2 expression having some effect on the growth of wild-type bacteria (S1A and S1B Fig) and
suggests that a mere duplication of the topA locus suffices to partially overcome this effect.

As mentioned in the introduction, E. coli possesses another type IA topoisomerase, Topo III
(topB). We asked whether, in the context of low-level expression of 55.2, Topo III could partial-
ly compensate a decrease in Topo I activity. A medium copy pBAD plasmid expressing 55.2
was transformed into E. coli strains harboring a temperature sensitive (ts) allele of topA driven
by a lacZ promoter and either a wild-type or a disrupted topB gene. We then assessed the via-
bility of these strains in the presence of various concentration of IPTG at 37°C, a temperature
at which the Topo I produced by the topAts allele is less active than the wild-type enzyme [50].
The results, presented in S1C Fig, confirm the incompatibility of reduced Topo I activity with
the residual expression of 55.2 from the PBAD promoter (upper panel). The incapacity of PlacZ-
topA ΔtopB bacteria to grow in the absence of IPTG repeated the known non-viability of topA

and Methods section. Aliquots were diluted, and plated on M63 plates supplemented with glucose and X-gal. The number of blue and white colonies was
scored after 36h at 37°C. Representative photographs are shown in the upper panel (the position of a rare white colony in inset IV is indicated by an arrow).
The lower panel depicts percentage of white colonies; average and standard deviation are from three independent experiments.

doi:10.1371/journal.pone.0124309.g001
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topB double mutants [48,51]. Importantly, the reduced viability phenotype caused by low-level
expression of 55.2 was stronger in the absence of a functional Topo III (lower panel). This fur-
ther decrease in viability caused by 55.2 in the ΔtopB strain was already evident in the presence
of 1mM IPTG, a concentration at which the topB+ and ΔtopB strains harboring the control vec-
tor show no difference in viabilty. These results indicate that E. coli requires a minimal type IA
topoisomerase activity to tolerate low-level expression of 55.2.

Inhibiting the GyrB ATPase subunit of gyrase reduces 55.2-induced
toxicity
The supercoiling level of the E. coli chromosome and its plasmids is primarily determined by
the opposing activities of Topo I, which removes negative supercoils and DNA gyrase (gyrAB),
which adds negative supercoils (Fig 2A). Thus, inhibition of DNA gyrase would be expected to
have a similar effect as increasing Topo I activity. Consequently, it seemed likely that such an
inhibition would counteract the 55.2-induced toxicity. We tested the sensitivity of 55.2-express-
ing E. coli cells to novobiocin, an aminocoumarin type antibiotic that inhibits gyrase’s DNA su-
percoiling by competing with ATP for binding to the GyrB subunit [52–54]. As before,
arabinose inhibited the growth of bacteria harboring a 55.2 coding pBAD101 plasmid. Howev-
er, low concentrations of novobiocin (between 16 and 64 μg ml-1), which had no effect on the
growth of bacteria carrying the control plasmid, partially reduced the toxicity associated with
55.2 expression (Fig 2B). Furthermore, 55.2 expression permitted bacterial growth of bacteria
at 128 μg ml-1 of novobiocin, a concentration that inhibited growth in the absence of arabinose
or when they harbored an empty pBAD101 plasmid (see arrowhead in Fig 2B).

This suggested that limiting DNA gyrase function alleviated, at least partially, the growth in-
hibition mediated by 55.2. However, novobiocin can also inhibit the topoisomerase IV (Topo
IV) of E. coli by binding to its ParE subunit, which is homologous to GyrB [55]. Thus, we asked
whether partial inactivation of either DNA gyrase or of Topo IV sufficed to suppress 55.2 toxic-
ity. We transformed gyrB and parE ts mutant strains with a 55.2 coding plasmid, and tested
their sensitivity to arabinose at different temperatures. While 55.2 expression blocked bacterial
growth in all strains at the permissive temperature (34°C), an intermediate temperature
(37°C), which permitted the growth of the bacteria carrying either one of the two ts alleles, led
to partial suppression of 55.2-induced toxicity in the gyrBts but not in the parEts mutant strain
(Fig 2C). Complete inhibition of DNA gyrase at 42°C abolished growth independently of 55.2
expression. Thus, we conclude that partial inhibition of GyrB is sufficient to offset the toxicity
due to high-level expression of 55.2.

Gp55.2 binds to DNA in vitro
Next, we asked whether gp55.2 could bind to DNA. The in vitro binding of gp55.2 to DNA was
demonstrated by electrophoretic mobility shift assays (EMSA) employing purified gp552-His6
protein and plasmid DNA from pDB29 (a pBR322 derivative containing a mouse urokinase
cDNA insert; [38]). As shown in Fig 3A, gp55.2 caused linear pDB29 DNA (upper panel) to
migrate more slowly. This shift was easily detectable at a ratio of one gp55.2 molecule per 16.4
bp of DNA (380 ng of gp55.2 to 300 ng of DNA). At this protein to DNA ratio, gp55.2 also re-
tarded the migration of covalently closed, relaxed circular DNA (form I’, middle panel), of co-
valently closed, negatively supercoiled circular DNA (form I, lower panel), and of the small
amount of nicked circular DNA (form II, lower panel, arrow) that contaminated the form I
DNA. Additional EMSA using M13 phage DNA showed that gp55.2 retarded the migration of
both the double-stranded replicative form and the circular single-stranded virion DNA (S2A
Fig). Thus, gp55.2 appears to bind negatively supercoiled, relaxed, and single-stranded DNA.
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In vitro gp55.2 inhibits Topo I but does not stimulate gyrase activity
The genetic evidence combined with the capacity of gp55.2 to bind to DNA suggests that this
protein could either inhibit Topo I activity or stimulate that of DNA gyrase. We have directly

Fig 2. Partial inhibition of DNA gyrase ATPase activity protects from 55.2-induced toxicity. (A) Outline of the regulation of the steady-state level of DNA
supercoiling by the opposite actions of DNA gyrase and Topo I. (B) Novobiocin sensitivity assay. Overnight cultures of DB503 bacteria transformed with
pBAD101 (55.2 –) or pDB2114-101 (55.2 +) were spotted on 24 wells LB agar plates with and without 0.2% arabinose containing the indicated amounts of
novobiocin, and incubated overnight at 37°C. (C) W3110 (wt), CL001 (parEts), and BP199 (gyrBts) were transformed with pBAD101 (55.2 –) or pDB2114-101
(55.2 +). Dilution of overnight cultures were spotted on LB agar plates with and without 0.2% arabinose and incubated overnight at the
indicated temperatures.

