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Abstract
The aim of this paper is to develop a local positivity preserving scheme when the data

amassed from different sources is positioned at sparse points. The proposed algorithm first

triangulates the irregular data using Delauny triangulation method, therewith interpolates

each boundary and radial curve of the triangle by C¹ rational trigonometric cubic function.

Half of the parameters in the description of the interpolant are constrained to keep up the

positive shape of data while the remaining half are set free for users’ requirement. Orthogo-

nality of trigonometric function assures much smoother surface as compared to polynomial

functions. The proposed scheme can be of great use in areas of surface reconstruction and

deformation, signal processing, CAD/CAM design, solving differential equations, and image

restoration.

1. Introduction
Data measured or amassed from many engineering and scientific fields, is often positioned at
sparse points. For example, meteorological measurements at different weather stations [1],
density measurements on different positions within the human body, heart potential measure-
ments at random points in the diagnosis of various ailments of heart [2], 3D photography,
aeronautical engineering and industrial design, structural graph networks [3], graph entropy
[4], [5], [6]. A visual model is often required to get a clear understanding of underlying phe-
nomena as colossal amount of data is difficult to analyse or communicate a message in raw
form. Further, a meticulous visual representation obligates the interpolating function to affirm
intrinsic attributes of data like positivity, monotonicity and convexity. Although, tensor prod-
uct provides a robust medium for fitting surface to rectilinear data sites, it can not be used to fit
a surface over sparse data points. This paper addresses the problem of retaining positivity over
scattered data points.

Several approaches have been proposed in literature to address the problem of positivity
preserving interpolating surfaces. Amidor [7] surveyed method to interpolate scattered data
necessitating from electronic imaging system. The author mainly examined radial basis func-
tion method, tetrahedral interpolation, cubic triangular interpolation, triangle based blending
interpolation, inverse distance method and neutral neighbourhood. The difference between
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scattered data interpolation and scattered data fitting was also demonstrated in the survey.
Cubic and quintic Hermite interpolants were used for preserving monotonicity, positivity and
convexity of discrete data by [8]. Piah, Goodman, Unsworth [9] first triangulated the data
points by Delaunay triangulation and constructed the interpolating surface consisting of “cubic
Bezier triangular patches”. Positivity of data was achieved by imposing sufficient conditions on
Bezier ordinates in each triangular patch. The proposed scheme was local and C1 continous.
Hussain and Hussain [10] arranged the scattered data over a triangular grid to preserve the
positivity and monotonicity. The authors used a cubic interpolant with one parameter to inter-
polate the boundary of each triangular patch while linear interpolant was used in Nielson side
vertex method to obtain radial curves. Final surface patch was obtained by convex combination
of interpolants. Positivity and monotonicity was retained by deriving data dependent con-
straints on free parameters. C1 Quadratic splines and Powell-Sabin splines were used as inter-
polating function to tackle the problem of range restricted univariate and bivariate scattered
data by Hermann et. al. [11]. The authors obtained a system of inequalities for the gradients
and positivity was accomplished by deriving sufficient conditions on this system. A C1 local ra-
tional cubic Bernstein Bezier interpolatory scheme was proposed by Hussain and Hussain [12]
to retain positivity of scattered data. In each triangular patch, inner and boundary Bezier ordi-
nates were confined for positivity. If in any triangular grid, Bezier ordinates failed to attain pos-
itive shape of data, then these were varied by the weights described in formation of rational
cubic Bernstein Bezier interpolant. Sarfraz et. al. [1] established a local C1 approach to keep up
the positivity of scattered data positioned over a triangular domain. They employed C1 rational
cubic function with four parameters in Nielson side vertex technique to formulate the interpo-
lating surface. Two of the four parameters were constrained for positivity.

Although several approaches have been proposed to retain the positivity of data, little atten-
tion has been paid towards the use of trigonometric basis function. This paper develops a posi-
tivity preserving scheme for scatter data by taking C1 rational trigonometric function [13] into
account. Delaunay triangulation method has been used to place scatter data as vertices of trian-
gle. Nielson side vertex method [14] has been employed in each triangle to construct triangular
patches. The C1 rational trigonometric cubic function [13] with four parameter has been used
for the interpolation along boundary and radial curve of the triangle. Positivity is attained by
deriving data dependent condition on half of the parameters in the description of C1 rational
trigonometric cubic function [13].

