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Abstract

Two prototypes of the large CarD_CdnL_TRCF family of bacterial RNA polymerase
(RNAP)-binding proteins, Myxococcus xanthus CarD and CdnL, have distinct functions
whose molecular basis remain elusive. CarD, a global regulator linked to the action of sever-
al extracytoplasmic function (ECF) o-factors, binds to the RNAP 8 subunit (RNAP-f) and to
protein CarG via an N-terminal domain, CarDNt, and to DNA via an intrinsically unfolded C-
terminal domain resembling eukaryotic high-mobility-group A (HMGA) proteins. CdnL, a
CarDNit-like protein that is essential for cell viability, is implicated in o”-dependent rRNA
promoter activation and interacts with RNAP-{ but not with CarG. While the HMIGA-like do-
main of CarD by itself is inactive, we find that CarDNt has low but observable ability to acti-
vate ECF o-dependent promoters in vivo, indicating that the C-terminal DNA-binding
domain is required to maximize activity. Our structure-function dissection of CarDNt reveals
an N-terminal, five-stranded 3 -sheet Tudor-like domain, CarD4_;,, whose structure and
contacts with RNAP-B mimic those of CdnL. Intriguingly, and in marked contrast to CdnL,
CarD mutations that disrupt its interaction with RNAP-f3 did not annul activity. Our data sug-
gest that the CarDNt C-terminal segment, CarDg¢_179, may be structurally distinct from its
CdnL counterpart, and that it houses at least two distinct and crucial function determinants:
(a) CarG-binding, which is specific to CarD; and (b) a basic residue stretch, which is also
conserved and functionally required in CdnL. This study highlights the evolution of shared
and divergent interactions in similar protein modules that enable the distinct activities of two
related members of a functionally important and widespread bacterial protein family.
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Introduction

In the Gram-negative soil bacterium Myxococcus xanthus, a 316-residue global regulatory pro-
tein, CarD, is involved in the control of light-induced carotenogenesis, starvation-induced de-
velopment of multicellular fruiting bodies, and other processes [1,2]. In the response to light,
CarD is required for the activation of Pqrs, a promoter that depends on the alternative extracy-
toplasmic function o (ECF-o) factor CarQ [3]. At least another ten of the ~45 ECF-o factors in
M. xanthus also depend on CarD [4], which has a striking domain architecture. Its ~140-resi-
due intrinsically unfolded C-terminal DNA-binding domain resembles eukaryotic high-mobil-
ity group A (HMGA) proteins and is composed of an acidic segment followed by a region
containing the hallmark basic RGRP or AT-hook repeats [5-7]. The CarD N-terminal domain,
CarDNt (~180 residues), has defined tertiary structure and interacts with CarG (a 170-residue
zinc-associated protein required in all CarD-dependent processes) and with the RNA polymer-
ase (RNAP) B subunit, but not with DNA [4,5,8-10].

CarD, CarG, and their orthologs have been found only in M. xanthus and related myxobac-
teria thus far [2,5,8]. However, CarDNt is a defining member of the large CarD_CdnL_TRCF
family of bacterial RNAP-interacting proteins (PF02559 in the protein family database, http://
pfam.sanger.ac.uk), which includes two other classes of proteins widely distributed in bacteria
[7,9,11,12]). One class comprises the transcription-repair coupling factors (TRCEF), large and
conserved multidomain proteins involved in the repair of DNA lesions encountered by the
transcribing complex [13-16], whose RNAP-interacting domain (TRCF-RID) shares sequence
similarity with CarDNt [7]. The second class includes standalone proteins with sizes between
160 and 200 residues, similar in sequence to CarDNt but lacking the characteristic HMGA-like
domain of CarD [9]. We named these CdnL (for CarD N-terminal like) to distinguish them
from CarD, and because both proteins coexist in M. xanthus [11]. We have shown that CarDNt
and CdnL cannot be functionally interchanged in vivo, and while CarD can be deleted in M.
xanthus without impairing viability, CdnL is essential for cell growth and survival [11]. CdnL
is also an essential factor in the few other bacterial species where it has been studied, such as
the pathogens Mycobacterium tuberculosis and Borrelia burgdorferi, both of which lack CarD
[12,17]. CdnL interacts with RNAP and has been linked to rRNA promoters, where it stabilizes
the formation of transcriptionally competent open complexes (RP,) by RNAP containing the
major housekeeping o, ot [10,12,18,19]. Thus, whereas CarD is linked to the action of various
ECF-o factors at their target promoters, CdnL has been implicated in 6*-dependent rRNA pro-
moter activation. The molecular basis for these distinct modes of action remains to be elucidat-
ed, and insights into this can come from structure-function analysis of CarD and CdnL. High-
resolution structural data and structure-based functional analyses have been reported for CdnL
[10] and its homologs in mycobacteria and Thermus thermophilus ([18,20-22]. The present
study reports our findings with CarDNt, the N-terminal domain of CarD, and counterpart of
full-length CdnL.

