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Abstract

Purpose

A number of recent publications have proposed that a family of image-derived indices,

called texture features, can predict clinical outcome in patients with cancer. However, the in-

vestigation of multiple indices on a single data set can lead to significant inflation of type-I

errors. We report a systematic review of the type-I error inflation in such studies and review

the evidence regarding associations between patient outcome and texture features derived

from positron emission tomography (PET) or computed tomography (CT) images.

Methods

For study identification PubMed and Scopus were searched (1/2000–9/2013) using combi-

nations of the keywords texture, prognostic, predictive and cancer. Studies were divided

into three categories according to the sources of the type-I error inflation and the use or not

of an independent validation dataset. For each study, the true type-I error probability and

the adjusted level of significance were estimated using the optimum cut-off approach cor-

rection, and the Benjamini-Hochberg method. To demonstrate explicitly the variable selec-

tion bias in these studies, we re-analyzed data from one of the published studies, but using

100 random variables substituted for the original image-derived indices. The significance of

the random variables as potential predictors of outcome was examined using the analysis

methods used in the identified studies.

Results

Fifteen studies were identified. After applying appropriate statistical corrections, an average

type-I error probability of 76% (range: 34–99%) was estimated with the majority of published

results not reaching statistical significance. Only 3/15 studies used a validation dataset. For

the 100 random variables examined, 10% proved to be significant predictors of survival

when subjected to ROC and multiple hypothesis testing analysis.

Conclusions

We found insufficient evidence to support a relationship between PET or CT texture fea-

tures and patient survival. Further fit for purpose validation of these image-derived
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biomarkers should be supported by appropriate biological and statistical evidence before

their association with patient outcome is investigated in prospective studies.

Introduction
This is an exciting era for imaging biomarkers. Fast computing and state of the art software has
facilitated the collection and analysis of large amounts of data, while the development of data
mining techniques enables researchers to test a large number of hypotheses simultaneously.
The utilization of imaging biomarkers is evolving from qualitative interpretation to more so-
phisticated quantitative analysis with the use of various image-based metrics. In the same way
that gene array and molecular biomarkers led to the analysis of complex interaction models,
similarly a number of image analysis algorithms and image-derived features are promising to
unravel complex tumour biology by overcoming the limitations inherent in invasive tissue
sampling techniques.

The most commonly used metrics currently applied to positron emission tomography (PET)
images are the standardised uptake value (SUV) derived indices. These include SUVmax, the
voxel with the maximum activity concentration in the tumour; SUVmean, calculated by averag-
ing the activity concentration in all voxels inside a tumour volume; SUVpeak, calculated by av-
eraging the voxel values inside a small region of interest centred on the SUVmax; the
metabolically active tumour volume (MTV), and total lesion glycolysis (TLG), which is the
product of MTV and the SUVmean. These metrics are all closely associated with tumour bur-
den and metabolism and whilst there is ongoing debate about the best index to use in a given
clinical situation, there is a large literature documenting the links between these indices and
clinical outcomes. The index most commonly derived from computed tomography (CT) images
is a measurement of tumour volume, often characterised by measurements of the tumour diam-
eter using methods described by, for example, the RECIST criteria [1]. Recently, the application
of image classification techniques to PET and CT images has resulted in a new family of indices
[2,3], known as texture features, that have been used to characterise tumour heterogeneity.

