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Abstract
Sepsis is defined as a systemic inflammatory response syndrome that disorders the func-

tions of host immune system, including the imbalance between pro- and anti-inflammatory

responses mediated by immune macrophages. Sepsis could also induce acute hyperglyce-

mia. Studies have shown that the silent mating type information regulation 2 homolog 1

(SIRT1), an NAD+-dependent deacetylase, mediates NF-κb deacetylation and inhibits its

function. Therefore, SIRT1 is likely to play an important role in high glucose-mediated in-

flammatory signalings. Here we demonstrate that high glucose significantly downregulates

both the mRNA and protein levels of SIRT1 and upregulates the mRNA level and the re-

lease of two pro-inflammatory cytokines, IL-1β and TNF-α, in RAW264.7 macrophages. In-

terestingly, the reduced level of SIRT1 by high glucose is remarkably upregulated by SIRT1

activator SRT1720, while the level and the release of IL-1β and TNF-α significantly de-

crease with the use of SRT1720. However, when the function of SIRT1 is inhibited by

EX527 or its expression is suppressed by RNAi, the upregulated level and release of IL-1β

and TNF-α by high glucose are further increased. Taken together, these findings collectively

suggest that SIRT1 is an important regulator in many high glucose-related inflammatory dis-

eases such as sepsis.

Introduction
Sepsis is defined as a systemic inflammatory response syndrome mediated by a harmful host
immune response to infection. Lipopolysaccharide (LPS), a component of the outer membrane
of gram-negative bacteria, is a common cause of sepsis via various immune cells, including
monocytes and macrophages [1,2]. Sepsis is known to induce acute hyperglycemia [3,4], and
its progression is usually accompanied with the change of glycemia levels. Especially, the con-
centration of glucose has shown to accelerate the aggravation of sepsis [3,5].

Macrophages are important cells involved in inflammation, which have been implicated in
the initiation of inflammatory response and play critical roles in the pathogenesis of numerous
inflammatory diseases by secreting various inflammatory mediators/cytokines. The nuclear
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factor kappa B (NF-κB), a proinflammatory transcription factor, is a heterodimer composed of
p50 and RelA/p65 subunits and is a key mediator of the immune response in macrophages [6].
In unstimulated cells, NF-κB resides in the cytoplasm bound to inhibitory proteins of the in-
hibitor of κB (IκB) family [7,8]. Stimulation of cells by environmental factors liberates NF-κB,
allowing it to translocate to the nucleus, where it further mediates the transcription of targeting
genes, including IL-1β and TNF-α.

The mammalian sirtuin members, named SIRT1 to SIRT7, are highly conserved NAD+-
dependent deacetylases that have emerged as key factors involved in aging and metabolism, in-
cluding to adapt gene expression and metabolism to the cellular energy state [9,10]. SIRT1, the
leading family member, has been reported to promote longevity in species ranging from yeast
to flies [11,12]. SIRT1 is a known suppressor of NF-κB activity, it deacetylates the NF-κB sub-
unit RelA/p65 at lysine310 and thereby inhibits transcription[7,13].

Our study aims at examining the effect of high glucose on the expression levels of SIRT1
and related proinflammatory cytokines in RAW264.7 macrophages, and also to investigate the
potential role of SIRT1 in inflammatory response with the use of SIRT1 activator, inhibitor or
SIRT1 siRNA.

Materials and Methods

Cell Cultures
The immortal mouse macrophage cell line RAW264.7 was obtained from American Type Cul-
ture Collection (Livingstone, MT). Cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Gaithersburg, MD) containing 10% fetal bovine serum (Gibco), 100 IU/ml
penicillin and 100 mg/ml streptomycin (Beyotime, Shanghai, China), and maintained at 37°C
in a humidified incubator with 5% CO2. To harvest RAW264.7 cells, they were first trypsinized
with 0.25% trypsin/EDTA in phosphate-buffered saline (PBS) and partly collected, then the re-
maining undetached cells were further collected by scraping. Cells were then centrifuged at
400 g for 5 min, and then resuspended in serum-free DMEM. Cells were seeded in six-well
plates (approximately 3.0 × 104 cells/cm2) before further treatments.