We find that CarDNt exhibits low but observable activity in vivo, while the C-terminal
HMGA -like DNA-binding domain of CarD is inactive on its own. RNAP-f recognition by
CarDNt is mediated by its N-terminal 72-residue module, CarD; _,, whose solution structure
determined by NMR and contacts inferred by structure-directed mutagenesis closely match
those observed for CdnL. However, whereas disrupting the interaction of CdnL with RNAP-§
caused a severe loss of function and impaired cell growth and survival, equivalent mutations in
CarD or CarDNt did not drastically diminish its activity. We also found that the CarDNt
stretch spanning residues 61 to 179 (CarDyg; _179), which is not involved in the interaction with
RNAP-B, mediates at least two functionally critical activities: interaction with CarG, and an un-
defined activity provided by a stretch of basic residues that does not participate in the
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interaction with CarG. The equivalent domain of CdnL, which is also indispensable for its dis-
tinct role, conserves the functionally crucial basic residue segment but not the interaction with
CarG. Our data reveal structural modules with shared and divergent roles in CarD and CdnL
that have evolved to enable their distinct functions in M. xanthus, and will be useful for under-
standing the structure-function relationships underlying the enigmatic modes of action of this
widely distributed class of bacterial RNAP-interacting proteins.

Materials and Methods
Strains, plasmids, and growth conditions

Table A in S1 File lists strains and plasmids used in this study. M. xanthus vegetative growth
was carried out at 33°C in CT'T (casitone Tris) medium supplemented as required with antibi-
otic (40 pg/ml kanamycin, Km). For light-induced carotenogenesis, liquid cultures of the M.
xanthus strain were grown to exponential phase (optical density at 550 nm, ODs5q, of ~0.8) in
CTT from which 5 pl drops were spotted on two CTT plates. After a ~12 h incubation in the
dark at 33°C, one plate continued to be in the dark while the other was exposed to light (three
18-W fluorescent lamps at ~10 W/m? intensity). For specific B-galactosidase activity (B-Gal ac-
tivity) measurements (see below), liquid cultures grown in CTT to ODss, of ~0.4 in the dark
were divided into two and one was grown in the dark and the other in the light. E. coli strains
used were DH50: [23] for plasmid constructs, BL21(DE3) [24] for protein overexpression, and
BTHI101 (cya™) [25] for two-hybrid analysis. These were grown in Luria-Bertani (LB) broth at
37°C. Proteins were overexpressed at 18°C overnight with 0.5 mM IPTG (isopropyl B-D-
1-thiogalactopyranoside) in LB or, for [*C, '°N]-labeled proteins, in MOPS minimal medium
containing 2.5 g/l *Cs-glucose and 1 g/l ""NH,Cl as the sole carbon and nitrogen sources
[20,26,27].

Standard protocols and kits were used for plasmid constructs, all of which were verified by
DNA sequencing. Site-directed carD mutants were obtained by overlapping PCR or as synthet-
ic genes (GenScript). Plasmid pMR2603, with a Km" marker for positive selection and galK for
galactose sensitivity (Gal®) negative selection and used in complementation analysis, has been
described previously [9]. It has an EcoRI site into which carD or its given variant can be intro-
duced flanked at the 5" and 3" ends, respectively, by ~1 kb of the DNA upstream and ~2 kb
downstream of carD in the genome for plasmid integration into the chromosome by homolo-
gous recombination. The construct with a carD allele was electroporated into the AcarD strain
MR1900, resulting in Km® Gal® merodiploids. Recovery of the Car* color phenotype for light-
induced carotenogenesis (yellow in the dark; red in the light) indicated complementation. To
generate haploid strains bearing the desired allele, the Km® Gal® merodiploids were grown
without antibiotic for several generations and plated on CTT containing 10 mg/ml galactose to
select for plasmid excision via intramolecular recombination events. Km® Gal® haploids that
retained the desired carD allele were identified by PCR and checked by DNA sequencing, with
stable protein expression verified in immunoblots of whole cell extracts, as detailed below.
These were then electroporated with pDAH217 (Km®) bearing a reporter lacZ transcriptional
probe fused to the carD-dependent light-inducible Pors promoter [28], whose activity in the
dark or under light was assessed quantitatively by B-Gal activity measurements, as described
below. Since DAvS function is linked to DdvA inactivation, CarD-dependent P ;;,5 promoter
activity was assessed in a AddvA strain with intact carD, or with the AcarD, carDNt or AcarDNt
alleles (Table A in S1 File). The first two strains were obtained previously [4]. The remaining
two were generated by inserting the carDNt or AcarDNt allele into the EcoRI site of pMR2603,
and then electroporating each plasmid into the AddvA AcarD strain (Table A in S1 File; [4]),
followed by isolation of haploid strains with the carDNt or AcarDNt allele using procedures
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described above. The P ;4,s-lacZ reporter probe [4] was then electroporated into each of these
strains for B-Gal activity measurements.

Protein purification and analysis

CarDNt and CarD,_;, were overexpressed as intein fusions and purified using chitin resin with
the intein tag removed by on-column intramolecular cleavage in the presence of 50 mM dithio-
threitol using the IMPACT kit and protocols (New England Biolabs). The cleaved protein was
passed again through a small amount of chitin resin to eliminate residual intein and dialyzed
extensively against 100 mM NaCl, 50 mM phosphate buffer, pH 7.0, and 0.05% NaN3, and con-
centrated using Amicon Ultra (molecular weight cut-off 3,000 Da) [5,20]. Protein identities
were verified using N-terminal sequencing and mass spectrometry (which confirmed the pres-
ence of the additional non-native N-terminal AGH that remains after intein tag removal), and
concentrations were estimated using the BioRad protein assay kit.

