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Abstract

Apart from addressing humanity’s growing demand for fuels, pharmaceuticals, plastics and
other value added chemicals, metabolic engineering of microbes can serve as a powerful
tool to address questions concerning the characteristics of cellular metabolism. Along these
lines, we developed an in vivo metabolic strategy that conclusively identifies the product
specificity of glycerate kinase. By deleting E. coli’'s phosphoglycerate mutases, we divide its
central metabolism into an ‘upper’ and ’lower’ metabolism, each requiring its own carbon
source for the bacterium to grow. Glycerate can serve to replace the upper or lower carbon
source depending on the product of glycerate kinase. Using this strategy we show that
while glycerate kinase from Arabidopsis thaliana produces 3-phosphoglycerate, both

E. coli’'s enzymes generate 2-phosphoglycerate. This strategy represents a general ap-
proach to decipher enzyme specificity under physiological conditions.

Introduction

The identification of the in vivo substrates of enzymes can be, in some cases, a non-trivial chal-
lenge. In fact, numerous enzymes, most belonging to secondary metabolism, were assigned a
new catalytic role after further studies shed light on their actual role in vivo, e.g., [1-4]. More
uncommon are cases in which the substrate itself is known but the residue on which the en-
zyme acts is unclear. E. coli’s glycerate kinase enzymes present such an interesting case in cen-
tral carbon metabolism. During the last decades several studies on the bacterium’s two
glycerate kinases, encoded by garK and gixK, were published. Earlier in vitro assays claimed
that these enzymes generate 3-phosphoglycerate [5,6] while more recent studies, using
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advanced experimental methodologies, provided evidence that 2-phosphoglycerate is the prod-
uct of the enzymes [7,8]. In fact, even the physiological role of the two enzymes seems to be dis-
puted. For example, while it was claimed that glxK is necessary for growth on glycolate [9] we
found that a deletion of glxK resulted in no clear phenotype when glycolate, glyoxylate or glyce-
rate are provided as sole carbon sources. On the other hand, deletion of garK led to a severe re-
tardation of growth using these substrates.

Although the in vitro experiments supporting 2-phosphoglycerate as being the product of
E. coli’s glycerate kinase enzymes are quite compelling (see discussion in [8]), we reasoned that
this metabolic conundrum could also be addressed by using an in vivo metabolic selection
strategy. By employing such a metabolic engineering approach we unequivocally demonstrate
that the product of both glycerate kinase variants is indeed 2-phosphoglycerate, thereby sug-
gesting that a glycerate 3-kinase activity is missing in E. coli.

Results & Discussion

To resolve the product specificity of garK and glxK we developed an in vivo metabolic assay
that identifies the enzyme product via a simple growth selection experiment. We started by de-
leting the two endogenous phosphoglycerate mutase enzymes (AgpmA, AgpmM). As far as we
know, this is the first time such a double knockout mutant was generated [10]. The central me-
tabolism of this strain is effectively cut into ‘upper’ and lower’ metabolism, as shown in Fig 1A.
For this strain to grow on a minimal medium, it should be supplied with two carbon sources
(Fig 1B), an ‘upper’ one, e.g., glycerol, and a ‘lower’ one, e.g., pyruvate (for an analogous ap-
proach in a completely different context see refs. [11,12]). The AgpmA AgpmM strain grew on
glycerol and pyruvate at a doubling time of ~120 minutes. We further deleted garK and glxK to
establish a glycerate kinase-free background. This background enables a direct selection for gly-
cerate 2-kinase and 3-kinase activities by modulating the growth medium: glycerate can replace
the lower carbon source if glycerate 2-kinase activity is present (Fig 1C); alternatively, glycerate
can replace the upper carbon source if glycerate 3-kinase activity is present (Fig 1D).

We tested three glycerate kinases by overexpressing them in the above strain: E. coli’s pro-
tein products of garK (Ec garK) and glxK (Ec gIxK), as well as Arabidopsis thaliana’s glycerate
kinase (At glyK), which is known to produce 3-phosphoglycerate [13]. The results are shown
in Fig 2 and summarized in Table 1. The expression of Ec garK or Ec glxK enabled glycerate to
replace pyruvate as a carbon source, while At glyK expression enabled glycerate to replace glyc-
erol as a carbon source. The WT strain displays a considerable yield difference between growth
on glycerol + glycerate and growth on pyruvate + glycerate, probably due to the fact that glycer-
ol is considerably more reduced than pyruvate [14]. This is also reflected in yields of the
AgpmA, AgpmM strains, which were about half of the WT strain (Fig 2).