doi:10.1371/journal.pone.0124309.g002
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Fig 3. Gp55.2 binds to DNA, inhibits Topo I relaxation activity but does not affect DNA gyrase supercoiling activity. (A) Electrophoretic mobility shift
assays (EMSA). Mixtures containing 300 ng (= 79 fmol) of linear, form I’, or form I pDB29 DNA and the indicated amount of gp55.2-His6 (95 ng = 6.9 pmol,
namely one gp55.2 molecule per 65.6 bp for the amount DNA used in this assay) were incubated and analyzed as described in Materials and Methods. An
arrow indicates the migration position of the form II DNA contaminating the form I DNA. (B) Relaxation assays mixtures containing 600 ng (= 158 fmol) form I
pDB29 DNA and the indicated units of Topo I (0.47 U = 415 fmol) were incubated in the presence (+) or absence (–) of 855 ng of gp55.2-His6 (= 63 pmol, one
gp55.2 molecule per 14.5 bp of DNA), and the DNA products were analyzed as described in Materials and Methods. The migration positions of form I, form I’
and form II DNA are indicated on the left; linear DNAmigration position is indicated by an arrowhead. Results representative of two independent experiments
are shown. (C) Supercoiling assays mixtures containing 158 fmol form I’ pDB29 DNA and the indicated units of DNA gyrase (0.42 U = 196 fmol) were
incubated in the presence (+) or absence (–) of 855 ng of gp55.2-His6 and the DNA products were analyzed as described in the Materials and Methods
section. Results representative of two independent experiments are shown. (D) Representation of form I, form I’ and form II plasmid DNA. Note that the
treatment of form I plasmid DNA by a eukaryotic Topo I to obtain form I’ DNA results, at equilibrium, in a distribution of relaxed DNA topoisomers (A, middle
panel) whose maximum corresponds to the fully relaxed form I’ plasmid illustrated in D.

doi:10.1371/journal.pone.0124309.g003
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examined the in vitro effect of gp55.2 on E. coli Topo I and DNA gyrase activities. The relaxing
activity of Topo I was measured in the presence or absence of purified gp552-His6 at a concen-
tration slightly higher than the lowest concentration at which a band shift was observed in the
EMSA assays. As shown in Fig 3B, gp55.2 strongly inhibited the relaxation activity of Topo I,
even at the lowest molar ratio of gp55.2 to Topo I tested (150:1; lane 10). Based on the amount
of enzyme required to obtain similar relaxation levels in the absence and presence of gp55.2,
we estimated that the relaxation activity was inhibited by 10 to 30 fold (compare lanes 2 and 3
to lane 10). Further experiments, in which the amount of Topo I was fixed and that of gp55.2
varied, indicated that a ratio of one gp55.2 molecule per 7 bp of DNA was required for com-
plete inhibition (S3A Fig, lane 8). However, at lower gp55.2 to DNA ratio, both more super-
coiled and more relaxed topoisomers were observed in the presence than in the absence of
gp55.2 (S3A Fig, lane 4 to 7), suggesting that gp55.2 could also stimulate Topo I activity at low
protein to DNA ratio. In stark contrast, gp55.2 had no effect on the negative supercoiling activ-
ity of DNA gyrase (Fig 3C). We also tested whether gp55.2 could inhibit the relaxation of su-
percoiled DNA by wheat germ Topo I, a type 1B topoisomerase whose structure and
mechanism of relaxation are unrelated to these of E. coli Topo I [6]. The enzymatic activity of
wheat germ Topo I was largely insensitive to gp55.2; furthermore, the observed limited inhibi-
tion of relaxation (� 20%) was independent of the concentration of gp55.2 used, suggesting
that it reached saturation (S3B Fig). Altogether, these results show that gp55.2 inhibits specifi-
cally E. coli Topo I in vitro.

55.2 affects DNA topology control in vivo
We investigated the effect in vivo of low, non-toxic levels of 55.2 expression on the supercoiling
of plasmid DNA. To do this, we used pDB2114, a pBAD-55.2 plasmid with an intermediate
copy number, as a source of 55.2 expression, due to residual expression from PBAD in the ab-
sence of arabinose. The same plasmid also served as the reporter of DNA supercoiling. As a
control, we used a closely related plasmid in which the 55.2 coding sequence had been dis-
rupted by a 5bp insertion after the ATG initiation codon producing a frame-shifted 18 amino
acid peptide instead of gp55.2. This frame shift abolished all gp55.2 phenotypes of the parent
plasmid in either the presence or absence of arabinose. Plasmid DNA was extracted from bac-
teria growing exponentially in the absence of arabinose and analyzed by one dimension agarose
gel electrophoresis in the presence of chloroquine, an intercalating ligand that adds positive su-
percoils to plasmid DNA and allows the separation of supercoiled topoisomers [56]. As seen in
Fig 4A, the distribution of topoisomers was slightly different between plasmids carrying the in-
tact or the mutated copy of 55.2. Changes in the distribution of slow migrating, partially re-
laxed topoisomers were more evident in the gel containing 1 μg ml-1 CLQ, while the fast
migrating, negatively supercoiled topoisomers were better resolved in the gel containing 1.5 μg
ml-1 CLQ. The densitometry profiles in the right panel summarize the analysis of four indepen-
dent DNA samples for each plasmid (see also S4A Fig). Three principal differences can be ob-
served. The slight shift between the two profiles is due to the 5 bp difference in the size of the
two plasmids. It has been theoretically predicted, and experimentally demonstrated, that small
changes in size (<10bp), which do not affect perceptibly the mobility of linear or form II
(nicked circle) DNA, will cause a size-dependent decrease in the gel mobility of topoisomers
with the same linking number. The half a turn shift we observed is perfectly in accordance with
the published results [57]. Aside from this size-dependent change, two relevant differences
were observed. First, the 55.2-coding plasmid had a broader distribution of topoisomers com-
pared to the control plasmid. In addition, the peak of the topoisomer distribution for the 55.2-
coding plasmid was shifted towards negative supercoiling by about half a helical turn. To
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Fig 4. 55.2 expression affects the control of DNA topology and plasmid copy number in E. coli. (A) Plasmid topoisomers analysis. Left panel: plasmid
DNA was extracted from exponentially growing DH5α harboring pYM58 (55.2IS) or pDB2114 (55.2) plasmids. Plasmid topoisomers were resolved on TBE
agarose gels containing the indicated amount of CLQ. The position of migration of relaxed and/or nicked circular DNA is indicated (R). Right panel:
Densitometry analysis of the topoisomer distribution on 1.5 μg ml-1 CLQ gel of four independent samples of pYM58 or pDB2114 plasmid DNA (gel images
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obtain a better resolution of the relaxed topoisomers, the supercoiling state of each plasmid
was also analyzed using two-dimensional chloroquine gels. The results presented in Fig 4B
clearly show that low-level expression of 55.2 caused the appearance of both more relaxed and
more negatively supercoiled topoisomers. The early stop codon in the 55.2mutant plasmid
used as a control could cause premature Rho-dependent transcription termination [58]. Be-
cause transcription elongation affects the in vivo supercoiling level of plasmids [59], we per-
formed a control experiment to determine the potential effect of such transcriptional polarity.
We compared two pBAD plasmids containing either the wild type 55.1 gene, a T4 ORFan adja-
cent but functionally unrelated to 55.2, or a mutated 55.1 version in which the ATG start
codon was changed to AGG. Both plasmid DNAs displayed almost identical topoisomer distri-
butions; the only difference was a slight increase in the amount of the more negatively super-
coiled topoisomers for the plasmid with the wild-type 55.1 sequence (S4B and S4C Fig).
However, this increase was much less marked than in the case of the wild-type 55.2 plasmid.
Thus, we conclude that low-level non-toxic expression of 55.2 has an effect on the regulation of
plasmid DNA supercoiling in E. coli.