Immunoblot analysis

Immunoblot (Western) analysis of whole cell extracts was carried out as described previously
[5,11]. Briefly, each strain was grown in 10 ml CTT at 33°C to an ODs5, of ~0.7, and cells from
500 pl were pelleted by centrifugation and stored at —70°C until required. The cell pellets were
thawed, resuspended in 300 ul buffer (100 mM NaCl, 50 mM Tris-HCl pH 7.5, 2 mM EDTA,

1 mM each of phenylmethyl sulfonyl fluoride and benzamidine, 30 pl protease inhibitor
mixture (Sigma), and 20 pl of each sample were loaded into a 4-12% Bis-Tris Criterion XT
(BioRad) precast gel and subjected to SDS/PAGE electrophoresis. Proteins were transferred to
a PVDF membrane using a semi-dry electroblotting unit, and analyzed using the ECL kit (GE
Healthcare Life Sciences), anti-CarD monoclonal antibodies [5,7] and, as loading control, poly-
clonal anti-CdnL antibodies [11].

Bacterial two-hybrid (BACTH) analysis and [3-galactosidase activity

The E. coli BACTH system used is based on functional complementation of the T25 and T18
fragments of the Bordetella pertussis adenylate cyclase catalytic domain when two test proteins
interact [25]. Coding regions of interest were PCR-amplified and cloned into the Xbal and
BamHI sites of pKT25, pUT18 or pUT18C (Table A in S1 File). Given pKT25/pUT18 or
pUT18C pairs were electroporated into E. coli BTH101 (cya’), a pair with vector alone serving
as negative control. Interaction was assessed qualitatively from the blue color developed on
X-Gal plates or quantitatively from B-Gal activity (in nmol of o-nitrophenyl B-D-galactoside
hydrolysed/min/mg protein, from the mean and standard error of three or more independent
experiments) measured for liquid cultures in a SpectraMax 340 microtitre plate reader (Molec-
ular Devices) as described elsewhere [29].

Circular dichroism (CD) spectroscopy

Far-UV CD spectra were recorded in a Pistar unit (Applied Photophysics, UK) calibrated

with -10-camphorsulfonic acid and coupled to a Peltier temperature control unit/Neslab RTE-
70 water bath. Data were collected in 0.2 nm steps in the adaptive sampling mode at 25°C with
5-10 uM protein, 100 mM KF, 7.5 mM phosphate buffer (pH 7.5), 1 mm path length, 2 nm slit
width, and averaged over three scans. Helix contents were estimated from [©],,,, the mean resi-
due ellipticity at 222 nm in degcrnzdmol’1 using [0O],, = 895 for 0% helix and (-37,750)(1-3/N,)
for 100% helix, where N, is the number of residues [30].
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NMR

NMR data were acquired in a Bruker AV-600 or AV-800 US2 spectrometer equipped with a
z-gradient triple resonance cryoprobe using 0.5 or 0.2 mL samples of 0.5-1 mM protein in

100 mM NaCl/50 mM sodium phosphate buffer (pH 7.0, calibrated with a glass microelectrode
and uncorrected for isotope effects)/0.05% NaNj in 9:1 v/v H,0/D,0 or pure D,O. Probe tem-
peratures were set using a methanol sample. Standard triple resonance NMR methods were
used for data acquisition, processing, and 'H/'°N/">C NMR chemical shift assignments, which
were deposited at BloMagResBank (http://www.bmrb.wisc.edu/; accession code: 18194). Dis-
tance constraints, obtained from a 3D NOESY ['H-'>C]-HSQC and two 2D ['H-"H]-NOESY
spectra (mixing times of 80 ms and 150 ms, respectively) in H,O/D,0 and/or D,0, and (¢, y)
torsion angle constraints, from TALOS, were used as input in structure calculations using a
standard iterative protocol of the program CYANA 2.1 [20,31,32]. Of the 100 conformers gen-
erated, 20 with the lowest target function values were energy minimized using AMBER9 (Case
DA, Darden TA, Cheatham III TE, University of California, San Francisco, 2006). The quality
of the final structures was assessed with PROCHECK/NMR [33]. MOLMOL [34] was used for
representations and analysis of the calculated structures, whose coordinates have been deposit-
ed in the Protein Data Bank (accession code: 2LT1).

Results
CarDNt can partially complement the lack of CarD

The sequence alignment in Fig. 1A illustrates the similarity between CarDNt and CdnL, the
presence of the additional HMGA-like C-terminal region in CarD, and secondary structure ele-
ments in CdnL based on its NMR solution structure [10]. We previously showed that deleting
the CarDNt module leads to loss of CarD activity in vivo [9]. Whether CarDNt on its own had
activity in vivo remained to be tested and was examined here. In the M. xanthus response to
light, CarD is implicated in the activation of the carQRS regulatory operon from its promoter,
Pqrs, which is recognized by RNAP holoenzyme containing the ECF-o factor CarQ [1,2]. As a
consequence, wild-type cells are yellow in the dark but turn reddish in the light due to caroten-
oid production (Car" phenotype; Fig. 1C). On the other hand, a carD-deleted (AcarD) strain
does not become red in the light (Car™ phenotype; Fig. 1C). The strain expressing only the
CarD C-terminal HMGA-like domain (AcarDNt allele) exhibited a Car™ phenotype (Fig. 1C;
[9]), indicating the essential role of CarDNt in CarD function. To test the effect in vivo of delet-
ing the HMGA -like domain, we constructed a strain with the native carD allele replaced by one
that encodes CarDNt (carDNt allele). In marked contrast to the AcarD or AcarDNt strains, the
strain expressing carDNt acquired the red color associated with carotenogenesis, albeit at a
slower rate than the wild-type strain (Fig. 1C). Consistent with the color phenotypes, the light-
inducible Pqgs-lacZ reporter activity in the carDNt strain was about a fourth of that observed
in the wild type, but significantly higher than the very low basal levels observed in the AcarD or
AcarDNt strains (Fig. 1D). Hence, light-induced carotenogenesis, which is severely impaired
on deleting the entire carD or only the part encoding CarDNt, can be partially restored by
CarDNt.

