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Abstract

While metabolic syndrome is often associated with obesity, 25% of humans suffering from it
are not obese and the effect of physical activity remains unclear in such cases. Therefore,
we used hereditary hypertriaclyglycerolemic (HHTQ) rats as a unique model for studying the
effect of spontaneous physical activity [voluntary running (VR)] on metabolic syndrome-
related disorders, such as dyslipidemia, in non-obese subjects. Adult HHTg males were fed
standard (CD) or high-sucrose (HSD) diets ad libitum for four weeks. Within both dietary
groups, some of the rats had free access to a running wheel (CD+VR, HSD+VR), whereas
the controls (CD, HSD) had no possibility of extra physical activity. At the end of the four
weeks, we measured the effects of VR on various metabolic syndrome-associated parame-
ters: (i) biochemical parameters, (ii) the content and composition of triacylglycerols (TAG),
diacylglycerols (DAG), ceramides and membrane phospholipids, and (iii) substrate utiliza-
tion in brown adipose tissue. In both dietary groups, VR led to various positive effects: re-
duced epididymal and perirenal fat depots; increased epididymal adipose tissue lipolysis;
decreased amounts of serum TAG, non-esterified fatty acids and insulin; a higher insulin
sensitivity index. While tissue ceramide content was not affected, decreased TAG accumu-
lation resulted in reduced and modified liver, heart and skeletal muscle DAG. VR also had a
beneficial effect on muscle membrane phospholipid composition. In addition, compared
with the CD group, the CD+VR rats exhibited increased fatty acid oxidation and protein con-
tent in brown adipose tissue. Our results confirm that physical activity in a non-obese model
of severe dyslipidemia has many beneficial effects and can even counteract the negative ef-
fects of sucrose consumption. Furthermore, they suggest that the mechanism by which
these effects are modulated involves a combination of several positive changes in

lipid metabolism.
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Introduction

A sedentary lifestyle and the increased consumption of sugar, high-fructose corn syrup and
energetically-rich food have contributed to a rapid increase in the prevalence of obesity, meta-
bolic syndrome and type 2 diabetes [1-3]. For these reasons, the positive role of physical activi-
ty on metabolism is being intensively studied. It is widely known that physical activity has a
beneficial effect on reducing the metabolic dysfunctions associated with obesity [4,5]. However,
25% of humans with metabolic syndrome (diagnosed according to National Cholesterol Edu-
cation Program Adult Treatment Panel III criteria) are neither overweight nor obese [6], and
the effect of physical activity on metabolic syndrome-related disorders in such cases

remains unclear.

Fructose overconsumption is believed to be involved in the development of many metabolic
disorders, such as dyslipidemia, obesity and insulin resistance [2,7,8]. This is, at least partly, as-
sociated with the utilization of fructose in liver de novo lipogenesis, which results in increased
liver lipid content and increased very-low-density lipoprotein (VLDL) secretion [9-11]. Via
this mechanism, fructose contributes to lipid deposition in non-adipose tissue, mainly in the
liver and muscles [12].

An increase in intracellular triacylglycerols (TAG) in the liver and muscles is associated
with insulin resistance in these tissues [13—15]. One of the causes of insulin resistance, and
thus of metabolic syndrome, is the elevated content of lipotoxic intermediates, primarily dia-
cylglycerols and ceramides. Acting as signal molecules, they affect cellular metabolism and in-
sulin signal transduction [16,17]. Apart from elevated amount of lipids and lipotoxic
intermediates, another important factor appears to be the fatty acid composition of individual
lipid classes, especially of membrane phospholipids. Alterations to the length and saturation of
membrane phospholipid fatty acids affect membrane fluidity and membrane receptor signaling
[18-20]. Concurrent with impaired lipid metabolism, fructose overconsumption leads to oxi-
dative stress and inflammation, both of which are also implicated in the pathogenesis of meta-
bolic syndrome and its various complications [21,22].

One potential positive effect of physical activity on lipid metabolism could be the activation
of brown adipose tissue (BAT) [23,24]. Because BAT is able to degrade high amounts of fatty
acids and produce heat, it could be a good therapeutic target against obesity-associated disor-
ders [25-28]. The relatively recent use of computerized tomography and positron emission to-
mography to confirm the presence of BAT in adult humans [29-31] has led to renewed
scientific interest in this tissue.

Wistar rats have been bred for use as non-obese hereditary hypertriacylglycerolemic
(HHTg) animals in a genetic model of hypertriacylglycerolemia. HHTg rats exhibit many of
the symptoms associated with metabolic syndrome in humans: hypertriacylglycerolemia; in-
creased liver and muscle TAG; muscle and adipose tissue resistance to insulin; hyperinsuline-
mia; impaired glucose tolerance; mildly elevated blood pressure; hyperuricemia; higher serum
C-reactive protein [32]. A review of these symptoms can be found in the literature [33,34]. In
HHTg rats, such symptoms are easy to exacerbate by high-sucrose feeding [35].

The purpose of this study was to test the effect of voluntary running (VR) wheel exercise on
lipid metabolism disorders in non-obese HHTg rats fed with either a standard diet or, to inten-
sify the symptoms of metabolic syndrome, a high-sucrose diet. To simulate sugar consumption
in the human population, sucrose was administered in the form of a drink [36]. Our findings
shed new light on the combined effects of physical activity and diet on genetically-induced dys-
lipidemia. We show that physical activity is able to reduce the negative effects of sucrose con-
sumption. In particular, we focus on oxidative stress, lipid deposition in non-adipose tissue,
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Table 1. Characteristics of rats used in experiment.

CcD

Voluntary running (km/ -
day)

Food consumption (g/ 246 +0.6
day)

Drink consumption (ml/ 34+£22
day)

Sucrose (% of energy) -
Final body weight (g) 405+ 6

ANOVA results
CD +VR P HSD HSD + VR P P P P
VR HSD VR*HSD
Range: 1.65—11; Average: - Range: 2.48-8.24;
Average: 5.5
19.5+04 0.01 123+x04 13.1+0.3 NS 0.01 0.01 0,01
451 2 0.01 59.6%5 68.4+6 NS 0.01 0.01 NS
532+20 55.1+49 NS
386 £ 8 NS 4178+8 408+7 NS 0.01 0.02 NS

Values for the consumption of food and drink were determined on days 7, 14 and 21 and did not differ significantly. Table results are based on all values.
‘Sucrose (% of energy)’ indicates the percentage of total energy (J) obtained from the sucrose. Abbreviations: ANOVA, two-way analysis of variance; CD,
control diet; HSD, high-sucrose diet; VR, voluntary running.

doi:10.1371/journal.pone.0122768.t001

the amount and composition of lipotoxic intermediates, the composition of membrane phos-
pholipids, and BAT activity.