Cancer heterogeneity is a phenomenon associated with clonal branch evolution (genetic
variability) and regional differences in the tumour microenvironment (non-genetic variability)
[4,5]. In brief, it has been proposed that most neoplasms arise from a single cancer cell, and
that the inherent genomic instability of the cancer cells leads to mutations and the acquisition
of genetic variability within the original clone [6]. The subclone selection is based on evolution-
ary factors governed by Darwinian principles that arise from interactions between the tumour
microenvironment and the cancer cell properties [4,7]. An example of the role tumour micro-
environment plays is tumour hypoxia, which leads to the selection of aggressive subclones ex-
hibiting high metastatic potential and leading to poor patient outcome [8,9]. Mapping
heterogeneity across spatial scales, from the cellular level to medical imaging, requires not only
objective reproducible metrics for imaging features but also a theoretical construct that bridges
those scales [10]. Although several researchers attempted to establish a general model of tex-
ture description [11,12], it is generally recognized that no general mathematical model of tex-
ture based only on statistical data-driven methods can be used to solve every image analysis
problem [10,13]. There are some critical aspects to consider when designing texture operators
to model tumour heterogeneity [13]. For 3-D texture feature analysis in particular the main as-
pects to consider are the scale in which heterogeneity is being examined (from μm for micros-
copy to cm for PET), the voxel size since this is the elementary building block of a given texture
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class, the slice thickness, whether the 3-D lattice is anisotropic or isotropic, the noise in the
data [13]. The majority of texture features that have been used in PET and CT medical imaging
to date fall into one the following three categories: a) first-order features derived from statistical
moments of the image intensity histogram, b) second-order features derived from the gray
level co-occurrence matrix, and c) higher order features derived from analysis of the neigh-
bourhood gray-tone difference matrix or gray level size-zone matrices [13].

We have however identified a number of serious deficiencies in the way that the majority of
investigations into these new image-derived indices, and their potential for use as imaging bio-
markers, are conducted. Firstly, the methodology for such investigations typically includes the
determination of the optimum value from a continuous distribution of values of the image-de-
rived index, such that the patient population is divided into high and low risk groups. Multiple
cut-off values are tested in order to find an optimum value (i.e. the value that has the most sta-
tistically significant relationship with outcome) using receiver operating characteristic (ROC)
analysis. This will be referred to as the ‘optimum cut-off approach’, or according to Altman
et al [14] ‘the minimum p-value approach’. The use of optimum cut-offs is not new in the field
of imaging biomarkers. Berghmans et al [15] have previously identified, in a systematic review
and meta-analysis, that, in 61% of the studies included, the choice of the SUV threshold be-
tween patients with high survival and low survival was based on the optimum cut-off.

There are a number of problems with the optimum cut-off approach. Hilsenbeck et al [16]
demonstrated that as the number of possible cut-offs examined increases, so does the likelihood
of erroneously obtaining a statistically significant result. Additionally, as different datasets have
different optimal cut-offs it is not possible to replicate the optimal cut-off in different studies,
thus making the quantification of the prognostic value impossible. Lastly, there is a tendency to
overestimate the effect size [14,17], in this case the association between texture features and out-
come. Although there are methods for the correction of type-I errors (the error of rejecting a
null hypothesis when it is actually true, commonly referred to as a false positive), the overestima-
tion of the effect size cannot be calculated or corrected for, and ultimately this will lead to claim-
ing a factor as of prognostic relevance, when in fact it does not have any influence on prognosis.

Secondly, whilst previously, only a handful of indices would be tested when searching for
potential new imaging biomarkers, now numerous image-derived indices can increase this
number by 10-fold, leading to multiple hypothesis testing. The effects of the optimum cut-off
approach and multiple hypothesis testing, outlined above and examined in detail below, are
well known and documented in other fields, for example in tissue biomarker analysis. Their
combination during the analysis of a single study in the field of imaging biomarkers heightens
the potential type-I error inflation and so warrants caution.

In addition to the above statistical considerations, the use of texture features in predicting
response is based on the hypothesis that they characterize tumour heterogeneity and hence
contain complementary information to that provided by indices like SUV or tumour volume.
To date, evidence for this association has not been reported, however several studies have
shown that most PET texture features are highly correlated both with each other and with tu-
mour volume [18–22]. This collinearity between texture features can lead to the phenomenon
known as ‘bouncing betas’ [23], this relates to the instability of the regression coefficient
weights in a multivariate model when multicollinearity exists between variables and small
changes in the data lead to very different regression coefficients.