To further corroborate this partial activity of CarDNt in vivo and that it is not specific to
Pqrs, we examined the effect of the above domain truncations on expression from the CarD-de-
pendent promoter, P ;;,5, unrelated to the light response. This promoter also requires an ECF-o
factor, DdvS, which becomes active when its cognate anti-o DdvA is inactivated [4]. Since the
specific external signal that triggers DdvA inactivation is unknown, reporter P ;;,s-lacZ activity
in the presence of the different carD alleles was determined in a AddvA genetic background.
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respectively). CarDNt corresponds to the 179-residue N-terminal CarD segment enclosed by the dashed line, and the remaining C-terminal segment to the
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standard error of three independent experiments are shown.
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Again, in the corresponding carDNt strain, reporter lacZ activity was about 4-fold lower than in
the strain with the wild-type carD, but significantly higher than the negligible levels observed in
the AcarD or AcarDNt strains (Fig. A in S1 File). Thus, while the HMGA-like C-terminal domain
is necessary to achieve maximal CarD activity, CarDNt is absolutely essential for CarD function
and by itself exhibits low-level activity relative to the full-length protein.

Modular dissection of CarDNt interactions with RNAP-$ and CarG

Both CarDNt and CdnlL interact with the M. xanthus RNAP-B fragment spanning residues

19 to 148, MxB19_145 [11]. In CdnlL, this interaction was further mapped to its 68-residue au-
tonomously folding N-terminal segment, CdnLNt [10]. We therefore tested if CarD,;_,, the
CarDNt segment (residues 1 to 72) that aligns with CdnLNt, can on its own interact with
RNAP-B. A striking difference between CarDNt and CdnL is that the former also interacts
with CarG [5,8,11]. Hence, we also tested if this was mediated by CarD;_5, or by the C-terminal
part of CarDNt spanning residues 61 to 179, CarDg;_179 (Fig. 1A, 1B), which aligns with the
corresponding CdnL segment, CdnLCt, shown to form a stable autonomously folded domain
[10]. In BACTH analysis, CarD,_, was found to mediate interaction only with RNAP-, while
CarDyg;_179 did so only with CarG (Fig. 2). Thus, two contiguous modules in CarDNt are impli-
cated in two distinct protein-protein interactions: the N-terminal module CarD; 5, specifically
targets RNAP and the remaining C-terminal part, CarDg;_;79, recognizes CarG.

Structural analysis of CarDNt

Sequence-based secondary structure predictions suggest close correspondence between
CarDNt and CdnL, with five B-strands and a short helix within the N-terminal stretch, and five
helices in the C-terminal part [10]. These predictions were in consonance with the NMR solu-
tion structure determined for M. xanthus CdnL, where it was also shown that the B-strands seg-
regate as a protease susceptible N-terminal domain and the a-helices as a protease-resistant C-
terminal module [10]. Using far-UV CD spectroscopy, we experimentally compared the corre-
spondence between CarDNt and CdnL in their secondary structures (Fig. 3A). This indicated a
helix content for CarDNt of ~28% (calculated from the mean residue ellipticity at 222 nm,
[O],2,, of =9900 in degcmzdmol’l; see Materials and Methods), notably lower than the ~50%
helix content ([O],,, = —18,200 degcmzdmolfl) estimated for CdnL. Hence, even though se-
quence-based analysis predicts similar secondary structures for CarDNt and CdnL, far-UV CD
spectroscopy suggests differences between the two.

We next examined CarDNt structure at a higher resolution using NMR. Considerable signal
broadening and overlapping peaks in the CarDNt NMR spectra complicated its analysis. A
similar problem observed with CdnL was resolved by examining its isolated domains [10]. We
therefore tested this approach with CarDNt. CarD;_;, could be stably expressed and its NMR
spectra exhibited good overall quality and signal dispersion (Fig. 3B). Consequently, over 98%
of its "H, "°N, and ">C peaks could be assigned and its tertiary solution structure could be readi-
ly determined. This was not possible, however, with CarDg;_179 due to its low stability, which is
in agreement with earlier limited proteolysis data for CarD not detecting CarDg;_;79 as a stable
domain [7]. By contrast, limited proteolysis of CdnL under similar experimental conditions in-
dicated the segment equivalent to CarDg; 179, CdnLCt, to be a stable domain [10], again con-
sistent with structural differences between CarDNt and CdnL.