To determine if chromosomal DNA supercoiling was also affected by 55.2 expression, we
measured the level of topA and gyrAmRNA since the transcription of both genes is deter-
mined, in part, by the supercoiling of their promoter regions. The transcription rate of topA in-
creases with the increased negative supercoiling while that of gyrA increases with DNA
relaxation [60–62]. Total RNA was extracted from bacteria harboring either a 55.2-coding
pBAD101 plasmid, or the empty vector, and cultures were growing exponentially in the ab-
sence of arabinose. RNAse protection assays were performed using topA and gyrA probes (S4D
Fig), and the relative ratio of the topA over gyrA-protected fragments was determined by densi-
tometric analysis. As shown in S4E Fig, the topA to gyrA ratio was slightly lower in bacteria
harboring the 55.2 plasmid indicating that low-level expression of 55.2 did not increase super-
coiling at this two promoters and might even have somewhat reduced it.

Low non-toxic level of 55.2 increases the copy number of plasmids
whose replication is controlled by antisense RNA
In analyzing the effects on DNA supercoiling mediated by gp55.2, we noticed that the amount
of DNA from the gp55.2 encoding plasmid was systematically higher than that present in vari-
ous control plasmids. This pBAD vector has an origin of replication derived from ColEI, whose
replication requires the formation of an R-loop between the plasmid origin and the comple-
mentary RNAII that serves as a primer for DNA replication [63]. The formation of R-loops is
increased by negative supercoiling and inhibited by the action of RNAse H1 and Topo I [59].
To quantify the effect described above, aliquots of the plasmid DNA prepared for the supercoil-
ing experiment described in Fig 4A were linearized by restriction digestion, quantified on aga-
rose gel by comparison with a DNA standard, and normalized to the total amount of bacteria
used to extract the plasmid. The results show that the amount of 55.2-coding plasmid was
seven times greater than that of a 55.2-mutant plasmid (Fig 4C). Similarly, in overnight

are depicted in S4A Fig). Plotted is the average (lines) and standard deviation (shaded area) of relative plasmid density as a function of negative supercoiling.
(B) 2D electrophoretic separation of plasmid topoisomers. Left panel: schematic representation of a 2D gel. The migration positions of negatively supercoiled
(–), positively supercoiled (+), and form II topoisomers (N) are indicated. Right panel: gel images show the 2D topoisomer distribution of plasmid DNA
samples prepared as in A. Chloroquine concentration was 1.5 μg ml-1 and 25 μg ml-1 in the first and second dimension, respectively. (C) Plasmid copy
number analysis. Linearized plasmid DNA samples from the experiment shown in A were quantified and normalized to the amount (A600nm) of bacteria used
to extract the plasmids. The data represents means and standard error of four independent cultures. (D) Plasmid DNA was extracted from overnight cultures
of DHB3, DB503, and DH5α transformed with pBAD101 (55.2 –) or pDB2114-101 (55.2 +), and a reporter plasmid (pDB868-2). Linearized plasmids were
analyzed by agarose gel electrophoresis.

doi:10.1371/journal.pone.0124309.g004
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cultures of DH5α and DB503 (S4F Fig), the copy number of a 55.2-coding plasmid was also in-
creased five and two fold compared to a control plasmid. We then determined whether the
presence of a gp55.2 coding sequence operated only in cis or whether gp55.2 also acted in
trans. Bacteria were transformed with a 55.2-coding pBAD101 plasmid and a reporter plasmid
with a p15A-derived replication origin, which is related to the ColEI replicon [64]. Plasmid
DNA was extracted from equal amounts of overnight cultures and linearized by restriction di-
gestion. Compared to an empty control, the 55.2-coding plasmid increased the quantity of the
reporter plasmid in all three of the strains tested (Fig 4D). This demonstrates that even very
low levels of gp55.2 expression (no arabinose was present in the cultures and the 55.2 gene was
on a low copy plasmid) can affect plasmid copy number regulation in trans. Interestingly, 55.2
did not noticeably affect the copy number of pBAD101 (upper band in Fig 4D), whose replica-
tion is RepA dependent [65,66]. These results confirm the interesting and unexpected observa-
tion that gp55.2 significantly increases the copy number of plasmids whose replication is
dependent on R-loop formation. This effect is entirely compatible with the observed increased
plasmid supercoiling.

A null mutation in gene 55.2 decreases the fitness of phage T4
Most T4 ORFans are probably “non-essential genes” since many lie in genomic regions that
can be deleted without noticeably affecting phage yield [24]. However, it has not been excluded
that the absence of gp55.2 function could influence the production of T4 progeny under stan-
dard laboratory conditions. We used the T4 I/S system [37] to replace the ATG initiation
codon of 55.2 with an ACA (threonine) codon in the genome of the K10 T4 strain; an analo-
gous substitution on a plasmid completely abolished the 55.2-induced AraS phenotypes (data
not shown). The plaque morphology of the resulting 55.2mutant was indistinguishable from
that of the K10 parent strain (data not shown). However, this 55.2mutant phage exhibited a
small but reproducible five minutes delay in the accumulation of intracellular viral particles in
minimal media. Nonetheless, it eventually achieved a burst size similar to that of the parental
strain (Fig 5A). A comparable delay was also observed in complete media at 37°C (S5A Fig). In
order to determine whether such a small difference could change the overall fitness of the 55.2
mutant strain, we compared its growth with that of the parental strain over successive growth
cycles. In these experiments, a mixture of control and mutant phages was grown on E. coli bac-
teria; the progeny of this initial growth cycle was used to perform a second growth cycle and so
forth. Importantly, all infections were performed at a low moi (< 0.1) to minimize co-infection
and complementation by the wild type phage. The initial phage mix contained 90% K10-55.2
mutant and 10% K10 wild-type phages because a decreased fitness of the 55.2mutant was an-
ticipated. After 19 growth cycles, the 55.2mutant phage represented less than 30% of the popu-
lation (Fig 5B). A simulation showed that such results could be obtained if the mutant phage
has a 16% growth disadvantage per growth cycle (dotted line in Fig 5B). Hence, we conclude
that, although 55.2 is a “non-essential gene”, it nevertheless confers a non-trivial growth advan-
tage to T4 even under standard laboratory conditions.

Discussion
We have previously identified 55.2 as a T4 ORFan whose ectopic expression is toxic to unin-
fected E. coli [29]. When cloned in a medium copy pBAD plasmid (ColEI replicon), the low-
level “leaky” expression of 55.2 from the PBAD promoter in the absence of arabinose caused an
increased lag phase in the growth of diluted liquid cultures and a decreased bacterial titer at sat-
uration. These effects were not detected with a lower copy plasmid (pSC101 replicon) in the

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 15 / 23



Fig 5. Loss of gene 55.2 function reduces T4 phage fitness. (A) CR63 cells grown in M9 medium were
infected with T4 K10 (wt) or T4 K10-55.2 (55.2) at a moi of 6 at 30°C. Intracellular phage accumulation was
followed at the indicated time points; free phages at 25 min represented < 12% of the total infective centers.
Data represents mean and ranges of two (wt) and four (55.2) independent experiments. (B) Competition
experiment. A mix of T4 K10 and T4 K10-55.2with an initial ratio of 1:9 was grown on E. coli CR63 in M9S
medium at 37°C at low moi (< 0.1) over successive growth cycles. The percentage of 55.2+ phages was
determined by PCR and digestion as described in Materials and Methods. Data represent mean and
standard deviation of four independent experiments; the dotted line represents the result of a simulation were
the 55.2mutant has a 16% disadvantage per growth cycle. The intracellular phage accumulation over a
single growth cycle in these conditions is shown in S5A Fig.

doi:10.1371/journal.pone.0124309.g005
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absence of arabinose. Induced expression of gp55.2 in the presence of arabinose led to irrevers-
ible growth arrest in both plasmid backgrounds.