A number of contributing factors that in general add to the probability of a research finding
being false are listed in [24]. These are: small sample size, great number and lesser selection of
tested relationships, and great flexibility in design, definitions, outcomes and analytical modes.
These factors can easily be recognised in most imaging biomarker studies but get amplified in
cases where multiple image-derived indices with no pre-specified analytical model are used.
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In the light of the issues outlined above, the aim of the study presented here was, firstly, to
investigate the extent of the inflation of the type-I error rate in PET and CT imaging biomarker
studies using texture features conducted with the methodology outlined above, and secondly,
to examine the evidence supporting an association between PET and CT texture features and
patient outcome in these studies following the application of appropriate statistical corrections.
A systematic review of studies investigating the use of PET or CT image-derived texture fea-
tures to predict patient outcomes was performed. In addition, in order to demonstrate explicit-
ly the variable selection bias in these studies, 100 random variables were generated, and their
significance as potential predictors of outcome was examined on a previously published data-
set, following the same methodology that was used in the original study.

Materials and Methods

Study identification and selection
Publications satisfying the following criteria were eligible for consideration:

1. Inclusion of patients with any cancer type

2. Investigation of the relationship between different texture features extracted from PET or
CT images and clinical outcome

3. Publication as a full paper in a peer-reviewed scientific journal.

Search methods
A search of studies published in PubMed and Scopus (2000–2013) was performed. The most
recent search was done in September 2013. Both subject headings and free text were used for
the search. The search was performed with a combination of terms related to PET, CT and tex-
ture, with no language restrictions and limited to human studies. The full electronic search
strategy for Pubmed is listed in S1 Table.

Data extraction and management
For each study the following were extracted on two different occasions by one researcher (AC):

1. Number of univariate analyses performed per study (i.e. how many hypotheses were tested
per study)

2. Method employed for obtaining a cut-off with prognostic power (i.e. ROC analysis, mean or
other)

3. Did the authors perform any adjustment of the p-value in order to control the increase in
type-I error probability resulting from a) multiple hypothesis testing or b) the use of the op-
timum cut-off approach

4. Presence of ad-hoc analysis (was a pre-specified hypothesis tested)

5. Presence and use of a validation dataset to confirm results

6. Presence of cross-correlation analysis (i.e. did authors perform a cross correlation analysis
to examine for possible dependencies amongst the variables tested)

RevMan version 5.2 was used for data collection and management [25].
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Type-I error rate estimation and adjustment of significance level
The studies included in the review were divided into three categories according to the sources
of the type-I error inflation present:

a. Studies with multiple hypothesis testing only

b. Studies employing both multiple hypothesis testing and the optimum cut-off approach

c. Studies with multiple hypothesis testing, with or without the optimum cut-off approach, but
with validation analysis

In order to determine the true type-I error probability, corrections were applied as follows:
For studies in category A the Benjamini-Hochberg correction for multiple hypothesis test-

ing (which is considered more powerful and less conservative than the Bonferroni procedure
[26]) was applied. In this method the variables are ranked according to their p-values in in-
creasing order. For a significance level p = 0.05, those that satisfy the relationship
pðkÞ � k

m
� 0:05(m equals to the number of comparisons and k equals to the p-value) are con-

sidered statistically significant.
For studies in category B the adjustment was done in two steps. Firstly, a correction to the

minimal p-values obtained from the optimum cut-off approach was performed using the for-
mula developed by Altman et al [14], and then the Benjamini-Hochberg procedure
was applied.

For studies in category C no corrections were made.
Regarding the correction for the optimum cut-off approach applied in category B studies, as

described in [14], if Pmin represents the minimum p-value of the log-rank statistic obtained
from each study, the corrected p-value (for 0.0001<Pmin<0.1), Pcor, is obtained as follows:

Pcor ¼ �1:63� Pmin � ð1þ 2:35� lnPminÞfor� ¼ 10% ð1Þ

Where ε is the proportion of values from the tails of the continuous variable distribution that is
excluded during the ROC analysis (10% from each end of the distribution), leaving the rest of
the distribution (80%) to be considered for possible cut-offs. In most cases performing an ROC
analysis with a statistical software package such as SPSS (SPSS Inc.) will include all values of
the distribution, thus making the selection of ε = 10% less conservative and allowing more sig-
nificance after the correction. The Pcor calculated with formula 1 was then compared with the
adjusted significance level in order to achieve an overall type-I error probability of 0.05 based
on the Benjamini-Hochberg procedure. A spreadsheet that implements the Benjamini and
Hochberg method for calculating the corrected significance level when multiple hypotheses are
tested was used [27].