The remainder of the paper is formulated as: Section 2 reviews the ratonal trigonometric
cubic function [13]. Nielson side vertex method [14] to formulate triangular patches is detailed
in Section 3. Positivity preserving algorithm is developed and explained in Section 4. Section 5
demonstrates the developed algorithm and presents graphical results. Section 5 summarizes
this research and draws conclusion.

2. Rational Trigonometric Cubic Function
Let {(xi, yi), i = 0,1,2, . . ., n−1} be the given set of data points defined over the interval [a, b]
where a = x0 < x1 < x2 < . . .< xn = b. A piecewise rational trigonometric cubic function is de-
fined over each subinterval Ii = [xi, xi+1] as

SiðxÞ ¼
piðyÞ
qiðyÞ

ð1Þ
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piðyÞ ¼ aifið1� sin yÞ3 þ bifi þ
2hiaidi

p

� �
sin yð1� sin yÞ2

þ gifiþ1 �
2hididiþ1

p

� �
cos yð1� cos yÞ2 þ difiþ1ð1� cos yÞ3

qiðyÞ ¼ aið1� sin yÞ3 þ bi sin yð1� sin yÞ2 þ gi cos yð1� cos yÞ2 þ dið1� cos yÞ3

where

y ¼ p
2

x � xi
hi

� �
; hi ¼ xiþ1 � xi; i ¼ 0; 1; 2; :::; n� 1

The rational trigonometric cubic function (Eq 1) satisfy the following properties:

SðxiÞ ¼ fi; Sðxiþ1Þ ¼ fiþ1; S
0ðxiÞ ¼ di; S

0ðxiþ1Þ ¼ diþ1: ð2Þ

di and di+1 are derivative at the endpoints of the interval Ii = [xi, xi+1]. αi, βi, γi and δi are the
free parameters. The following result has been proved in [13].

Theorem 2.1 The C1 piecewise rational trigonometric cubic function preserve the positivity of
positive data if in each subinterval Ii = [xi,xi+1], the parameters βi and γi satisfy the following suf-
ficient conditions

bi ¼ ui þ max 0;
�2hidiai

pfi

� �
; ui > 0;

gi ¼ vi þ max 0;
2hidiþ1di

pfiþ1

� �
; vi > 0:

3. Nielson Side Vertex Method
Consider a triangle4V1 V2 V3 with vertices V1, V2, V3 having edges e1, e2, e3 and u, v, w be the
barycentric coordinates such that any point V on the triangle can be written as:

V¼: uV1 þ vV2 þ wV3; ð3Þ

where

uþ v þ w ¼ 1 and u; v;w � 0:

The interpolant defined by Nielson [14] to generate surface over each triangular patch is de-
fined as the following convex combination:

Pða; b; cÞ ¼ v2w2Q1 þ u2w2Q2 þ u2v2Q3

v2w2 þ u2w2 þ u2v2
: ð4Þ

where Qi
0s represent line segments joining vertices V 0

i s to points S
0
is on the opposite boundary.

Eq (4) interpolates data at the vertices as well as first order derivatives at the boundary. Since
the barycentric coordinates at the vertices of triangle is simultaneously zero, the interpolant Eq
(4) takes the following values:

Pða; b; cÞ ¼ Q1 when v ¼ w ¼ 0;

Pða; b; cÞ ¼ Q2 when u ¼ w ¼ 0;

Pða; b; cÞ ¼ Q3;when v ¼ u ¼ 0;

where Qi, i = 1,2,3 are the ordinate values at the vertices Vi, i = 1,2,3 of triangle.
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4. Positive Scatter Data Interpolation
This section details the derivation of sufficient conditions for C1 triangular patches to be posi-
tive. Let the given positive scattered data set arranged over a triangular domain be {(xi, yi, Fi),
i = 1,2, . . ., n}. The resulting surface S(x, y) described as

Sðxi; yiÞ ¼ Fi; i ¼ 1; 2; :::; n; ð5Þ
is positive if

Sðx; yÞ > 0; 8ðx; yÞ 2 D: ð6Þ

4.1 Domain Triangulation
Triangulation of data is performed by Delaunay triangulation method such that data Fi, fall on
vertices {Vi = (xi, yi), i = 1,2,3, . . ., n} of the triangles.