Western Blot
Cells were washed twice with precooled PBS and then lysed in RIPA buffer (50 mM Tris-HCl/
pH 7.4, 150 mMNaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1% sodium deoxycholate
and 0.1% SDS). The protein concentration was measured using the BCA Protein Assay Kit
(Biyotime). 50 μg of total protein extracts were resolved by SDS-PAGE and transfered onto
PVDF membrane. The membrane was blocked with 5% non-fat milk and incubated with
mouse anti-SIRT1 monoclonal antibody (Catalog# ab110304, clone# 19A7AB4; Abcam, Cam-
bridge, UK) or rabbit anti-β-ACTIN polyclonal antibody (Catalog# CW0097; Cwbiotech, Bei-
jing, China) overnight at 4°C. The next day, the membrane was washed with 1 × TBST
(13.7 mMNaCl, 0.27 mM KCl, 2.5 mM Tris, 0.1% Tween-20, pH 7.8) and then incubated with
horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG or goat anti-rabbit IgG
(Cwbiotech) for 1 h at room temperature. Immunoreactive proteins were detected using
Chemiluminescent HRP Substrate (Millipore, Billerica, MA). Bands were quantitated by Ima-
geJ software and the fold expression was indicated as the relative protein level.

Cell Cytotoxicity Assay
Cells were seeded in 96-well dishes at a density of 3.0 × 103 cells/cm2 and treated with high glu-
cose at the concentrations of 5.6, 11.1, 25 and 30 mM, alone or with SRT1720 (1 μM; Catalog#
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1001645–58–4; Selleck, Houston, TX) or EX527(10 μM; Catalog# 49843–98–3; Cayman Chemi-
cal, Ann Arbor, MI) for 24 h. The stock solution of SRT1720 or EX527 was prepared by dissolv-
ing each of them (in powder form) respectively in DMSO yielding a concentration of 100 μM
and then stored at -80°C. MTT solution (0.5 mg/ml) was then added to each well and cells were
incubated for 4 h at 37°C in a 5% CO2 incubator. Subsequently, the supernatant was removed,
the formation of farmazan was solubilized with dimethyl sulfoxide (DMSO) and measured at
540 nm with a Bio-Rad Model 680 Plate Reader (Bio-Rad Laboratories, Hercules, CA).

Enzyme-Linked Immunosorbent Assay (ELISA)
Supernatants from RAW264.7 macrophage cultures were harvested at indicated time points.
Mouse TNF-α and mouse IL-1β were detected using ELISA kit (RayBio, GA, USA; Neo-
Bioscience, Shenzhen, China) respectively according to the manufacturer’s instructions. Con-
centration was calculated by regression analysis of a standard curve.

Real-time PCR
Total RNA was extracted from RAW264.7 cells by using RisoPlus (TaKaRa, Shiga, Japan) ac-
cording to the manufacturer’s protocol. Obtained RNA was reverse transcribed into cDNA
using the PrimeScript RT Master Mix Kit (Perfect Real Time) (TaKaRa). The primer sequences
for each gene were listed as following:

SIRT1: Sense, 5'-CAGACCCTCAAGCCATGTTTGATA-3'; Anti-sense, 5'-
TTGGATTCCTGCAACCTGCTC-3'. TNF-α: Sense, 5'-CGTCAGCCGATTTGCTATCT-
3'; Anti-sense, 5'-CGGACTCCGCAAAGTCTAAG-3'. IL-1β: Sense, 5'-
GCCCATCCTCTGTGACTCAT-3'; Anti-sense, 5'-AGGCCACAGGTATTTTGTCG-3'.
GAPDH: Sense, 5'-TGTGTCCGTCGTGGATCTGA-3'; Anti-sense, 5'-
TTGCTGTTGAAGTCGCAGGAG-3'.