Demonstration of selection bias using random variables
Survival data were extracted from Ganeshan et al [28] for 21 patients with oesophageal cancer,
and overall survival was used as an end point. The relationship between 100 random variables
and overall survival was assessed. The random variables were generated in Excel using the nor-
mal random number generator formula below:

NORMSINVðRANDðÞÞ �mþ ðSDÞ
Values for the mean (m = 0.016) and standard deviation (SD = 0.02) were selected to match
those of the coarseness texture feature in order to be unrelated to the survival dataset under
analysis whilst still retaining the statistical properties of the texture feature [29]. To obtain a
more accurate percentage estimate of the number of false predictors expected, the analysis was
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repeated, using 100 random variables. An optimal cut-off for the random variables was calculat-
ed from ROC curves based on the minimum p-value approach. Kaplan-Meier curves were used
to investigate the impact of the random variables on patient survival and a nonparametric log-
rank test was used to calculate the differences between the two survival curves. In a similar way
to previous publications, no sample size calculation, correction for multiple hypothesis testing
or correction for use of the optimum cut-off approach was performed. Any p-value of less than
0.05 was considered significant. The statistical software IBM SPSS version 21 was used.

Results

Study identification and selection
The original search in Pubmed and Scopus databases identified 73 articles. After removing du-
plicates, 60 abstracts were screened according to the evaluation criteria, and 17 in total were se-
lected to be read in full as potentially eligible. In addition, one further study [19] was identified
through an alternative source. Fifteen studies [19,28–41] were selected for inclusion in the re-
view, while three studies were excluded with reasons [42–44]. Fig 1 describes the study flow di-
agram according to the PRISMA guidelines for reporting systematic reviews [45].

Study characteristics
The selected studies were published between 2009 and 2013. The mean number of patients
analysed per study was 44 (range 12–72). The mean number of hypotheses tested per study
was 38 (range 8–102). Studies covered a range of cancer sites. Their characteristics are summa-
rised in Tables 1 and 2. Technical information of texture features implementation in CT studies
and PET studies are summarised in S2 and S3 Table.

Statistical analysis
Four [19,31,33,41], eight [28–30,32,34,36,39,40] and three studies [35,37,38] were assigned to
categories A, B and C respectively (Table 1).

Fig 2 shows, for studies from categories A and B, the corrected type-I error probability for
each study and the average type-I error probability over all studies (76%) based on the number
of hypotheses tested. Fig 3 shows the result for the smallest published p-value quoted in each
study after correcting for the use of the optimum cut-off approach and adjusting the signifi-
cance level using the Benjamini-Hochberg procedure. For B category studies the additional
type-I error source due to the optimum cut-off method is not included in Fig 2 but is accounted
during the adjustment of the significance level in Fig 3. None of the studies in categories A and
B for which it was feasible to apply the corrections retained statistically significant results after
the corrections had been applied. Studies [31,33] were excluded because they did not provide a
summary of their p-values for correction and study [41] was excluded because results were al-
ready adjusted for multiple hypotheses. For category C study [38] no associations between the
various texture features and survival were claimed in the publication, while in [35] no associa-
tions between texture features and patient outcome were claimed with the exception of the in-
tensity-volume histogram (IVH) (a surrogate for tumour volume). In [37] an association
between the CT texture feature entropy and survival was claimed but no association was estab-
lished between PET texture features and survival.

The minimum and maximum AUC achieved with the random variables were 0.213 and
0.796, respectively (Fig 4). In comparison with the texture features investigated in the studies
retrieved from the systematic review, the random variable analysis achieved higher AUCs than
uniformity in [28,30,32,34], energy in [31], or busyness in [29]. Despite there being no real

Type-I Error Inflation in Image-Derived Biomarkers Analysis

PLOS ONE | DOI:10.1371/journal.pone.0124165 May 4, 2015 6 / 18



relationships between the 100 random variables and survival, using the methodology typically
employed in the published studies, in 10% of the variables the choice of an optimum cut-off ap-
peared to have prognostic power in Kaplan Meier survival analysis (Fig 5). The AUC values for
these random variables with prognostic power are reported in Table 3.