These finding clearly demonstrate that while At glyK is indeed specific to 3-phosphoglycer-
ate, both E. coli’s glycerate kinases produce 2-phosphoglycerate. Notably, current metabolic
models of E. coli suggest that the bacterium has a glycerate 3-kinase enzyme (e.g., ref. [15]);
these models should be amended according to the findings we show here.

What is the physiological difference between phosphorylating glycerate at the alpha position
and the beta position? We speculate that the main difference is energetic. The proximity of the
negatively charged phosphate to the negatively charged carboxyl in 2-phosphoglycerate makes
it more energetic than 3-phosphoglycerate (i.e., having higher Gibbs energy of formation). In
fact, the conversion of 3-phosphoglycerate to 2-phosphoglycerate has A,G™® > +6 k]/mol under
E. coli’s physiological conditions of pH 7.5 and ionic strength of 0.25 M [16]. As the glycerate ki-
nase reaction dissipates a lot of energy regardless of the exact product it generates (A,G® < -18
kJ/mol, under the same conditions), it makes perfect sense for the cell to produce the more
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Fig 1. Selection scheme for identifying the product specificity of glycerate kinase. (A-D) By deleting phosphoglycerate mutase, central metabolism is
divided into ‘upper’ and ‘lower metabolism, each requires its own carbon source for the bacterium to grow (glycerol and pyruvate, respectively). Glycerate
can replace one of these carbon sources, depending on the product specificity of glycerate kinase.

doi:10.1371/journal.pone.0122957.g001

energetic compound that can be converted to its counterpart favorably. If 3-phosphoglycerate
was the kinase’s product, its conversion to 2-phosphoglycerate and its downstream metabolites
will suffer from a reduced thermodynamic driving force due to the energetic barrier [17]. A no-
table exception is when almost all the flux is channeled in the gluconeogenesis direction, as is
the case of the glycerate kinases that participate in plant photorespiration [18]. In this case, the
direct production of 3-phosphoglycerate is advantageous as it reduces significantly the amount
of phosphoglyceromutase needed to be expressed.

The methodology we describe here, of using a metabolic assay with an easily readable
growth output, is a useful tool to decipher the in vivo specificity of enzymes (e.g., see ref. [19]).
The strategy has some drawbacks, e.g., enzyme promiscuous activity can results in false a posi-
tive result, especially at high expression levels of the enzyme in question. Yet, if one carefully
controls for such effects, the metabolic selection strategy can clearly identify the substrates as
well as products of various different enzymes. For example, to elucidate whether an enzyme is
a decarboxylating or a non-decarboxylating malate dehydrogenase [20], one can apply a meta-
bolic assay involving two strains. In the first strain all endogenous malate dehydrogenase and
malic enzyme variants are deleted, together with the anaplerotic and cataplerotic enzymes.
Upon overexpression of reversible PEP carboxykinase [21] and the enzyme in question, growth
will be established on glutamine as a sole carbon source [22] if and only if the enzyme in
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Fig 2. Product specificity of glycerate kinases from E. coli and A. thaliana. (A) A AgpmA AgpmM AgarK
AglxK strain was able to grow on a minimal medium supplemented with glycerol and glycerate when one of

E. coli’s glycerate kinases were expressed, indicating that these enzymes generate 2-phosphoglycerate. (B)
Growth on pyruvate and glycerate was possible only when A. thaliana’s glycerate kinase was expressed,
indicating that this enzyme produces 3-phosphoglycerate. Cells were cultivated in 96-multiwell plates and OD
measurements were taken automatically every 90 minutes. For each enzyme, we show the growth of one
clone with standard errors (at each time point) that are based on three parallel cultivations. Other clones
showed a similar qualitative dependence on the carbon sources with somewhat different growth yield

and dynamics.

doi:10.1371/journal.pone.0122957.9002

question is indeed a malate dehydrogenase, whether decarboxylating or not. The second strain
is identical to the first one with an additional deletion of PEP synthetase. This strain, also ex-
pressing PEP carboxykinase and the enzyme in question, would be able to grow on glutamine
only if the malate dehydrogenase is non-decarboxylating, such that oxaloacetate can accumu-
late and be converted to PEP and other gluconeogenic intermediates. As demonstrated in this
study, the main advantage of a metabolic assay strategy is that it does not rely on in vitro meth-
ods performed under changing artificial conditions that can lead to contradicting results. Rath-
er, this approach tests the enzyme under physiological conditions and thus can undisputedly
assign specificities in a simple and highly reproducible manner.
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Table 1. Summary of selection experiments on a minimal medium supplemented with different carbon
sources.