RNA Interference
The siRNA duplexes for SIRT1 or scramble control were purchased from GenePharma
(Shanghai, China), sequences were listed as following:

Sirt1-siRNA-2195: Sense, 5'-GGGAUCAAGAGGUUGUUAATT-3'; Anti-
sense, 5'-UUAACAACCUCUUGAUCCCTT-3'. Sirt1-siRNA-1003: Sense, 5'-
CCGUCUCUGUGUCACAAAUTT-3'; Anti-sense, 5'-AUUUGUGACACAGAGACGGTT-
3'. Sirt1-siRNA-576: Sense, 5'-GCGGAUAGGUCCAUAUACUTT-3'; Anti-
sense, 5'-AGUAUAUGGACCUAUCCGCTT-3'. Scramble siRNA: Sense, 5'-
UUCUCCGAACGUGUCACGUTT-3'; Anti-sense, 5'-ACGUGACACGUUCGGAGAATT-
3'.

siRNAs were transfected into RAW264.7 cells with Lipofectamine 2000 Transfection Re-
agent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. The culture me-
dium containing the transfection mixture was removed 6 h later and repleaced with fresh
miedium. The transfected cells were continued to be incubated at 37°C in a 5% CO2 incubator
for another 42 h and used for further assays.

Statistical Analysis
All experiments were performed at least three times using different batches of cells. Results
were presented as mean ± SEM. Statistical analysis of the data was performed using SPSS17.0
software (SPSS, Chicago, IL) by one-way analysis of variance (ANOVA) with LSD’s or S-N-K’s
post-hoc analysis. Values of p< 0.05 were considered to be statistically significant.
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Results

High Glucose Mitigates SIRT1 Levels in RAW264.7 Cells without
Comprising Cell Viability
To determine the cytotoxicity of high glucose, alone or with its activator SRT1720 or inhibitor
EX527, MTT assay was performed. Results showed that neither high glucose up to 30 mM nor
SRT1720 or EX527 reduced the viability of RAW264.7 macrophage cells (Fig. 1A). The protein
level of SIRT1 in RAW264.7 cells treated with different concentrations of high glucose was as-
sessed by immunobloting. Results showed that in vitro stimulation of RAW264.7 macrophages
submitted to glucose at various concentrations, and 30 mM high glucose exerted the maximum
suppressive effect on SIRT1 level (Fig. 1B; df = 5, f = 15.3, p = 0.002).

High Glucose Transiently Downregulates Both the mRNA and Protein
Levels of SIRT1 in RAW264.7 Cells
RAW264.7 cells were treated with 30 mMD-glucose for different time periods, then the pro-
tein or mRNA level of SIRT1 was assessed by western blot or quantitative real-time PCR, re-
spectively. Results showed that both the protein (Fig. 2A; df = 5, f = 134.651, p< 0.001) and
mRNA levels (Fig. 2B; df = 5, f = 127.339, p< 0.001) of SIRT1 showed significant transient
downregulation after 30 mM high glucose treatment. The maximum suppressive effect ap-
peared between 4 to 8 h, and then the SIRT1 level gradually increased from 24 h and showed
no difference at 48 h post-treatment (Fig. 2A-B). To determine whether the level change of
SIRT1 was associated with D-glucose consumption in the culture medium, we then measured
the glucose concentration in the supernatant at selected time points. Results showed that the
concentration of D-glucose in culture medium did not change over time (Fig. 2C).

High Glucose Induces the Upregulation of the mRNA levels of IL-1β and
TNF-α in RAW264.7 Cells
It is known that tissue macrophages release cytokines that further activate the inflammatory
program in neighboring adipocytes, exacerbating inflammation and insulin resistance[14]. It is
also known that the proinflammatory cytokines, such as IL-1β and TNF-α, play key roles in
the pathogenesis of several inflammatory diseases. Therefore, in order to elucidate whether
high glucose would cause inflammatory response, we measured the mRNA levels of IL-1β and
TNF-α in RAW264.7 cells stimulated with 30 mMD-glucose. Results showed that the mRNA
levels of both IL-1β (Fig. 3A; df = 5, f = 62.812, p< 0.001) and TNF-α (Fig. 3B; df = 5, f = 5.492,
p = 0.03) were significantly upregulated as early as 4 h post-high glucose treatment and peaked
at 8 h. The tendency was maintained up to 48 h post-treatment for IL-1β (Fig. 3A) and 24 h for
TNF-α (Fig. 3B). 30 mM D-glucose also induced more release of IL-1β up to 48 h (Fig. 3C; df =
5, f = 27.324, p< 0.001) and TNF-α up to 24 h (Fig. 3D; df = 5, f = 48.74, p< 0.001). The time
course of the upregulation of cytokine levels showed great synchronization with the downregu-
lation of SIRT1 levels in Fig. 2A-B.