As an example, the Kaplan-Meier curves results are demonstrated for one variable (random
variable 1) in Figs 6 and 7. Survival was higher for patients with a random variable 1 cut-off
<0.01556 (group 1) with mean survival 20.7 months (CI: 16.86–24.53 months), and lower for
patients with a random variable 1 cut-off>0.01556 (group 2) and mean survival 14.63 months

Fig 1. Study flow diagram according to PRISMA guidelines.

doi:10.1371/journal.pone.0124165.g001
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Table 1. Statistical characteristics of the selected studies divided in three categories: A) Studies with multiple hypotheses testing only, B) studies
employing bothmultiple hypothesis testing and the optimum cut-off approach and C) studies with multiple hypothesis testing, with or without the
optimum cut-off approach, but with validation analysis.

Category Study Multivariate analysis
included volume

Optimum
cut-off

Type I error
adjustment

Validation
dataset

cross correlation
reported

Sample
size

Hypotheses
tested

A Willaime [19] Not applicable No/Mean No No Yes 12 68

El Naqa [31] NI* Not clear No No No 14/9 19

Tixier [33] NI Not clear No No Yes 41 54

Yip [41] No No/Median Yes# No No 36 90

B Miles [30] No Yes No No No 48 10

Goh [32] No Yes No No No 39 24

Cook [29] No Yes No No Yes 53 30

Ganeshan [28] No Yes No No Yes 21 15

Ganeshan [34] No Yes No No No 54 8

Ng [36] No Yes No No Yes 55 25

Zhang [40] Yes Yes No No No 72 40

Cheng [39] Yes Yes No No Yes 70 59‡

C Vaidya [35] Yes No No LOOCV† No 27 102

Win [37] No Yes No Yes No 66 12

Ravanelli [38] No No/Median No LOOCV No 53 16

* No information provided
#For multiple hypotheses tested
†Leave one out cross validation
‡ Number is a conservative approximation due to the difficulty establishing the exact number of hypotheses tested

doi:10.1371/journal.pone.0124165.t001

Table 2. General characteristics of selected studies.

Study Cancer type Modality* Tracer Feature Relationship with good
outcome

Timing

Miles [30] Colorectal CT NA Uniformity (2.0/2.5)‡ >0.907 baseline

El Naqa [31] Cervical, H&N PET FDG Model/Various NA pre/post

Ng [36] Colorectal CT NA Entropy, Uniformity (1.0) >7.89, <0.005 baseline

Goh [32] Renal mets CT NA Uniformity (2.5) >-2% delta

Tixier [33] Esophageal PET FDG Local features and Regional features No information baseline

Cook [29] NSCLC PET FDG Coarseness low baseline

Ganeshan [28] Esophageal CT NA Uniformity (2.5) >0.84 baseline

Ganeshan [34] NSCLC CT NA Uniformity (2.5) >0.62 baseline

Vaidya [35] NSCLC PET/CT FDG Model NA baseline

Win [37] NSCLC PET/CT FDG Entropy (1.5/2.5) >1.23 baseline

Willaime [19] Breast PET FLT FBP†: No statistical significance FBP: not applicable FBP: pre/post

Breast PET FLT OSEM†: CV,AUC-CSH, Entropy, Complexity OSEM: low, high, high, low OSEM: baseline

Zhang [40] HNSCC CT NA Skewness low baseline

Cheng [39] HNSCC PET FDG Uniformity (4 bins) >0.138 baseline

Yip [41] Esophageal CT NA Uniformity (1.5/2.0/2.5), Entropy (1.5/2.0) >0.007, <7.35 post-Tx

Ravanelli [38] NSCLC CT NA Uniformity and grey level (U*GL, sigma
value = 4)