Further analysis identified two ways that partially suppress this 55.2-mediated bacterial kill-
ing: multicopy expression of Topo I or the partial inhibition of GyrB activity. These results sug-
gested that gp55.2 was acting by either inhibiting Topo I activity or by increasing DNA gyrase
activity. A plasmid-based lethality assay clearly demonstrated that a low-level, normally non-
toxic, expression of gp55.2 is not compatible with reduced Topo I activity. This incompatibility
was independently confirmed using a strain whose topA expression could be regulated by
IPTG. Interestingly, in the absence of Topo III, the second type IA topoisomerase of E. coli,
bacteria expressing low levels of gp55.2 required higher expression of Topo I to grow. Taken to-
gether, these results support the notion that 55.2 inhibits DNA relaxation and/or stimulates
DNA supercoiling.

In vitro experiments demonstrated that gp55.2 inhibits the relaxing activity of E. coli Topo I
but that it does not affect the introduction of negative supercoils by E. coli gyrase. The inhibi-
tion of Topo I activity by gp55.2 could result from a direct protein-protein interaction. Alterna-
tively, gp55.2 binding to DNA could alter the double helix conformation and/or occlude the
sites at which Topo I binds. Increased Topo I expression has been shown to suppress the toxici-
ty associated with Tn5 transposase (Tnp) overproduction [67,68]. A direct interaction between
the two proteins is responsible both for the in vitro inhibition of Topo I activity and for the in
vivo suppression of Tnp toxicity. We failed to detect an interaction between gp55.2 and Topo I
using in vivo pull-down assays (data not shown). Although we might not have found the opti-
mal condition to detect such an interaction, there are nonetheless other arguments that disfa-
vor this hypothesis. Firstly, an alteration of DNA topology is not required for the suppression
of Tnp toxicity and overexpression of a partially defective mutant of Topo I can suppress Tnp
toxicity. Conversely, we showed that partial inhibition of gyrase partly suppressed gp55.2 le-
thality, even though it should reduce topA expression [60,62]. Second, the molar ratio of pro-
tein to Topo I required to observe in vitro inhibition is far lower for Tnp than for gp55.2 (1–
10:1 vs.>150:1). The high concentration of gp55.2 required for Topo I inhibition supports the
alternative site occlusion/DNA conformation hypothesis. Such a mechanism explains the inhi-
bition of Topo I by the nucleoid-associated protein (NAP) HU at high protein to DNA ratio
[69]. EMSA showed that gp55.2 and Topo I, at a 35:1 molar ratio, could bind simultaneously to
plasmid DNA (S2B Fig). Nevertheless, occlusion could take place at the higher gp55.2 to Topo
I ratio required to detect inhibition (� 150:1). We also tested whether gp55.2 could alter DNA
topology on its own. The incubation of gp55.2 with relaxed DNA (form I’) in the presence of
wheat germ Topo I showed that, under studied conditions, the phage protein could constrain
neither negative nor positive supercoils (S3C Fig). Further studies will be needed to determine
the precise mechanism of inhibition. One possibility could be that gp55.2 binds specific topo-
logical features favored by negative supercoiling, like the single-stranded DNA regions that are
required for DNA supercoil relaxation by Topo I [70]. This hypothesis, inferred from the ca-
pacity of gp55.2 to bind single-stranded M13 DNA, is also supported by two observations.
Firstly, gp55.2 only marginally affected the activity of wheat germ Topo I that does not require
a single-stranded DNA substrate [6]. Secondly, at low protein to DNA ratio, gp55.2 seemed to
both stimulate and inhibit Topo I activity. An ambivalent effect on Topo I activity was previ-
ously reported for the E. coli single-stranded DNA binding protein (SSB) that stimulates non-
covalent interaction of Topo I with DNA by stabilizing single-stranded region at low protein to
DNA ratio but that inhibits DNA relaxation at higher ratio [71].

The in vivo distribution of plasmid topoisomers indicates that low-level expression of 55.2
caused both the appearance of more negatively supercoiled and more relaxed topoisomers, re-
sulting in a much broader distribution than in the absence of gp55.2. The measurement of the
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relative expression of topA and gyrA was compatible with unchanged or slightly reduced chro-
mosome superhelical density in bacteria expressing gp55.2. These results appear counterintui-
tive since a complete defect of Topo I results in increased negative supercoiling of both
plasmids and the bacterial chromosome [45]. However, the limited amount of gp55.2 produced
from the uninduced PBAD promoter is unlikely to completely inhibit Topo I activity. Actually,
low-level 55.2 expression did not block the rapid relaxation induced by inhibition of DNA gyr-
ase by norfloxacin (S4G Fig), a process which is almost entirely dependent on Topo I activity
[72]. Furthermore, partial inhibition of Topo I should be compensated for by the homeostatic
regulation of bacterial DNA supercoiling that takes place at both the enzyme activity and gene
expression levels [73]. We also note that in vitro Topo I activity seemed to be both inhibited
and stimulated by low gp55.2 to DNA ratio resulting in a broader topoisomer distribution than
in the absence of gp55.2. The in vivo observations could be reconciled with the genetic and in
vitro data if the inhibition of Topo I by gp55.2 were stronger on some DNA substrates than on
others. DNA containing R-loops is a potential candidate. Indeed, low-level expression of 55.2
caused a strong increase in copy number of plasmids that use an R-loop for replication, and R-
looped supercoiled plasmids are better substrate for Topo I than supercoiled plasmids without
R-loops [74]. Topo I prevents excessive R-loop formation and topA null alleles are incompati-
ble with deletions of rnhA, which encodes RNAse HI, an enzyme that degrades the RNA strand
of R-loops [47,59,75]. Thus, the more severe phenotype induced by low levels of gp55.2 in the
absence of RNAse H1 (S1C Fig) is consistent with a partial inhibition of Topo I and may reflect
a preferential inhibition of Topo I activity on supercoiled DNA containing R-loops.

The in vitro experiments suggest that high levels of gp55.2 could completely inhibit Topo I
in vivo. This is supported by the suppression of 55.2 lethality by topA overexpression or partial
inactivation of DNA gyrase. Indeed, the thermosensitive mutation of gyrB (gyrB203) used in
this study suppress the growth defect of a topA null mutation at 37°C [47]. Yet, Topo I inhibi-
tion cannot entirely explain gp55.2 killing. Indeed, there is now a consensus on the fact that
Topo I is not absolutely required for growth [31,48]. Furthermore, both the plasmid-based le-
thality assay and the experiments with the tunable topA allele showed that low-level expression
of 55.2 further diminished the growth capacity of bacteria devoid of Topo I. An interesting pos-
sibility could be that gp55.2 inhibits both Topo I and Topo III. As mentioned above, topA topB
double mutants are non-viable. Although each topoisomerase has a different physiological
role, Topo III is structurally and functionally related to Topo I and can relax negatively super-
coiled DNA in vitro [76]. Indeed, we showed that bacteria required Topo III to tolerate low
level of gp55.2 when Topo I activity was reduced.