SIRT1 Mediates the Production and Secretion of Two Proinflammatory
Cytokines Induced by High Glucose
Previous reports have demonstrated that artificial overexpression of SIRT1 in hepatocytes led
to the suppression of inflammatory response, whereas deletion of SIRT1 resulted in enhanced
local inflammation [15,16]. In order to investigate the role of SIRT1 in inflammatory response
induced by high glucose, RAW264.7 cells were pretreated with SRT1720, a putative SIRT1 acti-
vator, or EX527, its inhibitor, for 6 h and then received 30 mM D-glucose treatment for 8 h
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Fig 1. Assessment of the effects of high glucose on cell viability and SIRT1 expression in RAW264.7 cells. (A) RAW264.7 cells were treated with D-
glucose at gradually increased concentrations of 5.6, 11.1, 25 and 30 mM at the presence of SRT1720 (1 μM, SIRT1 activator) or EX527 (10 μM, SIRT1
inhibitor) for 24h, and the cell viability was evaluated by MTT assay. Each data point is the mean ± SEM of n = 3 with the value in 5.6 mM D-glucose without
SRT1720 and EX527 group arbitrarily set as 100%. (B) The expression levels of SIRT1 in RAW264.7 cells treated with different concentrations of D-glucose
(DG) at 5.6, 11.1, 16.7, 25 and 30 mM for 24h were evaluated by western blot. 30 mM of D-mannitol (DM) served as an osmotic control. Each data point is the
mean ± SEM of n = 3 and normalized against corresponding β-ACTIN protein level with the value in 5.6 mM group arbitrarily set as 1 (df = 5, f = 15.3, p =
0.002). **p< 0.01. ‘NG’, normal glucose, standing for 5.6 mM D-glucose throughout the whole study; ‘HG’, high glucose, standing for 30 mM D-glucose
throughout the whole study.

doi:10.1371/journal.pone.0120849.g001

Fig 2. Assessment of the protein andmRNA level changes of SIRT1 in RAW264.7 cells treated with 30 mM high glucose over time. (A-B)
Immunoblotting (A) or quantatitive RT-PCR (B) assessing the change in SIRT1 protein or mRNA level after treatment of RAW264.7 cells with 30 mM high
glucose at indicated time points (0, 4, 8, 24, 36 and 48h), respectively. Each data point is the mean ± SEM of n = 3 and normalized against corresponding β-
ACTIN protein level (A, df = 5, f = 134.651, p< 0.001) orGAPDHmRNA level (B, df = 5, f = 127.339, p< 0.001) with the value at 0h arbitrarily set as 1. *p<
0.05; **p< 0.01. (C) The concentration of D-glucose in the culture medium was measured over time using ONETOUCH Ultra at indicated time points (0, 4,
8, 24, 36 and 48h). Each data point is the mean ± SEM of n = 3.