4.2 Estimation of Derivatives
Partial derivatives at the vertices Vi, i = 1,2,3 of each triangle are calculated by derivative esti-
mation scheme suggested by Goodman et. al. [15]

4.3 C1 Positive triangular patch
Let V1 V2 V3 be the given triangle with edges ei, i = 1,2,3 opposite to the vertices Vi, i = 1,2,3 re-
spectively and Si, i = 1,2,3 be the points on the edges opposite to vertices Vi, i = 1,2,3. The radial
curve Q1 connecting vertex V1 to the points S1 on the opposite edges e1 is defined as (Fig 1):

Q1 ¼
Q1n

Q1d

; ð7Þ

where

Q1n ¼ ð1� sin lÞ3F1a1 þ sin lð1� sin lÞ2 b1F1 þ
2R1a1
p

� �

þ cos l̂ð1� cos l̂Þ2 g1FðS1Þ �
2d1R2

p

� �
þ ð1� cos l̂Þ3d1FðS1Þ;

Q1d ¼ a1ð1� sin lÞ3 þ b1 sin lð1� sin lÞ2 þ g1 cos l̂ð1� cos l̂Þ2 þ d1ð1� cos l̂Þ3:

such that

l ¼ p
2
ð1� uÞ; l̂ ¼ 1� l:

R1 and R2 are the directional derivatives at V1 and S1 (Fig 2) defined as

R1 ¼ ðxs1 � x1Þ
@f
@x

ðV1Þ þ ðys1 � y1Þ
@f
@y

ðV1Þ;

R2 ¼ ðxs1 � x1Þ
@f
@x

ðS1Þ þ ðys1 � y1Þ
@f
@y

ðS1Þ:

and F(S1) is the boundary curve along the edge e1 evaluated from the following expression

FðS1Þ ¼
F1n

F1d

;
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Fig 2. Directional derivatives along S1V1

�!
.

doi:10.1371/journal.pone.0120658.g002

Fig 1. Radial curveQ1: connecting vertex V1 to the point S1.

doi:10.1371/journal.pone.0120658.g001
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where

F1n ¼ ð1� sin rÞ3F2a4 þ sin rð1� sin rÞ2 b4F2 þ
2d3a4
p

� �

þ cos r̂ð1� cos r̂Þ2 g4F3 �
2d4d4

p

� �
þ ð1� cos r̂Þ3d4F3;

F1d ¼ a4ð1� sin rÞ3 þ b4 sin rð1� sin rÞ2 þ g4 cos r̂ð1� cos r̂Þ2 þ d4ð1� cos r̂Þ3:

such that

r ¼ pð1� vÞ
2ðv þ wÞ ; r̂ ¼

pð1� wÞ
2ðuþ wÞ :

d3 and d4 are the directional derivatives along V2V3

�!
at V2 and V3 (Fig 3)

d3 ¼ ðx3 � x2Þ
@f
@x

ðV2Þ þ ðy3 � y2Þ
@f
@y

ðV2Þ;

d4 ¼ ðx3 � x2Þ
@f
@x

ðV3Þ þ ðy3 � y2Þ
@f
@y

ðV3Þ:

Fig 3. Directional derivatives along V2V3

�!
.

doi:10.1371/journal.pone.0120658.g003
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From Eq 7, Q1 > 0 if

Q1n > 0 and Q1d > 0:

Now, Q1n > 0 if

a1 > 0; d1 > 0;

b1 >
�2R1a1
pF1

;

g1 >
2R2d1
pFðS1Þ

;

FðS1Þ > 0 :

ð8Þ

From Theorem 2.1, F(S1)> 0 if

b4 >
�2a4d3
pF2

; g4 >
2d4d4
pF3

: ð9Þ

Now, Q1d > 0 if

a1 > 0; b1 > 0; g1 > 0 and d1 > 0:

Likewise, radial curve Q2 connecting vertex V2 to the points S2 on the opposite edges e2 is de-
fined as

Q2 ¼
Q2n

Q2d

; ð10Þ

where

Q2n ¼ ð1� sinmÞ3F2a2 þ sinmð1� sinmÞ2 b2F2 þ
2R3a2
p

� �

þ cos m̂ð1� cos m̂Þ2 g2FðS2Þ �
2d2R4

p

� �
þ ð1� cos m̂Þ3d2FðS2Þ;