Altogether, the simplest hypothesis to explain the data presented in this study is that gp55.2
inhibits both Type IA topoisomerases. Nevertheless, we cannot rule out that a reduction of
DNA negative supercoiling is required to accommodate and suppress the consequence of a
gp55.2 interaction with DNA, alone or in conjunction with a NAP. In this case, the in vitro in-
hibition of Topo I by gp55.2 would be an incidental consequence of gp55.2 binding to an inter-
mediate DNA structure required for supercoil relaxation by Type IA topoisomerase.

Disruption of 55.2 in T4 phage showed that this gene is a bona fide non-essential gene, since
the intracellular accumulation of virion particles was only slightly retarded in the null mutant.
However, gp55.2 is conserved in many T4-related phages that infect different bacterial genera
[25]. Competition assays showed that, even in standard laboratory conditions, 55.2 provided
an easily detectable growth advantage. Thus, 55.2must take part in one or several pathways re-
quired for optimal viral replication cycle. The toxicity of 55.2 as well as the characterization of
its mRNA as an early transcript [77] suggests a role in the transition from host to phage metab-
olism or in phage DNA replication. The gp55.2 protein could play a role in the regulation of su-
percoiling by the phage. Although physically linear, the phage genome shows a transient
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acquisition of negative superhelicity that precedes T4 DNA synthesis and requires the host gyr-
ase [78]. The function of DNA supercoiling during T4 infection is not clear: on the one hand,
gyrase activity is not required for T4 DNA synthesis [22,79], but on the other hand, the burst
size of T4 phage is reduced on a gyrBmutant host [22] and the release of superhelical tension
slightly reduces the rate of T4 DNA synthesis [72]. Further investigation will be required to de-
termine if the fitness provided by gp55.2 is directly linked to its modulation of host Topo I ac-
tivity during infection. We have examined the importance of gp55.2 function in the absence of
the phage topoisomerase. The intracellular growth curve of a 39am, 55.2 double mutant was
similar to the 39 single mutant, showing the extended eclipse period and reduced burst size
characteristic of DNA delay mutants (S5B Fig). However, mature phage particle accumulation
was slightly delayed in the double mutant, as observed in the comparison of the 55.2 single mu-
tant with T4+. This additive effect suggests that gp55.2 and T4 topoisomerase act in indepen-
dent biochemical pathways.

Despite T4 being one of the most studied phages, its genome codes for>100 ORFans whose
biological functions, if any, are still largely unknown [24]. These genes are generally thought to
be non-essential and they are largely regrouped in the so-called hyperplastic regions (HPR) of
the T4 genome. Several hypotheses have been proposed to explain their maintenance through
evolution. Some genes might contribute to the “molecular arms race” whereby resistance
mechanisms and new ways to circumvent them are constantly evolving in bacteria and phages
[80,81]. The existence of numerous ORFans that are so far unique to one branch of the T4-like
phage tree [25,82] suggests that HPR might serve as a breeding ground for de novo phage gene
birth [26,83]. The present work, as well as the recent characterization of ORFans 55.1 [29] and
39.2 [84], fit well with a third hypothesis: T4 ORFans could modify host protein functions to
fine tune bacterial metabolism and permit optimal virion production (see also the “molecular
splint” hypothesis in [26]). Gp39.2 shifts the open/close equilibrium of the host GroEL chaper-
one. Gp55.1 impacts on host folate metabolism and blocks nucleotide excision repair by inter-
acting with FolD and UvrA respectively, and gp55.2 affects the host control of DNA
supercoiling. Although deletion mutants of these three genes are perfectly viable on many E.
coli K12 strains, Gp39.2 permits T4 growth on several E. coli groELmutants that would other-
wise not yield productive infections. Furthermore, we demonstrated that 55.2 and 55.1mutants
(Fig 5B and data not shown) have a detectably reduced fitness. We conclude that T4 ORFans
might have a major evolutionary role by providing small but evolutionary significant growth
advantages in non-optimal hosts or environmental conditions.

Supporting Information
S1 Fig. Supplementary growth curves and viability assays.
(TIFF)

S2 Fig. Supplementary EMSA.
(TIFF)

S3 Fig. Supplementary topoisomerase assays.
(TIFF)

S4 Fig. Supplementary analyses of in vivoDNA supercoiling and plasmid copy number.
(TIFF)

S5 Fig. Supplementary analyses of intracellular phage accumulation.
(TIFF)

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s005


S1 File. Supporting Materials and Methods. Construction of E. coli strains, T4 phage strains,
plasmids, and genomic library; methods used for supporting figures; and list of the plasmids
used in this study.
(DOCX)

Acknowledgments
We thank Drs. C. Georgopoulos and G. Panis, members of our laboratory, and anonymous re-
viewers for helpful discussions and suggestions; Dr. H. Krisch for critical readings of the manu-
script and Dr. J. Curran for English editing; Marie Claire Teuscher and Léo Zangelmi for
plasmid and T4 strain construction, respectively; Dr A. Stasiak for his help with the set up and
analysis of chloroquine gel electrophoresis; and Dr K. Kreuzer for sharing his knowledge of the
phage T4 topoisomerase. We are also grateful to Dr C.J. Rudolph and Dr K.J. Marians for plas-
mids and strains.

Author Contributions
Conceived and designed the experiments: YM DB. Performed the experiments: YM FS. Ana-
lyzed the data: YM FS DB. Wrote the paper: YM DB.

References
1. Schvartzman JB, Stasiak A (2004) A topological view of the replicon. EMBORep 5: 256–261. PMID:

14993926

2. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S
A 84: 7024–7027. PMID: 2823250

3. Higgins NP, Deng S, Pang Z, Stein R, Champion K, Manna D (2005) Domain behavior and supercoil
dynamics in bacterial chromosomes In: Higgins NP, editor. The Bacterial Chromosome. Washington,
DC: American Society for Microbiology Press. pp. 133–153.

4. Travers A, Muskhelishvili G (2005) DNA supercoiling—a global transcriptional regulator for entero-
bacterial growth? Nat Rev Microbiol 3: 157–169. PMID: 15685225

5. Stavans J, Oppenheim A (2006) DNA-protein interactions and bacterial chromosome architecture.
Phys Biol 3: R1–10. PMID: 17200598

6. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem
70: 369–413. PMID: 11395412

7. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol
3: 430–440. PMID: 12042765

8. Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in
the emergence of modern organisms. Nucleic Acids Res 37: 679–692. doi: 10.1093/nar/gkp032 PMID:
19208647

9. Forterre P, Gribaldo S, Gadelle D, Serre MC (2007) Origin and evolution of DNA topoisomerases. Bio-
chimie 89: 427–446. PMID: 17293019

10. Kreuzer KN (1998) Bacteriophage T4, a model system for understanding the mechanism of type II topo-
isomerase inhibitors. Biochim Biophys Acta 1400: 339–347. PMID: 9748648

11. Drlica K (1999) Mechanism of fluoroquinolone action. Curr Opin Microbiol 2: 504–508. PMID:
10508721

12. Zechiedrich EL, Khodursky AB, Bachellier S, Schneider R, Chen D, Lilley DM, et al. (2000) Roles of
topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem 275:
8103–8113. PMID: 10713132