Materials and Methods
Animals

Male HHTg rats (3 months old) with free access to food and drink were housed in a tempera-
ture-controlled room (22°C) on a 12:12 h light-dark cycle. The rats were divided into 4 groups:
the first group was fed a control diet without the possibility of voluntary running (CD, n = 8);
the second group was fed a control diet with the possibility of voluntary running (CD+VR,

n = 23); the third group was fed a high-sucrose diet without the possibility of voluntary running
(HSD, n = 8); and the fourth group was fed a high-sucrose diet with the possibility of voluntary
running (HSD+VR, n = 26). At the beginning of the experiment, all groups had the same aver-
age body weight (345 + 10 g) and serum TAG concentration (7.6 + 0.6 mM). All rats had con-
tinuous access to food and drink. The control diet consisted of 23% protein, 43% starch, 7% fat,
5% fibre and 1% vitamin and mineral mixture (standard chow diet, Bonagro, Czech Republic).
For the HSD groups, the drink consisted of sucrose in drinking water (20% v/w sucrose solu-
tion). Rats without the possibility of running were placed in standard cages while rats in the
VR groups had free access to a VR wheel at all times (Rat Activity Wheel and Cage, Panlab,
Harvard Apparaturs, USA). The intensity of physical activity (i.e. number of wheel rotations)
was recorded each day for every rat in the VR groups during the four weeks of the experiment.
The characteristics of all rats used in the experiment are summarized in Table 1.

In order to create homogenous CD+VR and HSD+VR groups, only animals with a compa-
rable intensity of physical activity (5-8 km per day) were selected for metabolic analyses. How-
ever, the correlation analyses are based on the entire cohort of animals. At the end of the study,
all rats were moved to standard cages for one night; here they did not have the possibility of
running, but still had free access to food and drink. The following day they were decapitated,
and their serum and tissues collected for final biochemical analyses. All experiments were per-
formed in accordance with the Animal Protection Law of the Czech Republic 311/1997, which
is in compliance with European Community Council recommendations (86/609/ECC) for the
use of laboratory animals, and approved by the ethical committee of the Institute for Clinical
and Experimental Medicine, Prague.
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Biochemical parameters

Blood glucose levels were measured by glucose oxidase assay (GLU GOD, Erba-Lachema,
Czech Republic) using tail vein blood drawn into 5% trichloracetic acid and promptly centri-
fuged. Serum TAG concentrations were quantified using standard enzymatic methods (TG L
250 S, Erba-Lachema, Czech Republic). Non-esterified fatty acid levels (NEFA) were deter-
mined using an acyl-CoA oxidase-based colorimetric kit (Roche Diagnostics GmbH, Ger-
many). Serum insulin concentrations were evaluated using a rat insulin enzyme-linked
immunosorbent assay kit (Mercodia, Sweden). Irisin serum concentrations were measured
using an irisin enzyme-linked immunosorbent assay kit (Irisin ELISA, BioVendor, Czech Re-
public). The insulin sensitivity index (ISI) was calculated from fasting insulin (FI) and fasting
glucose (FG) as described previously [37]. ISI = 1/(FG*FI), where FG is expressed as mg/dl and
FI as mIU/L

Adipose tissue protein content

The protein content of both white and brown adipose tissue was determined according to the
Folin-Ciocalteu method [38]. Prior to analysis, the samples were disintegrated by boiling in 1
M NaOH and then filtered.

Lipolysis in isolated epididymal adipose tissue

The measurement of basal and epinephrine-stimulated lipolysis was performed as described
previously [39]. The distal parts of the epididymal adipose tissue were incubated in Krebs-
Ringer phosphate buffer containing 3% bovine serum albumin (BSA) fraction V (Sigma, USA)
at 37°C, pH 7.4, with or without epinephrine (1.37 uM). The tissue was incubated for 2 h and
the NEFA concentrations were measured.

Oxidative stress parameters

The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were de-
termined by the commercially available kits, Superoxide Dismutase Assay Kit and Glutathione
Peroxidase Assay Kit (Cayman Chemical Company, USA). The concentration of thiobarbituric
acid reactive substances (TBARS) was quantified as described previously [40] spectrophoto-
metrically by the reaction with thiobarbituric acid. All parameters were adjusted to the tissue
protein concentration and plasma volume.

Tissue triacylglycerols measurements

Tissues were disintegrated using a tissue homogenizer and TAG extracted for 16 h in trichloro-
methane:methanol (2:1), after which 2% KH,PO, was added. After 24 h, the mixture was cen-
trifuged, and the organic phase removed and evaporated. The resulting pellet was dissolved in
100 pl of isopropyl alcohol and the TAG content determined by enzymatic assay (TG L 250 S,
Erba-Lachema, Czech Republic). From this TAG solution, 10 ul was pipetted into 1 ml of enzy-
matic assay solution and intensively mixed for 10 s [22].

Magnetic resonance spectroscopy

The intramyocelullar and extramyocellular lipid (IMCL and EMCL) content of the skeletal
muscle was determined by 'H magnetic resonance spectroscopy (MRS) as previously described
[41,42]. The analysis of muscle lipids was performed using a PRESS sequence with the
following measurement parameters: repetitive time TR = 2500 ms; echo time TE = 20 and

135 ms. During the measurement, the animals underwent anesthesia with isoflurane. The
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determination was carried out on an experimental Bruker Biospec 47/20 tomograph (Bruker,
Germany) with a magnetic induction of 4.7 T. A volume of interest of 5 x 2 x 13 mm was placed
into the gastrocnemius muscle. The measured spectra were further processed using LC Model
computer software. The detected quantities of the IMCL-CH, and EMCL-CH, groups were re-
lated to the signal of the N-methyl group of creatine/phosphocreatine, which was assessed
from the same NMR spectra. Then, the percentage content of IMCL in the total lipids

was calculated.

Content and composition of ceramides and diacylglycerols

Ceramides and diacylglycerols (DAG) were measured according to the methods as previously
described [43,44]. Briefly, lipids were extracted from ~20mg of tissue using an extraction mix-
ture consisting of isopropanol:water:ethyl acetate (35:5:60; v:v:v). The ceramides and DAG
were measured using an Agilent 6460 triple quadrupole mass spectrometer. Both sphingolipids
and DAG were analyzed using a positive ion electrospray ionization source with multiple reac-
tion monitoring. Chromatographic separation was performed using an Agilent 1290 Infinity
Ultra Performance Liquid Chromatograph. The analytical column was a reverse-phase Zorbax
SB-C8, 2.1x150 mm, 1.8 pm (Agilent, USA). The separation was conducted in a binary gradient
using 2 mM ammonium formate, 0.15% formic acid in methanol as Solvent A and 1.5 mM
ammonium formate, 0.1% formic acid in water as Solvent B at a flow rate of 0.4 ml/min.
C17:0-ceramide and 1,3-dipentadecanoyl-rac-glycerol (Avanti Polar Lipids, USA) were used as
the internal standards.