II-III tertiles baseline

*Modality texture analysis was performed on
†Filtered back projection, Iterative reconstruction
‡Numbers represent different filtration levels

doi:10.1371/journal.pone.0124165.t002
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Fig 2. Probability of a false positive result based on number of hypotheses tested per study (blue
columns) for all study categories. 5% type-I error probability = red line, average type-I error probability
(76%) over all studies = green line (Note—additional inflation of the type-I error probability due to the use of
the optimum cut-off approach is not included here).

doi:10.1371/journal.pone.0124165.g002

Fig 3. Studies from categories A and B after adjustments for optimum cut-off approach and/or multiple hypotheses testing.Green column
demonstrates the smallest published p-value per study, the red the Pcor for the optimum cut-off approach, and the blue the corrected statistical significance
level based on Hochberg-Benjamini method. For a study to have a statistical significant result the red column value should be smaller than the green blue
which is not the case for any of them. For study [19] the green and red column are identical as investigators did not use the optimum cut-off approach. Studies
[31,33] and [41] were excluded as they did not provide a summary of their p-values for correction, and had adjusted the results for multiple
hypotheses, respectively.

doi:10.1371/journal.pone.0124165.g003
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(CI: 10.65–18.61 months), based on Kaplan-Meier analysis and the log-rank test (p = 0.020, Fig
6). In order to compare the results when a single cut-off was used instead of multiple cut-offs
(ROC analysis) the mean value of random variable 1 (as defined by the surviving vs. non sur-
viving groups) was also used to calculate the Kaplan-Meier curves. When the mean value was
used, no difference in survival of the two groups was noted (p = 0.178, Fig 7).

Discussion
It is common practice to retrospectively analyse patient datasets to provide a proof of concept
that may motivate further exploration of a biomarker. This step is followed by the design of a
prospective study with the aim of definitively testing the hypothesis generated. The process of

Fig 4. Area under the curve (AUC) values from receiver operating characteristic (ROC) analysis of 100
random variables. The variables are ordered by decreasing AUC values.

doi:10.1371/journal.pone.0124165.g004

Fig 5. Statistical significance of Kaplan-Meier analysis for 100 random variables using the optimum
cut-off approach. The variables are ordered by increasing p-values. Overall 10% of the random variables
are statistically significant predictors of survival.

doi:10.1371/journal.pone.0124165.g005
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testing multiple cut-offs during ROC analysis and multiple image-derived metrics, which are
often not independent of each other, is likely to lead to positive results. However, these results
will not be reproducible and the actual size of the effect will be overestimated and falsely associ-
ated with clinical end points.

This is confirmed from our systematic review findings. As predicted from the theory, out of
15 studies analysed we were unable to find any two studies that identified the same texture fea-
ture and/or cut-off value as of prognostic significance, even when the same modality and can-
cer type were analysed. The most alarming finding was that in some cases the same texture
feature was linked to both positive and negative patient outcomes in different studies. For ex-
ample, while in [28] higher baseline uniformity was associated with good prognosis in oeso-
phageal cancer, in [36] patients needed to have lower baseline uniformity to achieve good

Table 3. AUC values after ROC analysis for the generated 10 random variables.

Variable AUC

random1 .796

random2 .769

random3 .750

random4 .741

random5 .713

random6 .694

random7 .685

random8 .684

random9 .676

random10 .675

doi:10.1371/journal.pone.0124165.t003

Fig 6. Kaplan Meier curves based on optimum cut-off value for the random variable 1.

doi:10.1371/journal.pone.0124165.g006

Type-I Error Inflation in Image-Derived Biomarkers Analysis

PLOS ONE | DOI:10.1371/journal.pone.0124165 May 4, 2015 11 / 18



prognosis in colorectal cancer. Additionally the results of [28] in oesophageal cancer regarding
the prognostic values of baseline uniformity were not confirmed in [41].