13. Perez-Cheeks BA, Lee C, Hayama R, Marians KJ (2012) A role for topoisomerase III in Escherichia coli
chromosome segregation. Mol Microbiol 86: 1007–1022. doi: 10.1111/mmi.12039 PMID: 23066834

14. Liu LF, Liu CC, Alberts BM (1979) T4 DNA topoisomerase: a new ATP-dependent enzyme essential for
initiation of T4 bacteriophage DNA replication. Nature 281: 456–461. PMID: 226889

15. Stetler GL, King GJ, HuangWM (1979) T4 DNA-delay proteins, required for specific DNA replication,
form a complex that has ATP-dependent DNA topoisomerase activity. Proc Natl Acad Sci U S A 76:
3737–3741. PMID: 226976

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124309.s006
http://www.ncbi.nlm.nih.gov/pubmed/14993926
http://www.ncbi.nlm.nih.gov/pubmed/2823250
http://www.ncbi.nlm.nih.gov/pubmed/15685225
http://www.ncbi.nlm.nih.gov/pubmed/17200598
http://www.ncbi.nlm.nih.gov/pubmed/11395412
http://www.ncbi.nlm.nih.gov/pubmed/12042765
http://dx.doi.org/10.1093/nar/gkp032
http://www.ncbi.nlm.nih.gov/pubmed/19208647
http://www.ncbi.nlm.nih.gov/pubmed/17293019
http://www.ncbi.nlm.nih.gov/pubmed/9748648
http://www.ncbi.nlm.nih.gov/pubmed/10508721
http://www.ncbi.nlm.nih.gov/pubmed/10713132
http://dx.doi.org/10.1111/mmi.12039
http://www.ncbi.nlm.nih.gov/pubmed/23066834
http://www.ncbi.nlm.nih.gov/pubmed/226889
http://www.ncbi.nlm.nih.gov/pubmed/226976


16. Epstein RH, Bolle A, Steinberg CM, Kellenberger E, Boy de la Tour E, Edgar RS, et al. (1964) Physio-
logical studies on conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp Quant
Biol 28: 375–394.

17. Mufti S, Bernstein H (1974) The DNA-delay mutants of bacteriophage T4. J Virol 14: 860–871. PMID:
4609406

18. McCarthy D, Minner C, Bernstein H, Bernstein C (1976) DNA elongation rates and growing point distri-
butions of wild-type phage T4 and a DNA-delay amber mutant. J Mol Biol 106: 963–981. PMID:
789903

19. Mosig G (1994) Homologous recombination. In: Karam JD, editor. Molecular biology of bacteriophage
T4. Washington, D. C.: ASM press. pp. 54–82.

20. Mosig G, Gewin J, Luder A, Colowick N, Vo D (2001) Two recombination-dependent DNA replication
pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc Natl
Acad Sci U S A 98: 8306–8311. PMID: 11459968

21. Kreuzer KN, Brister JR (2010) Initiation of bacteriophage T4 DNA replication and replication fork dy-
namics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 7: 358.
doi: 10.1186/1743-422X-7-358 PMID: 21129203

22. McCarthy D (1979) Gyrase-dependent initiation of bacteriophage T4 DNA replication: interactions of
Escherichia coli gyrase with novobiocin, coumermycin and phage DNA-delay gene products. J Mol Biol
127: 265–283. PMID: 372540

23. Epstein RH, Bolle A, Steinberg CM (2012) Amber mutants of bacteriophage T4D: their isolation and ge-
netic characterization. Genetics 190: 833–840. doi: 10.1534/genetics.112.138438 PMID: 22419076

24. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome.
Microbiol Mol Biol Rev 67: 86–156, table of contents. PMID: 12626685

25. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD (2010) Genomes of the T4-related bacterio-
phages as windows on microbial genome evolution. Virol J 7: 292. doi: 10.1186/1743-422X-7-292
PMID: 21029436

26. Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D (2008) Exploring the prokaryot-
ic virosphere. Res Microbiol 159: 306–313. doi: 10.1016/j.resmic.2008.05.001 PMID: 18639443

27. Brussow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108: 13–16. PMID: 11792317

28. Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, et al. (2012) Phagemorpholo-
gy recapitulates phylogeny: the comparative genomics of a new group of myoviruses. PLoS One 7:
e40102. doi: 10.1371/journal.pone.0040102 PMID: 22792219

29. Mattenberger Y, Mattson S, Metrailler J, Silva F, Belin D (2011) 55.1, a gene of unknown function of
phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair by the NER. Mol Micro-
biol 82: 1406–1421. doi: 10.1111/j.1365-2958.2011.07897.x PMID: 22029793

30. Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab-
oratory Press.

31. Stockum A, Lloyd RG, Rudolph CJ (2012) On the viability of Escherichia coli cells lacking DNA topo-
isomerase I. BMCMicrobiol 12: 26. doi: 10.1186/1471-2180-12-26 PMID: 22373098

32. Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF (2009) Tracing ancestors and relatives of Escheri-
chia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol 394: 634–643. doi: 10.
1016/j.jmb.2009.09.022 PMID: 19765591

33. Boyd D, Manoil C, Beckwith J (1987) Determinants of membrane protein topology. Proc Natl Acad Sci
USA 84: 8525–8529. PMID: 3317413

34. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. (2006) Construction of Escherichia
coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006 0008.

35. CasadabanMJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in
Escherichia coli. J Mol Biol 138: 179–207. PMID: 6997493

36. CasadabanMJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia
coli using bacteriophage lambda and Mu. J Mol Biol 104: 541–555. PMID: 781293

37. Selick HE, Kreuzer KN, Alberts BM (1988) The bacteriophage T4 insertion/substitution vector system.
A method for introducing site-specific mutations into the virus chromosome. J Biol Chem 263: 11336–
11347. PMID: 3403529

38. Belin D, Vassalli J-D, Combepine C, Godeau F, Nagamine Y, Reich E, et al. (1985) Cloning, nucleotide
sequencing and expression of cDNAs encoding mouse urokinase-type plasminogen activator. Eur-
JBiochem 148: 225–232.

39. Sambrook J, Fritsch EF, Maniatis T (1990) Molecular cloning. A laboratory manual.: Cold Spring Har-
bor Laboratory Press.