The CarD;_;, NMR structural ensemble was well-defined with the pair-wise root-mean-
square deviations (rmsd) being (0.7+ 0.2) A for the structurally ordered backbone segments be-
tween residues 9 and 67 (Table B in S1 File). This region in CarD,_5, is composed of five anti-
parallel B-strands spanning residues 15-17, 23-34, 37-46, 51-56, and 65-67, respectively, in a

PLOS ONE | DOI:10.1371/journal.pone.0121322 March 26, 2015 7/18



@’PLOS | ONE

Structure-Function Analysis of M. xanthus CarD N-Terminal Domain

5000+

3000+
1000+ i '

CarDNt CarD,;, CarDg,,;,6 CarDNt CarD,;, CarDg 479
MXB19.148 CarG

Fig 2. Modular dissection of CarDNt interactions with RNAP and CarG. BACTH analysis showing
reporter lacZ expression (3-Gal activity) in E. coli transformed with pKT25-derived plasmids expressing
CarDNt, CarD4_7, or CarDg1_179 and with pUT18C constructs expressing Mxf1g_14g or CarG. The mean and
standard error of three independent experiments are shown.
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twisted B-sandwich fold with a B5-1-B2-B3-B4 topology and a 3;,-helix between 4 and 5
(Fig. 3C). Most of the expected anti-parallel B-sheet cross-strand H-bonds were detected based
on the criteria that the N-H. . .O donor-acceptor bond distances were <2.4 A, and that the
N-H. . .O bond angle deviations from 180° were <35°. The NMR structure of CarD,_5, closely
matches that of CdnLNt determined previously [10], with maximum structural overlap in the
B2-B3-B4 segment (rmsd of 2.5 A for superposition of B1-B2-B3-B4-B5 and 1.2 A for p2-B3-B4
backbone atoms; Fig. 3D). A database search for structural homologs of native CarD;_;, using
DALI [35] yielded as the best matches (Z-scores >5) the equivalent modules in CdnL and its
homologs [18,20-22] and E. coli TRCF-RID, and to a lower degree (Z-scores <4.5), various
other proteins with Tudor-like domains [36,37]. The close structural similarity of CarD;_,,
and CdnLNt suggests that the different secondary structures for CarDNt and CdnL based on
far-UV CD likely stem from differences between CarDg; 179 and CdnLCt.

Mutations disrupting CarD interactions with RNAP and its consequences
invivo

Given their similar tertiary structures and shared ability to interact with RNAP-B, we tested if
CarD;_7; also mirrors CdnLNt in specific contacts with RNAP-f. In CdnL, mutating F36,
M49, or P51 to alanine did not affect its protein stability or folding but abrogated interaction
with RNAP- [10]. The corresponding CarD residues are F41, M54 and P56 (Fig. 1A, Fig. 4A).
No effect on the interaction with CarG, as verified by BACTH analysis (Fig. 4B), nor on CarD
stability (see below), was observed when any of the three residues was mutated to alanine, sug-
gesting that these mutants were stably expressed and properly folded. However, all three
CarDNt mutants were impaired in the interaction with Mx;4 145 (Fig. 4C), indicating that
CdnL contacts with RNAP-B appear to be conserved in CarD.

In the M. xanthus RNAP-B segment D122-V123-K124-E125, which is quite conserved in
various RNAP-B, mutating (to alanine) V123 or E125, but not D122 or K124, impaired the in-
teraction with CdnL [10]. Hence, we tested if this segment was also important for the interac-
tion with CarDNt. BACTH analysis indicated that, just as with CdnL, the interaction of
MxB19_14g with CarDNt was impaired on mutating V123 or E125, but not D122 or K124
(Fig. 4C). Thus, M. xanthus RNAP-f appears to employ equivalent contacts to recognize
CarDNt and CdnL. Interestingly, despite the finding here that CarDNt mimics CdnL in its
mode of interaction with RNAP, only the latter stabilizes RP,, formation at an rRNA promoter
in vitro [10].
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Fig 3. Structural analysis of CarDNt. (A) Far UV-CD spectra of CarDNt (red) and CdnL (black). (B) 2D ['H,'®N]-HSQC spectrum of ['°N,'3C]-labeled
CarD4_7». Crosspeak assignments are labeled with residues numbered as in the native protein, without including the non-native N-terminal AGH remaining
after intramolecular cleavage of the intein-fusion tag. Crosspeaks for Q and N side chain amides are linked by a line and denoted 6 and &, respectively, and
folded R NeH cross-peaks are shown as ¢. Insets correspond to a zoom of the crowded region (boxes with dashed lines) as indicated. Unlabeled cross-peaks
are those of a 15-residue peptide from the intein tag, generated upon its cleavage, which persisted despite extensive dialysis; these were detected due to
their narrow line-widths and have chemical shifts close to random coil values (see [20]). (C) Left: superposition of the backbone traces for the 20 final NMR
structures of CarD4_7» showing the B-strands 31 (magenta), 2 (green), B3 (blue), B4 (cyan) and 35 (gold) and a 3 helix (red). Right: ribbon representation
of the average CarD4_7o NMR solution structure with its B-strands and 34-helix labeled. (D) Backbone overlay of the average NMR solution structure of
native CarD1_7 (in coral) onto the average NMR structure of CdnLNt (cyan; PDB code: 2L T4). Structural representations were generated with MOLMOL.