Fatty acid composition of membrane phospholipids

The extraction, separation and methylation of skeletal muscle lipids were performed as previ-
ously described [45]. Muscle total lipids were extracted by trichlormethane:methanol (2:1)
using a modified Folch method [46]. Phospholipids were isolated by thin layer chromatogra-
phy using hexane-diethylether-acetic acid (80:20:3 v/v) as the solvent system. The fatty acid in
the muscle phospholipids was converted to methyl esters using a solution of 1% Na in metha-
nol. The fatty acid methyl esters were eluted with hexane and separated by gas chromatography
(HP 5890A GC, USA) using hydrogen as the carrier gas. The proportions of fatty acids were
relative to the sum of fatty acids analyzed. The indexes of desaturase activity were assessed by
calculating the product/precursor ratios as follows: 20:4n-6/20:3n-6 for A-5 desaturase;
18:3n-6/18:2n-6 for A-6 desaturase.

Brown adipose tissue activity

BAT activity was determined according to the rate of palmitate oxidation to CO, ex vivo. After
decapitation, the interscapular BAT was divided into parts, one of which was immediately in-
cubated for 2 h in 5 ml of Krebs-Ringer bicarbonate buffer, pH 7.4. The buffer contained 1 mM
unlabeled palmitate, 18.5 kBq/ml of '“C-palmitate (Perkin Elmer, USA) and 3 mg/ml BSA frac-
tion V (Sigma, USA). The incubation was performed in a 95% O, + 5% CO, atmosphere in
sealed vials, the central area of which was separated from the medium. After 2 h incubation,
the tissue was removed and 0.2 ml of 1 M hyamine hydroxide was injected into the central
compartment of the incubation vessel, with 0.5 ml of 0.5 M H,SO, added to the incubation me-
dium in order to free the CO,. The sealed vessels were incubated for another 45 min, this time
in an air atmosphere. The hyamine hydroxide with absorbed CO, was then quantitatively
transferred into a scintillation vial containing 10 ml of toluene-based scintillation fluid for ra-
dioactivity counting [47].
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Statistical analysis

Statistical analyses were performed using Statistica’ ™ software (StatSoft) with the data express-
ed as mean + SEM. Two-way analysis of variance (ANOVA) was applied to test the effects of
VR, HSD and the interaction of these two factors. Because ANOVA was applied to all groups,
if a difference in the effect of VR was observed in only one dietary group, the result would ap-
pear to be insignificant. To avoid such an oversight, we also used the Student ¢ test to compare
CD against CD+VR and HSD against HSD+VR. The correlations were tested using Pearson's
coefficient, with statistical significance being defined as P < 0.05.

Results

Voluntary running had a positive effect on white adipose tissue and
serum parameters

To analyze the effect of voluntary running (VR) on white adipose tissue and serum, we selected
7 rats with a comparable intensity of physical activity (5 to 8 km/day) from both dietary groups.
The results are summarized in Table 2. The white adipose tissue of the CD+VR rats had signifi-
cantly better properties than that of the CD rats: reduced perirenal and epididymal adipose tis-
sue; increased protein content; increased basal and adrenaline-stimulated lipolysis in the
epididymal fat depot. The serum parameters of the CD+VR group were also dramatically better
than those of the CD group: reduced fasting glycemia; a 60% decrease in postprandial and fast-
ing TAG; a 45% reduction in postprandial NEFA; a 45% decrease in insulin concentration.

Although, as expected, these parameters were negatively affected by sucrose feeding, the
same trends were observed for the white adipose tissue of the HSD+VR rats compared with
that of the HSD ones. Indeed, the serum parameters of the HSD+VR rats were also significantly
better than those of their control group: a 40% and 50% decrease in postprandial TAG and fast-
ing TAG, respectively; a 35% reduction in postprandial NEFA; a 45% decrease in insulin con-
centration. In both dietary groups, VR did not influence either postprandial glucose blood
concentration or serum irisin content.

To analyze the effect of VR and sucrose feeding on the insulin resistance of the rats, the in-
sulin sensitivity index (ISI) was determined. Although the ISI was lower in the HSD-fed rats, it
was still approximately 50% higher in both VR groups compared with their controls.

Voluntary running had a positive effect on the markers of oxidative stress

Because both sucrose and physical activity increase the production of reactive oxygen species,
we measured the effect of VR on various markers of oxidative stress. The activity of two antiox-
idant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), was deter-
mined. And, to monitor lipid peroxidation, thiobarbituric acid reactive substances (TBARS)
were quantified. All three markers were measured in the liver, heart, soleus muscle and plasma.
Overall, the CD-fed rats were less sensitive to oxidative stress, but VR was beneficial to both
groups (Table 3).

Voluntary running reduced the content of tissue triacylglycerols (TAG)

The amount of triacylglycerols (TAG) stored in the liver, muscles, aorta and kidney were deter-
mined (Table 4). Only in the liver of the HSD rats was found a significantly higher amount of
tissue TAG. Compared with their controls, the CD+VR and HSD+VR groups exhibited consid-
erably reduced TAG in all of the studied tissues. "H MRS was used to study how VR affected
the ratio of intramyocellular lipids (IMCL) to total muscle lipid content in the skeletal
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Table 2. Effect of voluntary running on metabolic characteristics of experimental groups.