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 21 / 23

http://www.ncbi.nlm.nih.gov/pubmed/4609406
http://www.ncbi.nlm.nih.gov/pubmed/789903
http://www.ncbi.nlm.nih.gov/pubmed/11459968
http://dx.doi.org/10.1186/1743-422X-7-358
http://www.ncbi.nlm.nih.gov/pubmed/21129203
http://www.ncbi.nlm.nih.gov/pubmed/372540
http://dx.doi.org/10.1534/genetics.112.138438
http://www.ncbi.nlm.nih.gov/pubmed/22419076
http://www.ncbi.nlm.nih.gov/pubmed/12626685
http://dx.doi.org/10.1186/1743-422X-7-292
http://www.ncbi.nlm.nih.gov/pubmed/21029436
http://dx.doi.org/10.1016/j.resmic.2008.05.001
http://www.ncbi.nlm.nih.gov/pubmed/18639443
http://www.ncbi.nlm.nih.gov/pubmed/11792317
http://dx.doi.org/10.1371/journal.pone.0040102
http://www.ncbi.nlm.nih.gov/pubmed/22792219
http://dx.doi.org/10.1111/j.1365-2958.2011.07897.x
http://www.ncbi.nlm.nih.gov/pubmed/22029793
http://dx.doi.org/10.1186/1471-2180-12-26
http://www.ncbi.nlm.nih.gov/pubmed/22373098
http://dx.doi.org/10.1016/j.jmb.2009.09.022
http://dx.doi.org/10.1016/j.jmb.2009.09.022
http://www.ncbi.nlm.nih.gov/pubmed/19765591
http://www.ncbi.nlm.nih.gov/pubmed/3317413
http://www.ncbi.nlm.nih.gov/pubmed/6997493
http://www.ncbi.nlm.nih.gov/pubmed/781293
http://www.ncbi.nlm.nih.gov/pubmed/3403529


40. Reckinger AR, Jeong KS, Khodursky AB, Hiasa H (2007) RecA can stimulate the relaxation activity of
topoisomerase I: Molecular basis of topoisomerase-mediated genome-wide transcriptional responses
in Escherichia coli. Nucleic Acids Res 35: 79–86. PMID: 17151069

41. Clark DJ, Leblanc B (2009) Analysis of DNA supercoiling induced by DNA-protein Interaction. In: Moss
T, Leblanc B, editors. Methods in Molecular Biology: Humana Press. pp. 523–536. doi: 10.1007/978-1-
60327-015-1_30 PMID: 19378184

42. Cameron AD, Stoebel DM, Dorman CJ (2011) DNA supercoiling is differentially regulated by environ-
mental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 80: 85–101. doi: 10.
1111/j.1365-2958.2011.07560.x PMID: 21276095

43. Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin
E492 requires the mannose permease. J Bacteriol 188: 7049–7061. PMID: 17015644

44. Bost S, Silva F, Belin D (1999) Transcriptional activation of ydeA, which encodes a member of the
major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia
coli arabinose PBAD promoter. J Bacteriol 181: 2185–2191. PMID: 10094697

45. Pruss GJ, Manes SH, Drlica K (1982) Escherichia coli DNA topoisomerase I mutants: increased super-
coiling is corrected by mutations near gyrase genes. Cell 31: 35–42. PMID: 6297751

46. DiNardo S, Voelkel KA, Sternglanz R, Reynolds AE, Wright A (1982) Escherichia coli DNA topoisomer-
ase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43–51. PMID: 6297752

47. Drolet M, Phoenix P, Menzel R, Masse E, Liu LF, Crouch RJ (1995) Overexpression of RNase H partial-
ly complements the growth defect of an Escherichia coli ΔtopAmutant: R-loop formation is a major
problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A 92: 3526–3530. PMID:
7536935

48. Stupina VA, Wang JC (2005) Viability of Escherichia coli topAmutants lacking DNA topoisomerase I. J
Biol Chem 280: 355–360. PMID: 15522872

49. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level ex-
pression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130. PMID:
7608087

50. Zhu CX, Qi HY, Tse-Dinh YC (1995) Mutation in Cys662 of Escherichia coli DNA topoisomerase I con-
fers temperature sensitivity and change in DNA cleavage selectivity. J Mol Biol 250: 609–616. PMID:
7623379

51. Zhu Q, Pongpech P, DiGate RJ (2001) Type I topoisomerase activity is required for proper chromosom-
al segregation in Escherichia coli. Proc Natl Acad Sci U S A 98: 9766–9771. PMID: 11493711

52. Gellert M, O'Dea MH, Itoh T, Tomizawa J (1976) Novobiocin and coumermycin inhibit DNA supercoiling
catalyzed by DNA gyrase. Proc Natl Acad Sci U S A 73: 4474–4478. PMID: 794878

53. Drlica K, Snyder M (1978) Superhelical Escherichia coli DNA: relaxation by coumermycin. J Mol Biol
120: 145–154. PMID: 347091

54. Gormley NA, Orphanides G, Meyer A, Cullis PM, Maxwell A (1996) The interaction of coumarin antibiot-
ics with fragments of DNA gyrase B protein. Biochemistry 35: 5083–5092. PMID: 8664301

55. Hardy CD, Cozzarelli NR (2003) Alteration of Escherichia coli topoisomerase IV to novobiocin resis-
tance. Antimicrob Agents Chemother 47: 941–947. PMID: 12604525

56. Shure M, Pulleyblank DE, Vinograd J (1977) The problems of eukaryotic and prokaryotic DNA packag-
ing and in vivo conformation posed by superhelix density heterogeneity. Nucleic Acids Res 4: 1183–
1205. PMID: 197488

57. Vetcher AA, McEwen AE, Abujarour R, Hanke A, Levene SD (2010) Gel mobilities of linking-number
topoisomers and their dependence on DNA helical repeat and elasticity. Biophys Chem 148: 104–111.
doi: 10.1016/j.bpc.2010.02.016 PMID: 20346570

58. Richardson JP (1991) Preventing the synthesis of unused transcripts by Rho factor. Cell 64: 1047–
1049. PMID: 2004415

59. Drolet M (2006) Growth inhibition mediated by excess negative supercoiling: the interplay between
transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59: 723–730. PMID:
16420346

60. Tse-Dinh YC, Beran RK (1988) Multiple promoters for transcription of the Escherichia coli DNA topo-
isomerase I gene and their regulation by DNA supercoiling. J Mol Biol 202: 735–742. PMID: 2845101

61. Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA
supercoiling. Cell 34: 105–113. PMID: 6309403

62. Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcrip-
tional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5: R87. PMID:
15535863

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 22 / 23

http://www.ncbi.nlm.nih.gov/pubmed/17151069
http://dx.doi.org/10.1007/978-1-60327-015-1_30
http://dx.doi.org/10.1007/978-1-60327-015-1_30
http://www.ncbi.nlm.nih.gov/pubmed/19378184
http://dx.doi.org/10.1111/j.1365-2958.2011.07560.x
http://dx.doi.org/10.1111/j.1365-2958.2011.07560.x
http://www.ncbi.nlm.nih.gov/pubmed/21276095
http://www.ncbi.nlm.nih.gov/pubmed/17015644
http://www.ncbi.nlm.nih.gov/pubmed/10094697
http://www.ncbi.nlm.nih.gov/pubmed/6297751
http://www.ncbi.nlm.nih.gov/pubmed/6297752
http://www.ncbi.nlm.nih.gov/pubmed/7536935
http://www.ncbi.nlm.nih.gov/pubmed/15522872
http://www.ncbi.nlm.nih.gov/pubmed/7608087
http://www.ncbi.nlm.nih.gov/pubmed/7623379
http://www.ncbi.nlm.nih.gov/pubmed/11493711
http://www.ncbi.nlm.nih.gov/pubmed/794878
http://www.ncbi.nlm.nih.gov/pubmed/347091
http://www.ncbi.nlm.nih.gov/pubmed/8664301
http://www.ncbi.nlm.nih.gov/pubmed/12604525
http://www.ncbi.nlm.nih.gov/pubmed/197488
http://dx.doi.org/10.1016/j.bpc.2010.02.016
http://www.ncbi.nlm.nih.gov/pubmed/20346570
http://www.ncbi.nlm.nih.gov/pubmed/2004415
http://www.ncbi.nlm.nih.gov/pubmed/16420346
http://www.ncbi.nlm.nih.gov/pubmed/2845101
http://www.ncbi.nlm.nih.gov/pubmed/6309403
http://www.ncbi.nlm.nih.gov/pubmed/15535863