doi:10.1371/journal.pone.0121322.9003

Mutations in CdnL that disrupt the interaction with RNAP have been found to seriously im-
pair its function in M. xanthus, affecting cell growth and survival [10]. We therefore tested the
consequences of such mutations in CarD, focussing on its effect on light-induced carotenogen-
esis and the CarD-dependent activation of the Pqrs promoter. For this, M. xanthus strains
with endogenous carD substituted by the F41A, M54A or P56A mutant carD alleles were gen-
erated (see Materials and Methods). Western blots of the corresponding cell extracts using
monoclonal anti-CarD antibodies confirmed stable expression of all three mutant proteins in
M. xanthus (Fig. 5A). Surprisingly, the F41A, M54A or P56 A mutant strains remained Car" de-
spite their impaired interactions with RNAP (Fig. 5B). The light-induced expression levels of
the reporter Pqors-lacZ probe in all three mutant strains were comparable and about 60-70% of
that in wild-type cells (Fig. 5C). Since CarDNt alone exhibited partial activity, the effects of the
F41A and M54A mutations were also tested with only this domain present in vivo. We found
that the response to light of the strain expressing CarDNt persisted when its interaction with
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independent experiments are shown.

doi:10.1371/journal.pone.0121322.9004

RNAP was impaired by the above mutations (Fig. B in S1 File). This was observed even with
the double F41A/M54A mutant, for which the reporter Pqrs-lacZ activity estimated was com-
parable to that for the wild-type CarDNt (Fig. B in S1 File). Thus, loss of interaction with
RNAP, which abrogates CdnL function, does not significantly affect CarD activity.

CarDg,_4179 plays at least two distinct and crucial roles in CarD
function

Elimination of CarDNt results in the same phenotype as that caused by the complete deletion.
That disrupting its interaction with RNAP, which occurs via CarD;_5,, did not abolish CarD
activity emphasizes the critical role of CarDg;_179 which, as shown above, mediates interaction
with CarG. Interestingly, the equivalent region of CdnL (CdnLCt), which does not interact
with CarG, is also indispensable [10]. Several residues in a solvent-exposed basic-hydrophobic
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doi:10.1371/journal.pone.0121322.g005

B-Gal activity
2

region of the overall acidic CdnLCt have been mutated to alanine in CdnL: the nonpolar W88
(highly conserved), M96 and F125 (most solvent-exposed), as well as the basic residues R128/
K129 and R90/R91/R93 (see Fig. 1A). The conserved W and the basic patch have been pro-
posed to mediate the non-specific DNA-binding exhibited by the mycobacterial CdnL and
their mutations shown to impair function [18,19,21]. By contrast, CdnL (or CdnLCt) did not
exhibit DNA binding activity in vitro and mutation of the highly conserved W or of the basic

PLOS ONE | DOI:10.1371/journal.pone.0121322 March 26, 2015 11/18



@’PLOS | ONE

Structure-Function Analysis of M. xanthus CarD N-Terminal Domain

R128/K129 residues did not have a drastic effect; only the F125A and the ROOA/R91A/RI3A
mutations produced noticeable effects, the triple mutant being almost equivalent to lack of
CdnL in vitro and in vivo [10].

For comparison with equivalent mutations in CdnL, we mutated the following residues in
CarD: W92, L100 and T129 (corresponding, respectively, to the solvent-exposed, nonpolar
W88, M96, and F125 in CdnL), K130/R132 (R128/K129 in CdnL), and K93/R95/R97 in CarD
(corresponding to R90/R91/R93 in CdnL) (Fig. 1A). The CarD mutant proteins were detected
in Western blots of cell extracts of M. xanthus strains in which the wild-type gene was replaced
by each of these mutant carD alleles (Fig. 6A) and they interacted with Mxp9_45 in BACTH
analysis, as expected (Fig. 6B). Hence, these CarD variants are stably expressed and folded.
When analyzed for light-induced carotenogenesis in M. xanthus, only the K93A/R95A/R97A
triple mutant was Car” (Fig. 6C). Moreover, light-inducible reporter Pqrs-lacZ activity was ob-
served for all the mutants at 60-90% of wild-type levels, except for the K93A/R95A/R97A mu-
tant, whose lacZ activity was as low as that of the AcarD strain (Fig. 6D). BACTH analysis
indicated that the interaction with CarG remains intact for the K93A/R95A/R97A mutant
(Fig. 6E), implying that these basic residues play a critical role in CarD function that is distinct
from the interaction with CarG. When the effect of the K93A/R95A/R97A mutation was as-
sessed in the context of the partial activity of CarDNt in vivo, the triple mutation again caused
a loss of the ability to produce carotenoids in the light with negligible light-inducible reporter
Pqrs-lacZ activity (Fig. B in S1 File), in contrast to the strains with wild-type CarDNt or its
K130A/R132A variant. The strong negative effect of the triple mutation on CarD activity mir-
rors that of equivalent mutations in CdnL (which does not interact with CarG) suggesting that
these basic residues may play analogous functional roles in CarD and CdnL.

Since R95 is the residue that is most highly conserved within the K93/R95/R97 stretch in all
CarD and CdnL homologs, we also checked the effect of mutating only this arginine to alanine
on CarD function. We found that light-induced carotenogenesis and reporter Pqrs-lacZ activi-
ty was considerably diminished in the R95A mutant, albeit somewhat less than with the K93A/
R95A/R97A mutant (Fig. C in S1 File). This suggests that R95 is important but K93 and/or R97
also likely contribute to the crucial role of this segment in CarD function.