doi:10.1371/journal.pone.0120849.g002
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followed by immunoblotting and qPCR. Results showed that the reduced SIRT1 protein
(Fig. 4A; df = 5, f = 53.307, p< 0.001; 5A; df = 5, f = 6.194, p = 0.023) or mRNA levels (Fig. 4B;
df = 5, f = 16.042, p = 0.002; 5B; df = 5, f = 7.118, p = 0.003) by high glucose was significantly
upregulated by SRT1720 (Fig. 4A-B), while had no further change with the use of EX527
(Fig. 5A-B). In the presence of SRT1720, high glucose-induced upregulation on the mRNA
level and the release of IL-1β (Fig. 4C; df = 5, f = 328.474, p< 0.001; Fig. 4E; df = 5, f =
5739.982, p< 0.001) and TNF-α (Fig. 4D; df = 5, f = 43.581, p< 0.001; Fig. 4F; df = 5, f =
108.365, p< 0.001) were remarkably inhibited (Fig. 4C-F). Although EX527 did not further
suppress the SIRT1 level, it did significantly increase IL-1βmRNA level (Fig. 5C; df = 5, f =
71.26, p< 0.001) and its release (Fig. 5E; df = 5, f = 6057.757, p< 0.001), and slightly upregu-
lated TNF-α level (Fig. 5D; df = 5, f = 50.638, p< 0.001) and its release although showing no
significant difference with high glucose treatment alone (Fig. 5F; df = 5, f = 47.79, p< 0.001).

Loss of SIRT1 in Macrophages further Promotes the mRNA Level of
Proinflammatory Cytokines Induced by High Glucose
To further confirm the regulative role of SIRT1 in inflammatory response, RAW264.7 cells
were subjected to RNAi followed by high glucose exposure. The mRNA levels of IL-1β and
TNF-α were measured by real-time PCR, and their release were tested by ELISA. Results
showed that both siRNA-1003 and siRNA-576 potently suppressed SIRT1 protein level
(Fig. 6A; df = 3, f = 38.663, p = 0.002), and also significantly upregulated the mRNA level and

Fig 3. Assessment of the mRNA level and the release of IL-1β and TNF-α in RAW264.7 cell culture treated with 30 mM high glucose over time. (A-B)
RAW264.7 cells were exposed to 30 mMD-glucose and cultured for indicated time periods of 0, 4, 8, 24, 36 and 48h. The mRNA levels of two inflammatory
cytokines, IL-1β (A, df = 5, f = 62.812, p< 0.001) and TNF-α (B, df = 5, f = 5.492, p = 0.03), were assessed by real-time PCR. Each data point is the mean ±
SEM of n = 3 and normalized against correspondingGAPDHmRNA level with the value at 0h arbitrarily set as 1. (C-D) The release of IL-1β (C, df = 5, f =
27.324, p< 0.001) and TNF-α (D, df = 5, f = 48.74, p< 0.001) in culture medium was assessed by ELISA. Each data point is the mean ± SEM of n = 3. *p<
0.05; **p< 0.01; ***p< 0.001.

doi:10.1371/journal.pone.0120849.g003
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the release of IL-1β (Fig. 6B; df = 4, f = 250.541, p< 0.001; 6D; df = 4, f = 110.68, p< 0.001)
and TNF-α (Fig. 6C; df = 4, f = 24.145, p< 0.001; 6E; df = 4, f = 80.041, p< 0.001) in
RAW264.7 cells treated with high glucose. This finding was highly consistent with the result
using SIRT1 inhibitor EX527 as shown in Fig. 5C-F.

Discussion
The pathogenesis of various inflammatory diseases such as sepsis is a complex process mediat-
ed by immune cells such as macrophages and monocytes [17,18]. Major efforts have been
made to understand the proinflammatory process, especially focused on the early stage involv-
ing the gene expression of key proinflammatory mediators/cytokines [31]. Studies have shown
that pretreatment of RAW264.7 macrophages with SRT1720 could downregulate LPS-induced
release of proinflammatory factors, such as NO, PGE2, iNOS and COX-2, and proinflamma-
tory cytokines, including TNF-α and IL-1β [19,20,21]. The progression of inflammatory dis-
eases is usually associated with the irritability of high blood glucose [22]. Our study showed
that high glucose significantly increased the production and secretion of IL-1β and TNF-α in
RAW264.7 cells (Fig. 3A-D), which was consistent with a previous finding that high glucose in-
creased the levels of TNF-α and IL-6 in the podocytes and thus induced subsequent