The term biomarker refers to a measurable indicator of some biological state or condition.
Texture features have been introduced as imaging biomarkers with the assumption that they
are an index of the degree of tumour heterogeneity. It is widely accepted that biological tumour
heterogeneity is associated with poor prognosis in cancer patients as it can contribute to treat-
ment failure and drug resistance, and this has important consequences for personalized-medi-
cine [4,46,47]. Based on this assumption, tumours with higher biological heterogeneity are
expected to be associated with poorer survival, and even if colorectal and oesophageal cancer
are two different cancer types it is still expected that heterogeneity would have the same effect
on patient prognosis. An equivalent scenario with an established index would be, for example,
that a large tumour volume indicated a poor prognosis in some cancer types but a good one in
others. Finally, it may be that texture features behave differently for different cancer types be-
cause they do not measure tumour heterogeneity but some other biological property. A charac-
teristic example of discordance between radiological and biological heterogeneity is the
comparison between a histopathology diagnosis of bronchiolo-alveolar carcinoma (BAC) and
the radiological finding of ground glass opacity (GGO) on high-resolution CT. The appearance
of small lung adenocarcinomas in CT can vary consisting of solid and GGO component [48].
In CT a nodule featuring 100% GGO will be considered as of increased radiological heteroge-
neity in comparison with a nodule that consists of 100% solid component. It has been shown
that in patients with small solitary lung adenocarcinomas the % BAC component in histology
correlated well with the % GGO component on CT, and that the prognosis was better if the
nodule had a high % of GGO [49]. Based on the new histopathologic classification of adenocar-
cinoma [50] the term BAC has been discontinued and substituted by the term non-invasive
adenocarcinoma. As a result tumours with a higher % of GGO component, therefore a high

Fig 7. Kaplan Meier curves based onmean value for the random variable 1.

doi:10.1371/journal.pone.0124165.g007
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percentage of non-invasive carcinoma and low biological heterogeneity, will have an excellent
prognosis [51]. On the contrary tumours with a higher % of solid component, therefore a
higher percentage of invasive adenocarcinoma and higher biological heterogeneity, will have a
worse prognosis [51]. Consequently, for radiological heterogeneity to accurately reflect biologi-
cal heterogeneity the underlying mechanism of biological heterogeneity needs to be taken into
account when designing these imaging features.

As part of our analysis, we generated 100 random variables and used the same process that
was used in the published studies to test their prognostic value. Out of 100 random variables
tested, 10% proved to be significant predictors of survival when the cut-off value was chosen
using the optimum cut-off approach. As a result, we were able to identify a significant but clini-
cally implausible association between survival and our variables because of the over-inflation
of the type-I error caused by combining the optimum cut-off approach and multiple hypothesis
testing statistical analysis.

The retrospective analysis of data sets with texture features has not managed, in some cases,
to reproduce well established associations between certain variables and patient outcome, re-
flecting the limitations of retrospective analysis and of employing small, heterogeneous cohorts
of patients. For example, in [29] no association was found between stage and survival analysis,
while in [39] no association was found between HPV status or stage and disease-specific sur-
vival. Small sample sizes not only increase the type-I error rate but also reduce the probability
of detecting a true difference between groups, where one exists (type-II error). To be able to
generate accurate estimates of the impact of the depended variables an adequate number of
events per variable is needed. It has been proposed that for linear models, such as multiple re-
gression, a minimum of 10 to 15 observations per predictor variable will produce reasonably
stable estimates [52,53]. In the field of imaging biomarkers, the lack of interpretations of the
image-derived indices in terms of meaningful biological end points, makes this approach sus-
ceptible to error. These associations should be specified during the design of the study, as it is
tempting to construct biologically plausible reasons for observed subgroup effects after having
observed them [54].

Only 3/15 of the studies included in the review [35,39,40] added tumour volume into the
multivariate analysis. Collinearity between PET texture features and tumour volume will influ-
ence the regression coefficients estimation and will increase the type-I error as a function of the
indices correlation value [55]. For example, in [56] it was demonstrated that the inclusion of
tumours with volumes of less than 45cm3 biases tracer uptake heterogeneity studies toward sta-
tistically significant differences even when none are present. As a result the use of univariate
and multivariate analysis, adopted in the vast majority of texture feature studies, is problematic
and highlights the need for validation analysis.