Parameter

TAG fasted (mM)

TAG non-fasting (mM)
NEFA non-fasting (mM)
Glycemia fasted (mM)
Glycemia non-fasting (mM)
Insulin non-fasting (nM)
ISI

Irisin non-fasting (nM)
PRAT weight (g/100g)
EAT weight (g/100g)
EAT Protein content (%)

EAT lipolysis basal (umol(NEFA)/g/2h)
EAT lipolysis adrenaline (umol(NEFA)/g/

2h)

CD

5.54 + 0.45
8.0 +£0.43
1.46 £ 0.156
5.27+0.19
8.54 +0.39
0.537 £ 0.045
0.423 + 0.017
0.137 + 0.001
2.29 £ 0.07
1.75 + 0.06
0.977 £ 0.044
2.29+0.28
2.7+0.14

CD + VR

2.18 + 0.36
3.61+0.28
0.8 £0.07
4.46 +0.28
8.45+0.6
0.291 £0.017
0.638 + 0.047
0.139 + 0.039
0.938 + 0.104
0.895 + 0.046
1.478 £ 0.05
4.52 +0.38
6.21 +0.44

P

0.01
0.01
0.01
0.03
NS

0.03
0.01
NS

0.01
0.01
0.01
0.01
0.01

HSD

8.57+0.6
14.33 +£ 0.96
1.56 £0.2
5.16 + 0.31
8.6 +0.48
0.757 £ 0.12
0.272 + 0,021
0.075 + 0,044
2.57 0.1
1.87 +0.09
0.946 + 0.049
1.91£0.37
3.4 +0.21

HSD + VR

4.41 +£0.46
8.98 + 0.55
1.01 £0.08
5.11 £ 0.51
7.7+0.44
0.393 + 0.059
0.421 £ 0.033
0,087 + 0.026
1.39+0.12
1.17 £ 0.08
1.2+ 0.068
2.98 +0.48
6.26 + 0.68

P

0.01
0.01
0.02
NS
NS
0.05
0.01
NS
0.01
0.01
0.02
NS
0.01

P
VR

0.01
0.01
0.01
NS

NS

0.01
0.01
NS

0.01
0.01
0.01
0.01
0.01

ANOVA results

P
HSD
0.01
0.01
NS
NS
NS
0.03
0.01
NS
0.01
0.05
NS
0.05
NS

P
VR*HSD
NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.03

NS

NS

The data are expressed as mean + SEM; n = 7, running intensity = 5-8 km/day. Abbreviations: ANOVA, two-way analysis of variance; CD, control diet;
EAT, epididymal adipose tissue; HSD, high-sucrose diet; ISI, insulin sensitivity index; NEFA, non-esterified fatty acids; PRAT, perirenal adipose tissue;
TAG, triacylglycerols; VR, voluntary running.

doi:10.1371/journal.pone.0122768.1002

Table 3. Effect of voluntary running on oxidative stress parameters.

ANOVA results

CcDh CD + VR P HSD HSD + VR P PVR PHSD PVR*HSD
Liver
SOD (U/mgpror) 0.162+0.017 0.193+0.015 NS 0.094 +0.006 0.148+0.014 0.01 0.01 0.01 NS
GSH-PX (umolnappH/Min/Qpror) 281 £ 16 292 + 22 NS 239+ 15 234 + 20 NS NS 0.02 NS
TBARS (nmol/mgprot) 1.129 + 0.097 1.231 £0.129 NS 1.788 £ 0.116 1.753 £ 0.269 NS NS 0.01 NS
Heart
SOD (U/mgprot) 0.033+0.005 0.038+0.002 NS 0.041 £0.004 0.038+0.003 NS NS NS NS
GSH-PX (umolnappr/Min/Qprer) 93 £ 4 108 £ 5 0.05 70%5 85+3 0.04 0.01 0.01 NS
TBARS (nmol/mgpror) 0.399 + 0.017 0.319 £ 0.018 0.02 0.479 £ 0.014 0.514 £ 0.017 NS NS 0.01 0.01
Soleus
SOD (U/mgprot) 0.145+0.013 0.112+0.014 NS 0.131 £ 0,03 0.135+0.013 NS NS NS NS
GSH-PX (umolnappr/Min/gpro) 53 £ 6 756 0.02 585 767 NS 0.01 NS NS
TBARS (nmol/mg) 2.081 +£0.16 1.622+0.082 0.04 2.246+0.23 1.604 + 0.191 0.05 0.01 NS NS
Plasma
SOD (U/ml) 2.676 £ 0.09 2.691+0.157 NS 1.182+0.16 2.277+0.116 0.01 0.01 0.01 0.01
GSH-PX (umolyappr/min/l) 296 + 12 280+ 14 NS 225+ 19 282+ 10 0.04 NS 0.03 0.02
TBARS (nmol/ml) 1.862 + 0.081 1.446 £ 0.114 0.02 2177 £0.132 2.0 £ 0.056 NS 0.01 0.01 NS

The data are expressed as mean + SEM; n = 6, running intensity = 5-8 km/day. U: One unit of SOD is defined as the amount of the enzyme needed to
exhibit 50% dismutation of the superoxide radical. Abbreviations: ANOVA, two-way analysis of variance; CD, control diet; GSH-PX, glutathione
peroxidase; HSD, high-sucrose diet; SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive substances; VR, voluntary running.

doi:10.1371/journal.pone.0122768.1003
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Table 4. Effect of voluntary running on triacylglycerol accumulation in tissues.

ANOVA results

Tissue CD CD + VR P HSD HSD + VR P P VR P HSD P VR*HSD
Liver TAG (umol/g) 14.63 £ 1.37 7.74 £ 0.44 0.01 19.23 £ 1.63 12.24 £ 0.57 0.01 0.01 0.01 NS

m. gastrocnemius TAG (umol/g) 5.82+0.8 1.67 £0.23 0.01 5.54 + 0.61 2.73+0.19 0.01 0.01 NS NS

m. gastrocnemius IMCL (%) 43 +6 28 + 11 NS 48 +9 48 + 14 NS NS NS NS

Heart TAG (umol/g) 22+025 1.53+0.23 0.05 275+0.3 1.9+0.17 0.05 0.05 NS NS
Diaphragm TAG (umol/g) 351+27 24.3+0.5 0.03 394+42 279+28 0.05 0.01 NS NS

Aorta TAG (umol/g) 58.5+4.7 35.5+8.1 0.05 89.7+75 33.4+46 0.01 0.01 NS 0.04
Kidney TAG (umol/g) 6.17 + 0.54 414 £0.43 0.02 754 +1.1 3.66 + 0.51 0.01 0.01 NS NS

The data are expressed as mean + SEM; n = 7, running intensity = 5-8 km/day. Abbreviations: ANOVA, Two-way analysis of variance; CD, control diet;
HSD, high-sucrose diet; IMCL, intramyocellular lipids; TAG, triacylglycerols; VR, voluntary running.

doi:10.1371/journal.pone.0122768.t004

gastrocnemius muscle (Table 4). The IMCL proportion was reduced by 35% in the CD+VR
group compared its CD control. In contrast, this effect was not found in the HSD-fed rats.

Voluntary running reduced the content and altered the composition of
tissue diacylglycerols, but had no effect on ceramide content or
composition

The results reported above indicate that VR significantly lowered TAG storage in the liver,
skeletal muscles, heart, kidney and aorta. Because tissue TAGs are precursors of lipotoxic inter-
mediates, primarily ceramides and diacylglycerols (DAG), we analyzed the effect of VR on the
concentrations of these intermediates in the liver, heart and soleus muscle. High-sucrose feed-
ing increased the total DAG content in the tissues (Table 5). Interestingly, while VR was benefi-
cial to the liver and heart of both groups, it was only beneficial to the soleus muscle of the
HSD+VR rats (Table 5).