Fig 4. Effects of SIRT1 activator SRT1720 on the expression and/or release of SIRT1, IL-1β and TNF-α in RAW264.7 cell culture treated with 30 mM
high glucose. (A-D) RAW264.7 cells were pretreated with 1 μMSRT1720 for 6h and then cultured in 30 mMD-glucose-containing medium for additional 8h.
Cells were then harvested and used for western blot analysis for SIRT1protein level (A, df = 5, f = 53.307, p< 0.001), and real-time PCR analysis for SIRT1
(B, df = 5, f = 16.042, p = 0.002), IL-1β (C, df = 5, f = 328.474, p< 0.001) or TNF-αmRNA level (D, df = 5, f = 43.581, p< 0.001). Each data point is the mean
± SEM of n = 3 and normalized against corresponding β-ACTIN protien level orGAPDHmRNA level with the value in NG without SRT1720 group arbitrarily
set as 1. (E-F) The culture medium was also collected and used for ELISA for detecting the release of IL-1β (E, df = 5, f = 5739.982, p< 0.001) and TNF-α (F,
df = 5, f = 108.365, p< 0.001). Each data point is the mean ± SEM of n = 3. *p< 0.05; ***p< 0.001. 30 mM of D-mannitol served as an osmotic control.
‘NG’, 5.6 mM normal glucose; ‘HG’, 30 mM high glucose; ‘DM’, 30 mM D-mannitol.

doi:10.1371/journal.pone.0120849.g004
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inflammation and kidney fibrosis [23]. However, the signaling cascades mediating the effects
of high glucose on the production of proinflammatory factors have not been
clearly characterized.

It is well established that SIRT1 is a regulator of longevity and is associated with caloric re-
striction, energy metabolism, cell cycle and differentiation, however, its role in endotoxic or
septic lethality has yet to be fully understood. There is accumulating evidence that SIRT1 could
mediate the inhibition of resveratrol-induced release of proinflammatory cytokines [24,25,26].
A recent study has indicated that SIRT1 acted as a positive modulator in insulin signalings
through PI3K in muscle cells [27,28]. Therefore, we hypothesized that SIRT1 might play a role
in mediating high glucose-induced inflammatory response. In the present study, we first ob-
served that high glucose significantly downregulated SIRT1 expression on both mRNA and
protein levels in RAW264.7 cells in a dose- and time-dependent manner (Figs. 1B and 2A-B).
Also, the concentration of D-glucose in culture medium did not change over time (Fig. 2C),
suggesting the independence of SIRT1 reduction with extracellular glucose concentration.
Next, we pretreated cells with SIRT1 activator SRT1720 or its inhibitor EX527 followed by high
glucose exposure. Interestingly, SRT1720 abolished the downregulation of SIRT1 level induced
by high glucose, and also suppressed the increased mRNA level and release of TNF-α and IL-
1β (Fig. 4). On the contrary, EX527 exerted an inhibitory effect on SIRT1 activity without af-
fecting SIRT1 expression on both mRNA and protein levels, which was consistent with the

Fig 5. Effects of SIRT1 inhibitor EX527 on the expression and/or release of SIRT1, IL-1β and TNF-α in RAW264.7 cell culture treated with 30 mM
high glucose. (A-D) RAW264.7 cells were pretreated with 10 μMEX527 for 6h and then cultured in 30 mMD-glucose-containing medium for additional 8h.
Cells were then harvested and used for western blot analysis for SIRT1 protein level (A, df = 5, f = 6.194, p = 0.023), and real-time PCR analysis for SIRT1 (B,
df = 5, f = 7.118, p = 0.003), IL-1β (C, df = 5, f = 71.26, p< 0.001) or TNF-αmRNA level (D, df = 5, f = 50.638, p< 0.001). Each data point is the mean ± SEM
of n = 3 and normalized against corresponding β-ACTIN protein level orGAPDHmRNA level with the value in NG without EX527 group arbitrarily set as 1. (E-
F) The culture medium was also collected and used for ELISA for detecting the release of IL-1β (E, df = 5, f = 6057.757, p< 0.001) and TNF-α (F, df = 5, f =
47.79, p< 0.001). Each data point is the mean ± SEM of n = 3. *p< 0.05; **p< 0.01; ***p< 0.001. 30 mM of D-mannitol served as an osmotic control.
‘NG’, 5.6 mM normal glucose; ‘HG’, 30 mM high glucose; ‘DM’, 30 mM D-mannitol.