63. del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication and control
of circular bacterial plasmids. Microbiol Mol Biol Rev 62: 434–464. PMID: 9618448

64. Selzer G, Som T, Itoh T, Tomizawa J (1983) The origin of replication of plasmid p15A and comparative
studies on the nucleotide sequences around the origin of related plasmids. Cell 32: 119–129. PMID:
6186390

65. Armstrong KA, Acosta R, Ledner E, Machida Y, Pancotto M, McCormick M, et al. (1984) A 37 X 10(3)
molecular weight plasmid-encoded protein is required for replication and copy number control in the
plasmid pSC101 and its temperature-sensitive derivative pHS1. J Mol Biol 175: 331–348. PMID:
6327996

66. Churchward G, Linder P, Caro L (1983) The nucleotide sequence of replication and maintenance func-
tions encoded by plasmid pSC101. Nucleic Acids Res 11: 5645–5659. PMID: 6310509

67. Yigit H, Reznikoff WS (1998) Escherichia coli DNA topoisomerase I and suppression of killing by Tn5
transposase overproduction: topoisomerase I modulates Tn5 transposition. J Bacteriol 180: 5866–
5874. PMID: 9811643

68. Yigit H, Reznikoff WS (1999) Escherichia coli DNA topoisomerase I copurifies with Tn5 transposase,
and Tn5 transposase inhibits topoisomerase I. J Bacteriol 181: 3185–3192. PMID: 10322021

69. Ghosh S, Mallick B, Nagaraja V (2014) Direct regulation of topoisomerase activity by a nucleoid-associ-
ated protein. Nucleic Acids Res 42: 11156–11165. doi: 10.1093/nar/gku804 PMID: 25200077

70. Kirkegaard K, Wang JC (1985) Bacterial DNA topoisomerase I can relax positively supercoiled DNA
containing a single-stranded loop. J Mol Biol 185: 625–637. PMID: 2997454

71. Sikder D, Unniraman S, Bhaduri T, Nagaraja V (2001) Functional cooperation between topoisomerase
I and single strand DNA-binding protein. J Mol Biol 306: 669–679. PMID: 11243779

72. Jeong KS, Xie Y, Hiasa H, Khodursky AB (2006) Analysis of pleiotropic transcriptional profiles: a case
study of DNA gyrase inhibition. PLoS Genet 2: e152. PMID: 17009874

73. Drlica K (1992) Control of bacterial DNA supercoiling. Mol Microbiol 6: 425–433. PMID: 1313943

74. Phoenix P, Raymond MA, Masse E, Drolet M (1997) Roles of DNA topoisomerases in the regulation of
R-loop formation in vitro. J Biol Chem 272: 1473–1479. PMID: 8999816

75. Massé E, Drolet M (1999) Relaxation of transcription-induced negative supercoiling is an essential
function of Escherichia coli DNA topoisomerase I. J Biol Chem 274: 16654–16658. PMID: 10347233

76. DiGate RJ, Marians KJ (1988) Identification of a potent decatenating enzyme from Escherichia coli. J
Biol Chem 263: 13366–13373. PMID: 2843517

77. Luke K, Radek A, Liu X, Campbell J, Uzan M, Haselkorn R, et al. (2002) Microarray analysis of gene ex-
pression during bacteriophage T4 infection. Virology 299: 182–191. PMID: 12202221

78. Sinden RR, Pettijohn DE (1982) Torsional tension in intracellular bacteriophage T4 DNA. Evidence that
a linear DNA duplex can be supercoiled in vivo. J Mol Biol 162: 659–677. PMID: 6762444

79. Mosig G, Macdonald P, Lin G, Levin M, Seaby R (1983) Gene expression and initiation of DNA replica-
tion of bacteriophage T4 in phage and host topoisomerase mutants. In: Cozzarelli NR, editor. Mecha-
nisms of DNA replication and recombination. New York: A. R. Liss. pp. 173–186.

80. Comeau AM, Krisch HM (2005) War is peace—dispatches from the bacterial and phage killing fields.
Curr Opin Microbiol 8: 488–494. PMID: 15979391

81. Otsuka Y, Yonesaki T (2012) Dmd of bacteriophage T4 functions as an antitoxin against Escherichia
coli LsoA and RnlA toxins. Mol Microbiol 83: 669–681. PMID: 22403819

82. Ignacio-Espinoza JC, Sullivan MB (2012) Phylogenomics of T4 cyanophages: lateral gene transfer in
the 'core' and origins of host genes. Environ Microbiol 14: 2113–2126. doi: 10.1111/j.1462-2920.2012.
02704.x PMID: 22348436

83. Carvunis AR, Rolland T, Wapinski I, CalderwoodMA, Yildirim MA, Simonis N, et al. (2012) Proto-genes
and de novo gene birth. Nature 487: 370–374. doi: 10.1038/nature11184 PMID: 22722833

84. Ang D, Georgopoulos C (2012) An ORFan no more: the bacteriophage T4 39.2 gene product, NwgI,
modulates GroEL chaperone function. Genetics 190: 989–1000. doi: 10.1534/genetics.111.135640
PMID: 22234860

A Toxic T4 ORFan Gene Encodes an Inhibitor of Topoisomerase I

PLOS ONE | DOI:10.1371/journal.pone.0124309 April 14, 2015 23 / 23

http://www.ncbi.nlm.nih.gov/pubmed/9618448
http://www.ncbi.nlm.nih.gov/pubmed/6186390
http://www.ncbi.nlm.nih.gov/pubmed/6327996
http://www.ncbi.nlm.nih.gov/pubmed/6310509
http://www.ncbi.nlm.nih.gov/pubmed/9811643
http://www.ncbi.nlm.nih.gov/pubmed/10322021
http://dx.doi.org/10.1093/nar/gku804
http://www.ncbi.nlm.nih.gov/pubmed/25200077
http://www.ncbi.nlm.nih.gov/pubmed/2997454
http://www.ncbi.nlm.nih.gov/pubmed/11243779
http://www.ncbi.nlm.nih.gov/pubmed/17009874
http://www.ncbi.nlm.nih.gov/pubmed/1313943
http://www.ncbi.nlm.nih.gov/pubmed/8999816
http://www.ncbi.nlm.nih.gov/pubmed/10347233
http://www.ncbi.nlm.nih.gov/pubmed/2843517
http://www.ncbi.nlm.nih.gov/pubmed/12202221
http://www.ncbi.nlm.nih.gov/pubmed/6762444
http://www.ncbi.nlm.nih.gov/pubmed/15979391
http://www.ncbi.nlm.nih.gov/pubmed/22403819
http://dx.doi.org/10.1111/j.1462-2920.2012.02704.x
http://dx.doi.org/10.1111/j.1462-2920.2012.02704.x
http://www.ncbi.nlm.nih.gov/pubmed/22348436
http://dx.doi.org/10.1038/nature11184
http://www.ncbi.nlm.nih.gov/pubmed/22722833
http://dx.doi.org/10.1534/genetics.111.135640
http://www.ncbi.nlm.nih.gov/pubmed/22234860


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