Based on the tissue content of individual DAG subspecies, we calculated the proportion of
saturated fatty acids (16:0 + 18:0), monounsaturated fatty acids (18:1) and polyunsaturated
fatty acids (18:2) in tissue DAG (Fig 1). VR led to a strong increase in polyunsaturated fatty
acids in both dietary groups. This increase was accompanied by a small decrease in the propor-
tion of saturated and monounsaturated fatty acids.

The effect of VR on the ceramide content in the tissues was less pronounced compared with
its effect on tissue DAG. Although HSD led to an increased amount of several ceramides in the
liver, heart and soleus muscle, VR had almost no effect on the tissue ceramide content of either
group (Table 6).

Voluntary running positively modulated the composition of fatty acids in
muscle membrane phospholipids

We studied the effect of VR on the fatty acid composition of membrane phospholipids in the
soleus muscle. Several important results were obtained. Palmitooleic acid (16:1n7) increased
after HSD feeding, but decreased after VR (Table 7). Also after VR, the A-5 desaturase activity
index increased in both dietary groups. Furthermore, VR had a positive effect on the propor-
tions of n-6 fatty acids.
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Table 5. Effect of voluntary running on diacylglycerol content in tissues.

DAG (pmol/mg tissue)

Liver
18:2/18:2
16/18:2
18:1/18:2
16/16
16/18:1
18:1/18:1
18/18:1
Total
Heart
18:2/18:2
16/18:2
18:1/18:2
16/16
16/18:1
18:1/18:1
18/18:1
Total
Soleus
18:2/18:2
16/18:2
18:1/18:2
16/16
16/18:1
18:1/18:1
18/18:1
Total

CD

115.6 £ 19
126.5 £ 37
40.7+22
99.2+6.7
873.1 + 61
114.1£15.8
454 +6.8
1414.7 £ 84.5

66 +4.7
49.4+10.4
41.3+0.8
105.4 £ 13.7
339.9+24.5
449+24
46.4+9
693.3 + 37.3

89.6 £15.2
43.9+8.5
28.1+5.3
80.85+8.7
208.95 +21.2
67.8+11.3
17.85+2.3
537.1 +57.1

ANOVA results

CD + VR P HSD HSD + VR P P VR P HSD P VR*HSD
189.9 + 31.1 NS 95.8+6.7 92 +3.2 NS NS 0.05 NS
102.1 £ 11.6 NS 73.1%5.6 81.4+421 NS NS NS NS
3747 NS 427 +1.7 36.0+1 0.05 NS NS NS
524 +5.8 0.01 1446 £ 10.4 55.3+2.3 0.02 0.01 0.02 0.03
572.4 +51.8 0.02 1747.5 + 35.3 783.1+71.4 0.02 0.01 0.01 0.01
46.9+9.5 0.03 195.4 £ 32.5 141.4+22.9 NS 0.02 0.01 NS
23.0+1.9 0.05 772+9.9 32+5.7 0.04 0.01 0.03 NS
1024.1 +82.5 0.03 2376.2+70.8 1221.3 £ 136 0.04 0.01 0.01 0.01
66.6 + 4.6 NS 38 +5.3c 57.6+7.8 NS NS 0.02 NS
31.2+1.3 NS 29.2+6.5 43.8 +10.1 NS NS NS NS
34.7+21 0.05 305+1.4 384+49 NS NS NS 0.05
77.4+11.8 NS 131.3+11.4 69.1+54 0.02 0.01 NS NS
210.6 £ 10 0.03 440 + 22.6 329.5+18.3 0.02 0.01 0.01 NS
248 +3.5 0.01 89.2+10.2 78.05+12.3 NS NS 0.01 NS
37.3%+45 NS 786+7.8 426 2.1 0.04 0.01 0.01 0.05
482.6 +23.2 0.02 836.8 + 33.7 659.1 +43.8 0.03 0.01 0.01 NS
114.8+8.9 NS 58.5+4.0 78.6 £ 14.1 NS NS 0.05 NS
42.7+6.6 NS 40.3 £ 14.7 40.8 + 14.7 NS NS NS NS
30.7+2.6 NS 306+7.5 28.8+7.0 NS NS NS NS
62.95+ 1.8 0.02 103.5+ 4.0 85.8 + 14.8 NS 0.02 0.01 NS
178.1 £5.0 NS 321.4+253 259.2+13.9 0.05 0.04 0.01 NS
58.5+3.4 NS 1322+ 4.8 87.4+87 0.05 0.02 0.01 NS
176 £1.7 NS 29.97£0.5 21.3+25 0.05 NS 0.01 NS
505.3 + 26.3 NS 716.55 £ 8.2 601.8 + 55.6 0.05 NS 0.04 NS

The data are expressed as mean + SEM; n = 4, running intensity = 5-8 km/day. Abbreviations: ANOVA, Two-way analysis of variance; CD, control diet;
DAG, diacylglycerol; HSD, high-sucrose diet; VR, voluntary running.

doi:10.1371/journal.pone.0122768.1005

Voluntary running affected the parameters of brown adipose tissue

(BAT)

We studied the effect of VR on interscapular BAT metabolism (Table 8). No significant differ-
ences were found between the interscapular BAT weights of the four groups. Ex vivo, compared
with its control, CD+VR exhibited a significantly increased rate of exogenous albumin-bound
palmitate oxidation to CO; this effect was not significant in the HSD-fed rats. VR also led to
increased protein content in the BAT of the CD+VR group compared with CD.

Correlation analysis

To explore the effect of VR on lipid metabolism, we analyzed the dependence of lipid metabo-
lism parameters on the intensity of physical activity. For the CD+VR group, negative correla-

tions were found between the intensity of physical activity and (i) the serum concentrations of
TAG and NEFA (ii) the TAG content in the muscle and liver, and (iii) the combined weight of
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Fig 1. Effect of voluntary running on the proportion of fatty acids in tissue DAG. Individual species of
DAG were analyzed in the liver, heart and soleus muscle of rats from all groups; in the case of the VR groups
the rats were selected on the basis of the intensity of their activity (5-8 km/day). From these results, the
percentage proportions of saturated fatty acids (SFA expressed as 18:0 + 16:0), monounsaturated fatty acids
(MUFA, 18:1) and polyunsaturated fatty acids (PUFA, 18:2) in tissue DAG were calculated. The data are
expressed as mean + SEM, * significant effect of voluntary running within the dietary groups (CD+VR against
CD; HSD+VR against HSD); Two-way ANOVA results: f significant effect of VR, 1 significant effect of HSD, #
significant interaction between VR and HSD; P < 0.05. Abbreviations: DAG, diacylglycerol; HHTg, hereditary
hypertriacylglycerolemic rats; HSD, high-sucrose diet; VR, voluntary running.

doi:10.1371/journal.pone.0122768.g001

the epididymal and perirenal fat depots (Fig 2). Furthermore, we found a positive correlation
between the intensity of physical activity and protein content in epididymal adipose tissue.
Apart from the serum NEFA concentration, all of these correlations were also observed for the
HSD+VR group.
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Table 6. Effect of voluntary running on ceramide content in tissues.