doi:10.1371/journal.pone.0120849.g005
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findings from Charles E. McCall’s lab [29,30], while it further upregulated the increased
mRNA level and release of IL-1β induced by high glucose (Fig. 5). Importantly, results from
the knockdown of SIRT1 by RNAi further confirmed above conclusion (Fig. 6). Our results
showed a more than 120-fold increase on IL-1βmRNA level in SIRT1 RNAi cells under high
glucose over that in scramble siRNA-transfected cells under normal glucose condition, this was
consistent with a study showing that LPS increased IL-1βmRNA level more than 200 folds in
SIRT1-knockdowned cells compared to that in untreated and scramble siRNA-transfected cells
[31]. Therefore, SIRT1 appears to be a negative regulator for IL-1β at the early stage of inflam-
mation. Taken together, our findings suggested a possible mechanism regulating the high glu-
cose-induced inflammatory response in RAW264.7 cells, that is, high glucose inhibits SIRT1
expression, which subsequently stimulates the production of IL-1β and TNF-α and thus pro-
motes inflammation process. However, the precise mechanism by which high glucose exerts in-
hibitory effects on SIRT1 expression is largely unknown. It is possible that high glucose may
trigger a common signaling cascade that ultimately disturbs SIRT1 level [32,33].

While a number of studies have demonstrated that SIRT1 exhibits pronounced anti-
inflammatory properties [34,35,36], the present study again provides evidences supporting its
central role in the inhibition of high glucose-induced inflammatory response in RAW264.7
cells. To this end, our study attempts to reveal, at least partly, the molecular mechanism of high

Fig 6. Effects of SIRT1 knockdown by RNAi on the mRNA level and the release of IL-1β and TNF-α in RAW264.7 cell culture treated with 30 mM
high glucose. (A) Cells cultured in NGmedium were transfected with 33 nM scramble or SIRT1-specific siRNA duplex (serial number: 2195, 1003, and 576)
for 6h, incubated for another 42h, and then harvested for the detection of SIRT1 suppression by western blot (df = 3, f = 38.663, p = 0.002). (B-C) Cells
receiving RNAi treatment were continued to be cultured in 30 mMD-glucose-containing medium for additional 8h, mRNA levels of IL-1β (B, df = 4, f =
250.541, p< 0.001) and TNF-α (C, df = 4, f = 24.145, p< 0.001) were assessed by real-time PCR. Each data point is the mean ± SEM of n = 3 and
normalized against corresponding β-ACTIN protein level (A) orGAPDHmRNA level (B-C) with the value in NG with scramble siRNA group arbitrarily set as 1.
(D-E) The culture medium was also collected and used for ELISA for detecting the release of IL-1β (D, df = 4, f = 110.68, p< 0.001) and TNF-α (E, df = 4, f =
80.041, p< 0.001). Each data point is the mean ± SEM of n = 3. *p< 0.05; **p< 0.01; ***p< 0.001. 30 mM of D-mannitol served as an osmotic control.
‘NG’, 5.6 mM normal glucose; ‘HG’, 30 mM high glucose; ‘DM’, 30 mM D-mannitol.

doi:10.1371/journal.pone.0120849.g006
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glucose-induced macrophage activation, which is desirable in delineating the molecular thera-
peutic target to reduce inflammatory response in various inflammation-related diseases such as
sepsis. Nonetheless, it is noteworthy that our findings were mainly based on an in vitro high
glucose model, which cannot fully simulate the in vivo condition in sepsis. Moreover, the pre-
cise relationship between the high glucose-induced inflammation and SIRT1 expression has
not been extensively investigated. Therefore, further studies are needed to thoroughly under-
stand the mechanism on high glucose-induced inflammatory response in sepsis.
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