In sum, our results indicate that the CarDyg,_179 part of CarDNt mediates at least two func-
tionally critical activities in the expression of carQRS: the specific interaction with CarG, and
that mediated by the K93/R95/R97 segment, whose exact role remains to be defined. The
equivalent domain of CdnL is also indispensable for its distinct function, which is required for
cell growth, and this CdnL domain conserves the functionally crucial basic residue segment but
not the interaction with CarG.

Discussion

The M. xanthus regulatory protein CarD and CdnlL are prototypical members of the wide-
spread CarD_CdnL_TRCF family of bacterial RNAP-binding proteins that have been implicat-
ed, respectively, in the action of several ECF-o factors and in 0*-dependent rRNA promoter
activation [2,4,9-11]. The molecular bases for their distinct functions, however, remain elusive.
A systematic dissection of their structures and interactions can provide insights into their dis-
tinct modes of action, and the present study describes such an analysis with CarDNt, the
~180-residue CarD N-terminal region that is similar to CdnL in sequence. CarDNt is the struc-
turally defined part of CarD that does not bind to DNA, in contrast to the remaining intrinsi-
cally unfolded C-terminal HMGA-like region (absent in CdnL) that preferentially binds to the
minor groove of AT-rich DNA tracts [7]. Unlike the HMGA-like domain, which alone is
completely inactive in vivo, we find that CarDNt has observable activity on its own, albeit at
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measurements for exponentially growing cells of each of the indicated strains in the dark (filled bars) or after 8 hours under light (unfilled bars). The mean and
standard error of three independent experiments are shown. (E) BACTH analysis confirming interaction of the CarD K93A/R95A/R97A mutant (in pKT25)

with CarG (in pUT18).

doi:10.1371/journal.pone.0121322.g006

lower levels than full-length CarD. CarDNt is thus sufficient for CarD function, while the
HMGA domain is required to maximize activity.

Our data reveal two protein-protein interaction regions in CarDNt, each directed at a dis-
tinct protein partner. One mediates binding to RNAP-f and corresponds to the 72-residue N-
terminal segment, CarD;_;,, whose twisted, five-stranded B-sheet Tudor-like fold as well as
contacts with RNAP-f closely match those observed for its CdnL counterpart. The second
CarDNt module, CarDg;_;79, interacts with CarG, but this protease-susceptible domain has
thus far eluded a high-resolution structure determination. By contrast, the CarDg; ;79 counter-
part of CdnL, CdnLCt, is protease-resistant, could be expressed as a stable isolated domain,
and its compact, all-helical, high-resolution tertiary structure readily determined by NMR [10].
These differences and the inferences from far-UV CD data suggest that CarDg;_;79 and
CdnLCt are likely to be structurally distinct. Even so, CarDg;_;79 has a stretch of basic residues
that is not involved in the interaction with RNAP or CarG and yet is critical for CarD function,
just as, interestingly, the equivalent conserved segment in CdnLCt is crucial for CdnL function.
In sum, our data indicate that CarDNt mirrors CdnL in domain organization and in various in-
teractions, but different contributions from these and additional interactions specific to CarD
can account for its distinct function.

Mutations that impair CdnL interactions with RNAP-B were very adverse to cell growth
and survival [10]. It is therefore interesting that equivalent mutations in CarD, which mimics
CdnL in RNAP-f recognition, only slightly lowered its activity in vivo. Studies with CdnL
showed that it associates with rRNA promoters in vivo and activates these by stabilizing the
formation of transcriptionally competent open complexes (RPp) by RNAP holenzyme with the
primary housekeeping 0™; and that this activity of CdnL is impaired by mutations disrupting
the interaction with RNAP-f [10,12,18,19]. CdnL did not preferentially localize in vivo at Pqgs,
the alternative ECF-o CarQ-dependent promoter whose activation requires CarD, suggesting
absence of direct CdnL action at this promoter [10]. By contrast, both CarD and CarDNt act
on Pqogs but not on rRNA promoters [4,10]. The little or no effect on Pqgrg expression on dis-
rupting CarD/CarDNt binding to RNAP- therefore suggests that this interaction, unlike with
CdnlL, is not as critical in transcriptional activation mediated by CarD. Other CarD interactions
should then be more decisive determinants of its function.