Ceramide (pmol/mg tissue)

Liver
C14-Cer
C16-Cer
C18:1-Cer
C18-Cer
C20-Cer
C22-Cer
C24:1-Cer
C24-Cer
Total
Heart
C14-Cer
C16-Cer
C18:1-Cer
C18-Cer
C20-Cer
C22-Cer
C24:1-Cer
C24-Cer
Total
Soleus
C14-Cer
C16-Cer
C18:1-Cer
C18-Cer
C20-Cer
C22-Cer
C24:1-Cer
C24-Cer
Total

cb

0.301 + 0.058
6.802 + 0.904
0.022 + 0.003
0.449 + 0.088
0.083 + 0.008
0.868 + 0.07

3.013 £ 0.327
6.284 + 0.235
17.82+1.29

0.189 £ 0.03
4.81 +£1.02
0.018 £ 0.002
2.110+0.134
1.334 £ 0.045
1.609 £ 0.147
1.119 £ 0.079
8.92+0.6
20.1+0.78

0.193 £ 0.012
4.672 £ 0.147
0.041 £ 0.002
3.387 + 0.523
0.535 + 0.07
0.344 + 0.021
0.610 + 0.032
2.61+0.19
12.39 £ 0.83

CD+ VR

0.221 £ 0.35
7.233 +1.818
0.018 + 0.003
0.351 + 0.082
0.053 £ 0.01
0.813 £ 0.265
2.571 £ 0.376
10.7 £ 3.8
21.928 + 3.76

0.109 £ 0.006
5.1+0.126
0.018 £ 0.002
1.962 + 0.263
1.421 £ 0.050
1.878 + 0.052
1.08 + 0.064
10.06 + 1.011
21.64 £1.04

0.137 £ 0.01
5.847 + 0.691
0.041 £ 0.002
4.119 + 0.598
0.684 + 0.009
0.425 + 0.031
0.707 + 0.051
2.71+£0.22
14.63 + 0.82

P

NS
NS
NS
NS
0.05
NS
NS
NS
NS

0.05
NS
NS
NS
NS
NS
NS
NS
NS

0.02
NS
NS
NS
NS
NS
NS
NS
NS

HSD

0.231 + 0.049
4.031 + 0.420
0.034 + 0.002
0.457 £ 0.07
0.125 £ 0.02
1.099 + 0.065
3.184 £ 0.103
11.29+1.19
20.46 £ 1.7

0.245 £ 0.023
5.63+0.77
0.033 £ 0.001
1.937 £ 0.376
1.738 + 0.296
1.995 + 0.284
1.995 £ 0.218
10.9+1.2
24.49 +1.68

0.230 + 0.01
6.539 £ 0.185
0.049 £ 0.006
3.394 + 0.968
0.654 + 0.093
0.389 + 0.034
0.765 + 0.077
3.34 £ 0.46
15.36 £ 1.3

HSD + VR

0.242 + 0.05
5.222 + 0.811
0.024 + 0.004
0.4 +0.025
0.067 + 0.01
0.786 + 0.227
3.242 + 0.632
7.72+2.13
17.7+3

0.187 £ 0.028
5.924 + 0.926
0.029 + 0.004
2.058 + 0.388
1.648 £ 0.147
1.665 + 0.136
1.636 £ 0.148
8.67+0.718
21.82+1.6

0.258 +0.17
6.530 + 1.131
0.051 £ 0.003
4.649 + 1.693
0.827 + 0.098
0.439 + 0.044
0.910 + 0.065
4.13 £ 0.024
1779 £2.74

P

NS
NS
0.05
NS
0.05
NS
NS
NS
NS

NS
NS
NS
NS
NS
NS
NS
NS
NS

NS
NS
NS
NS
NS
NS
NS
NS
NS

P VR

NS
NS
0.05
NS
0.01
NS
NS
NS
NS

0.02
NS
NS
NS
NS
NS
NS
NS
NS

NS
NS
NS
NS
0.05
NS
NS
NS
NS

ANOVA results
PHSD P VR*HSD
NS NS
NS NS
0.01 NS
NS NS
0.05 NS
NS NS
NS NS
NS NS
NS NS
0.02 NS
NS NS
0.01 NS
NS NS
NS NS
NS NS
0.01 NS
NS NS
NS NS
0.01 0.01
0.04 NS
0.02 NS
NS NS
NS NS
NS NS
0.01 NS
0.01 NS
NS NS

The data are expressed as mean + SEM; n = 4, running intensity = 5-8 km/day. Abbreviations: ANOVA, Two-way analysis of variance; CD, control diet;
HSD, high-sucrose diet; VR, voluntary running.

doi:10.1371/journal.pone.0122768.t006

Discussion

To study the effect of spontaneous physical activity [voluntary running (VR)] on metabolic
syndrome-associated disorders, we used non-obese hereditary hypertriaclyglycerolemic

(HHTYg) rats as a unique model of dyslipidemia and metabolic syndrome. Various researchers

have shown that forced and voluntary exercise produce very different effects on tested animals

[48,49]. Animals forced to exercise experience physical and mental stress, so the physical activi-

ty in our experiments occurred under non-stressful conditions (VR on a rat wheel). Although
ours was a non-obese model, because sucrose is associated with obesity, we also investigated
whether the negative effects of sucrose consumption can be reduced by VR.
Our results suggest that VR, even in the absence of obesity, has a positive effect on lipid me-
tabolism and reduces the negative effects of sucrose consumption. While separately VR and a
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Table 7. Effect of voluntary running on fatty acid composition of soleus muscle membrane phospholipids.