The necessity for multiple comparison correction has been a long standing debate, especially
when performing an exploratory analysis. Ultimately the only confirmation of the validity of
the results is by verifying the outcome of the exploratory analysis in a validation dataset. From
our review, we identified only 3 studies that included validation of their results [35,37,38]. In
[35] and [38], after cross validation analysis no association between texture features and patient
outcome was identified. According to the principles of validation analysis, an independent
dataset is required to confirm the results of a previous study, without changing any of the origi-
nal analysis parameters [57,58]. In [37] a different CT texture feature and optimal cut-off were
selected as significant between the original study that analysed the same dataset by Ganeshan
et al. in 2012 [34] (Uniformity, cut-off = 0.6236) and the subsequent validation study [37] that
included the same training dataset (Entropy, cut-off = 1.233), questioning the prospective na-
ture of the analysis. To facilitate the development of best practices for the analysis of imaging
data involving new image-derived biomarkers and algorithms, these need to be compared and
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validated on datasets that are large and diverse [59]. Because data of adequate quality are
sparse, it is important to support data sharing activities such as the Cancer Imaging Archive
and encourage investigators to share the raw imaging data after publication[59].

Texture features are susceptible to various sources of variability such as different acquisition
modes and reconstruction parameters [35,37,38], and different levels of discretisation [35]. Dif-
ferent reconstruction algorithms have different noise properties and this will affect the texture
properties of the resulting images. In [60] from 50 texture features examined only one, first-
order entropy, showed low variability due to the reconstruction method but was still suscepti-
ble to the image grid size and SUV scaling. In [57,58] no prognostic information from texture
features was provided when FBP reconstruction was used, but significant associations were
identified with OSEM in the same dataset. Recently, two further studies investigated the test-re-
test and interobserver reproducibility of FDG-PET [61] and CT [62] texture features. Useful
commentaries on the misconceptions, possible sources of variability and limitations of texture
features analysis are provided in [63,64].

The present study has some limitations. Firstly, study authors were not contacted to provide
additional data or verify the extracted study characteristics. However, regarding additional data
provision there were only 2 cases [31,33] for which we couldn’t identify information in the pub-
lished manuscript for estimating the type-I error and both these were studies without a validation
dataset. Secondly, the data extraction was performed by one investigator only. However, the data
extraction list did not include any subjective information (e.g. methodological quality items) that
could have been subject to debate, and the process was repeated on two separate occasions.

The field of imaging biomarkers is continuously expanding. Validation studies of imaging
biomarkers are methodologically challenging, time consuming and expensive. Resources for
conducting these studies are not unlimited, and ethical considerations exist regarding testing
hypotheses on patients without robust data. Furthermore, the long-term follow up required for
providing confirmation of the value of a biomarker will take years to complete. As a result, pri-
orities in the selection of markers to be investigated further must be based on robust evidence.
In an era where the lack of reproducibility in research findings has become one of the most sig-
nificant problems [65], emerging trends in the field of imaging biomarkers should be carefully
scrutinised for the validity of their results. There are recent examples in the field of image-de-
rived biomarkers where cancer stratification models were developed by combining clinical, im-
aging and gene expression data using large multicentre datasets, with multiple external
validation sets and from various cancer sites to reduce the risk of type-I errors [66].

Various publications have outlined the theoretical and practical limitations of using regres-
sion analysis for the development of patient outcome prediction models [52,67,68]. In general,
the following basic steps will help reduce false discoveries and ensure that the model provides
not only statistically significant but also clinically relevant results: a) variable reproducibility as-
sessment, b) cross-correlation analysis, c) inclusion of clinically important variables (such as
disease stage and treatment received), d) an adequate event rates (at least>10–15 per variable
tested), e) use of an external validation cohort ensuring that the same texture feature and cut-
off are tested.

Conclusion
After appropriate statistical corrections for the probability of type-I errors and a review of the
published results, we found insufficient evidence, much of it conflicting, to support a relation-
ship between PET or CT texture features and patient outcome. Fit for purpose validation of
image-derived biomarkers should be supported by appropriate biological and statistical evi-
dence before prospective studies of their association with patient outcome are performed.
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