One interaction indispensable in every known CarD-dependent process is that with CarG
[4,5,8]. We mapped this interaction in the present study to the CarDg; ;79 segment, but the
exact molecular mechanism by which CarG acts together with CarD in ECF-o0 promoter activa-
tion remains enigmatic. In the HMGA-driven assembly of the large transcriptionally compe-
tent complex in eukaryotes known as the enhanceosome, a key role is played by transcriptional
factors that do not bind DNA but rather provide a protein scaffold for interaction with various
other regulatory factors [38,39]. CarG, which does not bind DNA directly, could collaborate
with CarD in mediating the recruitment of additional factors required for promoter expression
or bridge additional contacts with the basal transcriptional machinery essential for activation.
We have not been able to detect direct CarG physical interactions with any of the core RNAP
subunits nor with CarQ in two-hybrid analysis [29], but the likelihood that these occur once
the CarD/CarG complex and RNAP have assembled at the target promoters cannot be dis-
carded. If so, such interactions involving CarG might explain why disrupting that of CarD with
RNAP-f had no dramatic effect on function.
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A second characteristic CarD interaction is that mediated by its HMGA-like C-terminal do-
main. This domain confers an intrinsic DNA binding capability to CarD in vitro that we have
thus far never detected with either CarDNt or CdnL [10]. Hence, the HMGA -like domain
probably mediates the in vivo nucleoid localization of CarD [8], whereas that of CdnL might
occur via piggyback recruitment by RNAP [11]. The colocalization in vivo of mycobacterial
CdnL and RNAP ¢* and its absence from non-promoter regions also suggested that CdnL is
targeted to the genome through its interaction with RNAP and not through direct binding to
DNA [40]. The CarD HMGA-like domain resembles its eukaryotic counterpart in binding
preferentially to the minor groove of AT-rich tracts of appropriate length and spacing, and can
be replaced by other basic and, necessarily, intrinsically disordered domains with no loss of
function in vivo [5,7,29]. The contribution of this domain and the DNA-binding ability it con-
fers in CarD function is further demonstrated by the reduced CarD activity in vivo on mutating
an AT-rich site lying upstream of the ECF-o promoter Pqgrs to which CarD exhibits minor
groove binding via its HMGA-like domain [6,7,29,41] or, as shown in this study, on deleting
the CarD HMGA-like DNA-binding domain. Interactions of eukaryotic HMGA with DNA,
various factors and the basal machinery have been shown to synergistically favor the coopera-
tive assembly of the enhanceosome, and it has been proposed that HMGA functions as a DNA
chaperone to stabilize a DNA structure resembling that in the fully assembled enhanceosome
[38,39,42]. Thus, it is conceivable that, in an analogous manner, DNA binding via the HMGA-
like domain also synergistically enhances the low level activity of CarDNt by favouring a partic-
ular DNA conformation at the target promoter.

It is remarkable that, despite the divergences discussed above between CarDNt and CdnL,
both have a conserved basic residue segment crucial for their respective functions. With CdnL,
its ability to stabilize RPo formation at rRNA promoters was abolished on mutating the basic
segment [10]. The details on what exactly the basic segment does in the RPg complex and
whether it has a similar role in CarD function, however, remain open. This basic segment and
an adjacent highly conserved tryptophan have been linked to DNA binding based on the weak,
nonspecific binding to double-stranded DNA observed in vitro with the mycobacterial CdnL
homolog, and single mutations of the basic residues or the tryptophan were detrimental for M.
tuberculosis growth and viability [18,19,21]. In M. xanthus, mutation of the basic segment, but
not of the tryptophan, drastically impaired CarD function in vivo, just as was observed with
CdnL. Thus, while the conserved tryptophan appears to play an important but unknown role
in the function of the M. tuberculosis protein, it does not appear to do so in M. xanthus CarD
or CdnL. On the other hand, the basic residues are functionally crucial in both M. xanthus pro-
teins as well as in that of M. tuberculosis, even though in contrast to the latter neither CarDNt
nor M. xanthus CdnL exhibited any intrinsic DNA binding in vitro. That CdnL with its intact
basic segment is required in RP¢ formation hints that any crucial and specific contacts poten-
tially involving this segment would more likely be with elements within RPg (not naked DNA),
and structural models have been proposed for possible interaction in RPo with the transcrip-
tion bubble or RNAP-0™ [18,22]. It is tempting to speculate that CarD and its crucial basic seg-
ment play a role at its specific ECF-o target promoter complexes analogous to that of CdnL
at o promoters, but resolving these issues for CarD or CdnL would require further higher res-
olution analyses in future studies. Nevertheless, the structure-function dissection of CarDNt re-
ported here has highlighted four distinct interactions associated with CarD and their relative
functional importance: those involving CarG and a conserved basic residue segment in
CarDyg;_179 are crucial for CarD function, that with RNAP is apparently dispensable, and that
with DNA via the HMGA-like domain contributes synergistically to maximize activity.

In an early study, we speculated that CarD may have evolved from an interkingdom domain
fusion of a preexisting bacterial domain akin to CarDNt or CdnL and an eukaryotic HMGA-
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like domain acquired by horizontal gene transfer [9]. Subsequent analysis of the rather large
(among bacteria) M. xanthus genome suggested that gene duplication, divergence, horizontal
gene transfer and domain fusion events may have occurred quite extensively in the evolution
of the sensory complexity of this bacterium [43]. The similar bimodular organization and in-
teractions in CarDNt and CdnL, the matching structures and interaction with RNAP of their
N-terminal modules, and a conserved and functionally crucial segment in the C-terminal mod-
ule are all consistent with the proposal that CarD and CdnL evolved from a common ancestral
protein. Also, both proteins are implicated in promoter activation dependent on related yet dis-
tinct o factors. Acquisition of the additional HMGA-like domain and the interaction with
CarG by CarDNt, which retains various features of CdnL, must have then enabled the func-
tional diversification characterizing CarD. Tellingly, available genome data suggest that CarG
as well as the HMGA domain exist only in CarD-containing myxobacteria, whereas CdnL ho-
mologs occur not only in all myxobacteria but also in numerous other bacterial species. Our
modular dissection of CarDNt structure and interactions, their contributions to CarD function,
and comparisons with CdnL therefore highlight the common structural modules and interac-
tions shared by the two proteins, as well as the additional interactions and domains that have
evolved in CarD to enable the distinct functions of these two related members of a large and
important bacterial protein family.

Accession Numbers

Accession codes for CarD,_;, are 2LT1 for structural coordinates deposited in the Protein Data
Bank, and 18194 for NMR chemical shifts in BioMagResBank (http://www.bmrb.wisc.edu/).
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