Fatty acid (mol %)
14:00

16:00

18:00

> SFA

16: 1n7

18: 1n7

18: 1n9

> MUFA

18: 2n-6

18: 3n-6

20: 2n-6

20: 3n-6

20: 4n-6

> n-6 PUFA

18: 3n-3

20: 5n-3

22:5n-3

22:6n-3

> n-3 PUFA

A-5 desaturase index
A-6 desaturase index

CcD

0.155 + 0.050
15.03 + 1.66
18.17 £1.59
33.37+25
1.255 £ 0.219
3.628 £ 0.705
4.517 £ 0.506
9.42+1.54
20.53+1.15
0.151 £ 0. 009
0.211 £ 0.020
0.984 £ 0.176
20.48 + 2.66
43.08 £ 1.89
0.136 + 0.095
0.254 + 0.068
5.255 + 0.763
8.488 + 1.294
14.13 £2.06
21.16 £ 1.050
0.0074 £ 0.001

CD +VR

0.143 £ 0.055
14.61 £1.17
20.02 + 0.7
34.8 +0.73
0.666 + 0.096
3.998 £ 0.198
5.079 £ 0.155
9.84 + 0.41
22.72 £ 0.47
0.172 £ 0.004
0.262 £ 0.013
0.678 + 0.023
18.02 £ 0.73
42.4 +0.98
0.334 +0.113
0.193+0.018
4.281 + 0.205
7.624 + 0.393
12.6 £ 0.52
26.79 £ 1.35
0.0076 + 0.001

NS
NS
NS
NS
0.05
NS
NS
NS
0.05
0.05
NS
0.02
NS
NS
NS
NS
NS
NS
NS
0.05
NS

HSD

0.132 £ 0.050
15.58 + 3.65
19.17 £ 0.76
34.92 + 2,97
1.876 + 0.587
4.094 + 0,422
6.53 + 0.741
12,54 +1.2
22.78 £ 0.6
0.140 + 0.005
0.260 + 0.041
0.879 £ 0.103
16.9+1.77
41.48 £2.45
0.199 + 0.154
0.242 + 0.035
4.021 + 0.659
6.593 + 0.995
11.06 + 1.63
19.3 £0.45
0.0062 + 0.0001

HSD + VR

0.074 £ 0.013
12.66 + 0.88
19.9+0.3
32.66 + 0.9
1.135 £ 0.09
4.331 £ 0,260
6.188 £ 0.273
11.69 + 0,27
21.29 £ 0.741
0.125 + 0.004
0.276 + 0,024
0.832 £ 0.080
18.78 £ 0.67
42.02 £ 0.5
0.269 + 0.105
0.179+0.018
4.613+0.312
8.576 + 0.479
13.64 £ 0.85
23.4+1.83
0.0059 * 0.0002

P

NS
NS
NS
NS
0.05
NS
NS
NS
NS
0.05
NS
NS
NS
NS
NS
NS
NS
NS
NS
0.05
NS

P VR

NS
NS
NS
NS
0.02
NS
NS
NS
NS
NS
NS
0.02
NS
NS
NS
0.04
NS
NS
NS
0.02
NS

ANOVA results

P HSD

NS
NS
NS
NS
0.05
NS
0.01
0.02
NS
0.01
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
0.01

P VR*HSD

NS
NS
NS
NS
NS
NS
NS
NS
0.01
0.01
NS
0.05
0.05
NS
NS
NS
0.03
0.03
NS
NS
NS

The data are expressed as mean + SEM; n = 5, running intensity: 5-8 km/day. Abbreviations: ANOVA, Two-way analysis of variance; CD, control diet;
HSD, high-sucrose diet; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; VR, voluntary running.

doi:10.1371/journal.pone.0122768.t007

high-sucrose diet had only a slight effect on total body weight, they had a significant effect on
body composition and metabolism. Depending on the intensity of physical exercise, VR re-
duced the weight of perirenal and epididymal fat depots whilst also increasing lipolysis and
protein content. Apart from these positive changes in adipose tissue, positive changes in the
lipid metabolism of the VR rats resulted in lower concentrations of serum TAG and NEFA;
these reductions were also correlated with VR intensity. Furthermore, the positive effect of VR

on insulin sensitivity was confirmed by a higher ISI and by a reduced non-fasting insulin con-
centration. Collectively, these positive changes were associated with the following beneficial ef-
fects: lower sensitivity to oxidative stress; reduced lipid deposition in the liver, muscles, aorta

Table 8. Effect of voluntary running on the parameters of interscapular brown adipose tissue.

Parameter

weight (mg/100g)

PA oxidation into CO, (nmol/g/2h)

Protein content (%)

CD CD+VR
0.54+0.084 0.62 +0.081
58.2+9 83.4 +11.1
5.52 + 0.27 7.12 £ 0.46

P HSD HSD + VR
NS 0.51 +0.047 0.58 + 0.044
0.05 722+125 85.3+16.9
0.01 5.17 £ 0.37 5.73+0.4

P
NS
NS
NS

P VR
NS

0.04
0.02

ANOVA results

P HSD
NS
NS
NS

P VR*HSD
NS
NS
NS

The data are expressed as mean + SEM; n = 7, running intensity = 5-8 km/day. Abbreviations: ANOVA, Two-way analysis of variance; CD, control diet;
HSD, high-sucrose diet; PA, palmitic acid; VR, voluntary running.

doi:10.1371/journal.pone.0122768.1008
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Fig 2. Correlation between intensity of physical activity and selected parameters of metabolic syndrome. The experimental rats had the possibility of
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TAG, triacylglycerols.
doi:10.1371/journal.pone.0122768.9002

and kidney; reduced content and changed composition of diacylglycerols (DAG) in the mea-
sured tissues; modified fatty acid composition in muscle membrane phospholipids; enhanced

brown adipose tissue parameters.

It is believed that both fructose overfeeding and exercise lead to the increased production of
reactive oxygen species (ROS) [50,51]. In agreement with this theory, we found increased levels
of TBARS, a marker of lipoperoxidation, in both the plasma and tissue of the HSD rats. How-
ever, contrary to the theory, we also found that the TBARS levels actually decreased after VR.
This may have been due to the adaptation of the organism to exercise-induced ROS produc-
tion, which is associated with increased antioxidant capacity [52]. This idea is supported by the
fact that we found increased antioxidant enzyme activity in the plasma and tissues of the VR
rats. These results are in agreement with research which shows that exercise reduces oxidative

stress [53].

One of the most serious complications associated with metabolic syndrome is increased
lipid deposition in non-adipose tissues. Increased lipid deposition is associated with a variety
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13/19



@' PLOS ‘ ONE

Effect of Voluntary Running on Metabolic Syndrome

of complications: in the liver, it leads to insulin resistance [15]; in the kidney, it can cause ne-
phropathy [54]; in the heart and vessels, it may result in decreased ventricular distensibility
and an increased risk of atherosclerosis [55,56]. Our results indicate that TAG content in the
liver, kidney, heart and vessels can be significantly reduced by VR, even in the case of a high-
sucrose diet. This could be due to the fact that the elevated energy expended during running
leads to a higher utilization of tissue lipids and, consequently, to lower TAG content in both tis-
sue and serum.