Carbon sources Expressed enzymes

Ec garK Ec gIxK At glyK

Glycerol - - -
Pyruvate - - -
Glycerate

Glycerol + Pyruvate
Glycerol + Glycerate
Pyruvate + Glycerate

+ +

+
4

- +

Different glycerate kinase variants were expressed in the AgpmA AgpmM AgarK AglxK strain and growth
phenotypes on different carbon sources were measured. A ‘-’ sign corresponds to experiments that showed
no growth, while a ‘+ sign corresponds to growth. Cells were cultivated in 96-multiwell plates using an
automated robotic platform (exact experimental setup is given in Materials and Methods).

doi:10.1371/journal.pone.0122957.1001

Materials and Methods
Cloning

E. coli’s garK and glxK genes were amplified directly from an E. coli K12 Mgl665 strain. The
gene encoding for At glyK was amplified from Arabidopsis thaliana’s cDNA library. The prim-
ers used are given below. Cloning was done using the “no background” cloning method we pre-
viously developed [23]; the glycerate kinase genes were attached to RBS ‘E’ within the Pniv
plasmid, and then inserted to a Ptac plasmid as described in details in ref. [23]. The EcoRI and
Sall restriction sites that exist within the endogenous gIxK and Arabidopsis‘s glyK genes were
removed using a silent point mutation via the overhang extension procedure (primers used are
given below) [24].

Gene deletions were performed using a standard P1 phage transduction [25]; all donor
strains were taken from Keio collection [26]. We used PCP20 to mediate a flippase catalyzed
excision of the antibiotic-resistance [27], thereby enabling further gene deletions using the
same resistance marker.

Primers:
Ec garK Forward ATGCATCATCACCATCACCACGCGTATTGCAATCCGGGCCTGGAATC
Ec garK Reverse CTCTTACGTGCCCGATCAACGCTAGCTTACCCCGCGTTGCGCATTCCAATCG
Ec gIxK Forward ATGCATCATCACCATCACCACAAGATTGTCATTGCGCCAGACTC
Ec gIxK Reverse CTCTTACGTGCCCGATCAACGCTAGCTTATTTTTAATTCCCTGACCTA
TTTTAATGGCG
Ec gIxK C435G GTGCGACGGTTGACGGCGGTATGGGCATGG
Forward
Ec gIxK C435G CCATGCCCATACCGCCGTCAACCGTCGCAC
Reverse
At glyK Forward ATGCATCATCACCATCACCACTCTTCTTATTTATCCTCCAAGCTT
At glyK Reverse CTCTTACGTGCCCGATCAACGCTAGCTTAGTTTGCGAGTATCGGGTTCCTTTC
At glyK C314T TTTTGAATTTATATGCTCGGGTCCTCTCGT
Forward
At glyK C314T ACGAGAGGACCCGAGCATATAAATTCAAAA
Reverse

doi:10.1371/journal.pone.0122957.t002
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Growth assays

The different strains were grown overnight in 5 ml LB media containing Kanamycin (50mg/L)
and chloramphenicol (30mg/L). Following OD measurements, we centrifuged ~10° cells for 1
min at 9,500 g. The pellets were re-suspended in 1 ml of M9 medium, from which 10 pl were
dispensed into a 96-multiwell plate. Each well also contained 200 pl of M9 medium supple-
mented with 0.2% appropriate carbon sources, as well as antibiotics (kanamycin 50mg/L and
chloramphenicol 30mg/L). Notably, by taking ~10” cells for the initial centrifuge, we made
sure that the initial OD in each well is ~0.05.

The plates were cultivated within a LICONiC incubator shaker at 37°c, 100% humidity and
ambient gas composition. Every 90 minutes plates were automatically carried by a robotic arm
(Evoware II, Tecan) to a plate reader (Infinite M200-pro, Tecan), in which OD (600nm) mea-
surements were taken.

We picked several clones of each transformation for growth experiments. Different clones
of the same strains were found to share the same qualitative growth phenotype, although with
somewhat different growth yield and dynamics.
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