Increased amounts of lipids in muscles have been linked to muscle insulin resistance [13].
Our data demonstrate that VR substantially reduces the amount of TAG in gastrocnemius
muscle and the diaphragm, and that such a reduction is quantitatively correlated with running
intensity. Paradoxically, however, it has been shown that lipid content in the muscles of endur-
ance-trained athletes increases even though their muscles are highly insulin sensitive [57,58].
This discrepancy is probably explained by the fact that the physical activity of endurance ath-
letes is far more intense than that of VR rats. Nevertheless, the intensity displayed by our VR
rats seems to be quite sufficient to have a significant effect in the treatment of dyslipidemia.

One of the mechanisms by which increased lipid content in the liver and muscles mediates
insulin resistance is through the increased production of lipotoxic intermediates, primarily
DAG and ceramides [16,17]. Hence, we determined the content of these intermediates in the
liver, heart and soleus muscle.

DAGs are signal molecules capable of increasing the activity of some species of protein ki-
nase C (PKC). Once activated, PKC phosphorylates the insulin receptor substrate (IRS), there-
by inhibiting insulin signal transduction [59]. In our experiment, VR reduced the total content
of DAG in the liver and heart of both dietary groups, as well as in the soleus of the HSD group.
An important factor that could modulate the effect of DAG on insulin sensitivity is the compo-
sition of fatty acids, especially their saturation [60,61]. We found that VR significantly in-
creases the proportion of polyunsaturated fatty acids in DAG, not only in skeletal muscle, as
described by Bergman et al. [60], but also in the heart and liver, which has not previously been
reported. However, it is not clear whether this effect is positive or negative because DAG sub-
species consisting of polyunsaturated fatty acids have been described as more effective activa-
tors of PKCs in vitro [61]. Conversely, increased muscle DAG saturation is associated with
insulin resistance and type 2 diabetes in human studies [62]. Furthermore, it can be assumed
that intracellular localization and the position of individual DAG fatty acids may also be im-
portant factors in determining insulin signal transduction.

Ceramides are signal molecules that inhibit insulin signal transduction in muscles via the in-
hibition of protein kinase B (PKB). They are also associated with inflammation, oxidative
stress, mitochondrial dysfunction and other metabolic disturbances [63,64]. We found that a
high-sucrose diet led to a slight increase in ceramide species content in the heart, liver and sole-
us. However, VR had almost no effect on ceramide content in the studied tissues, which does
not accord with reports of the reductive effect of physical activity on muscle ceramide content.
For example, Amati et al. reported that endurance-trained athletes had a lower muscle cer-
amide content than obese humans [65]. Such discrepancies may be due to our use of non-
obese subjects or even to the relatively short timeframe of our experiment (4 weeks compared
with 16 weeks [66]). On the other hand, our results are in agreement with the theory ex-
pounded by Galbo and Shulman, who have shown that it is DAG content (and not ceramide
content) that is associated with metabolic syndrome and hepatic insulin resistance [67].

From the above, it seems that the total amount of lipids and lipotoxic intermediates in tissue
may be a key factor in the development of insulin resistance and metabolic syndrome. Howev-
er, our results, together with evidence from the literature [19], suggest that the fatty acid com-
position of individual lipid classes could be an equally important factor, especially in the case
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of membrane phospholipids. The fatty acid profile of membrane phospholipids, particularly
their saturation, influences the physical properties of membrane function, such as fluidity, per-
meability, signal transduction and the anchoring of membrane-related proteins [20,68]. Previ-
ously, the effect of physical activity on the fatty acid profiles of muscle membranes has only
been reported for healthy humans or animals [69,70]. We show the potentially positive effects
of VR on muscle membrane phospholipids in a dyslipidemia and metabolic syndrome model.
In rats in both dietary groups, VR substantially reduced the amount of palmitooleic acid and
altered the content of certain n-6 polyunsaturated fatty acids in soleus muscle membrane phos-
pholipids. In the same rats, the A-5 desaturase activity index increased. Both a high content of
palmitooleic acid and low A-5 desaturase activity index have been reported as BMI-
independent predictors of insulin resistance and metabolic syndrome [71,72].

The mechanisms described above suggest that physical activity positively affects lipid me-
tabolism, but it also appears to have beneficial effects for brown adipose tissue (BAT) metabo-
lism [23,24]. BAT is able to degrade large amounts of lipids and produce heat; increased BAT
activity is associated with the prevention of metabolic syndrome, dyslipidemia and obesity
[25,27]. However, there is disagreement about the causal relationship between physical exercise
and BAT metabolic activity. According to one theory, the heat produced in muscles during
physical exercise leads to reduced BAT activity [73,74]. A contrary theory suggests that physi-
cal exercise increases BAT metabolic activity via the sympathetic nervous system [23,24]. Both
of these hypotheses have only been verified indirectly by observing structural changes to
BAT and the different mRNA expression of selected genes after physical activity. We directly
determined the effect of VR on BAT activity by the ex vivo oxidation of exogenous albumin-
bound fatty acids. We found that VR increased BAT activity in the CD+VR group, but not in
the HSD+VR group. Our results for CD+VR support the hypothesis that after physical
exercise BAT metabolic activity increases through the sympathetic nervous system.

However, the results for HSD+VR indicate that high-sucrose feeding could interfere with this
positive mechanism.

Conclusion

Our results suggest that physical activity, even in the absence of obesity, can counteract the
negative effects of sucrose consumption and the factors involved in the pathogenesis of meta-
bolic syndrome-related disorders. In our study, voluntary running was associated with various
beneficial changes, including lower concentrations of serum triacylglycerols and non-esterified
fatty acids, reduced oxidative stress, and, in particular, decreased insulin resistance. All of these
changes were to some extent connected to positive changes in lipid metabolism. Reduced lipid
deposition in the liver, muscles, kidney and aorta was accompanied by the lower content and
altered composition of diacylglycerols in the liver, heart and soleus muscle, as well as by fatty
acid remodeling in muscle membrane phospholipids. We have suggested that the mechanism
through which physical activity positively modulates lipid metabolism involves increased fatty
acid oxidation in brown adipose tissue. These data provide important new findings about the
positive effects of voluntary exercise and demonstrate its applicability to the treatment of dysli-
pidemia and metabolic syndrome.
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