Q2d ¼ a2ð1� sinmÞ3 þ b2 sinmð1� sinmÞ2 þ g2 cos m̂ð1� cos m̂Þ2 þ d2ð1� cos m̂Þ3:

such that

m ¼ p
2
ð1� vÞ; m̂ ¼ 1� m: ð11Þ

R3 and R4 are the directional derivatives at V2 and S2

R3 ¼ ðxs2 � x2Þ
@f
@x

ðV2Þ þ ðys2 � y2Þ
@f
@y

ðV2Þ

R4 ¼ ðxs2 � x2Þ
@f
@x

ðS2Þ þ ðys2 � y2Þ
@f
@y

ðS2Þ

and F(S2) is the boundary curve along the edge e2 to be evaluated from the following expres-
sion

FðS2Þ ¼
F2n

F2d

;
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where

F2n ¼ ð1� sin sÞ3F3a5 þ sin rð1� sin rÞ2 b5F3 þ
2d5a5
p

� �

þ cos rð1� cos rÞ2 g5F1 �
2d5d6
p

� �
þ ð1� cos rÞ3d5F1;

F2d ¼ a5ð1� sin rÞ3 þ b5 sin rð1� sin rÞ2 þ g5 cos rð1� cos rÞ2 þ d5ð1� cos rÞ3:

d5 and d6 are the directional derivatives along V1V3

�!
at V1 and V3

d5 ¼ ðx1 � x3Þ
@f
@x

ðV3Þ þ ðy1 � y3Þ
@f
@y

ðV3Þ;

d6 ¼ ðx3 � x2Þ
@f
@x

ðV1Þ þ ðy3 � y2Þ
@f
@y

ðV1Þ:

From Eq 10, Q2 > 0 if

Q2n > 0 and Q2d > 0:

Now, Q2n > 0 if

a2 > 0; d2 > 0;

b2 >
�2R3a2
pF2

;

g2 >
2R4d2

pFðS2Þ
;

FðS2Þ > 0 :

ð12Þ

From Theorem 2.1, F(S2)> 0 if

b5 >
�2a5d5

pF3

; g5 >
2d5d6

pF1

: ð13Þ

Now, Q2d > 0 if

a2 > 0; b2 > 0; g2 > 0andd2 > 0:

and the radial curve Q3 connecting vertex V3 to the point S3 on the opposite edge e3 is defined
as

Q3 ¼
Q3n

Q3d

; ð14Þ

where

Q3n ¼ ð1� sin nÞ3F3a3 þ sin nð1� sin nÞ2 b3F3 þ
2R5a3
p

� �

þ cos nð1� cos nÞ2 g3FðS3Þ �
2d3R6

p

� �
þ ð1� cos nÞ3d3FðS3Þ;

Q3d ¼ a3ð1� sin nÞ3 þ b3 sin nð1� sin nÞ2 þ g3 cos nð1� cos nÞ2 þ d3ð1� cos nÞ3:

C¹ Positive Surface over Positive Scattered Data Sites

PLOS ONE | DOI:10.1371/journal.pone.0120658 June 9, 2015 8 / 22



where R5 and R6 are the directional derivatives at V3 and S3 defined as

R5 ¼ ðxs3 � x3Þ
@f
@x

ðV3Þ þ ðys3 � y3Þ
@f
@y

ðV3Þ

R6 ¼ ðxs3 � x3Þ
@f
@x

ðS3Þ þ ðys3 � y3Þ
@f
@y

ðS3Þ

and F(S3) is the boundary curve along the edge e3 to be evaluated from the following expres-
sion

FðS3Þ ¼
F3n

F3d

;

where

F3n ¼ ð1� sin tÞ3F1a6 þ sin tð1� sin tÞ2 b6F1 þ
2d1a6
p

� �

þ cos tð1� cos tÞ2 g6F2 �
2d6d2
p

� �
þ ð1� cos tÞ3d6F2;

F3d ¼ a6ð1� sin tÞ3 þ b6 sin tð1� sin tÞ2 þ g6 cos tð1� cos tÞ2 þ d6ð1� cos tÞ3:

d1 and d2 are the directional derivatives along V1V2

�!
at V1 and V2

d5 ¼ ðx2 � x1Þ
@f
@x

ðV1Þ þ ðy2 � y1Þ
@f
@y

ðV1Þ;

d6 ¼ ðx2 � x1Þ
@f
@x

ðV2Þ þ ðy2 � y1Þ
@f
@y

ðV2Þ:

From Eq 14, Q3 > 0 if

Q3n > 0 and Q3d > 0:

Now, Q3n > 0 if

a3 > 0; d2 > 0;

b3 >
�2R5a3
pF3

;

g3 >
2R6d3

pFðS3Þ
;

FðS3Þ > 0 :

ð15Þ

From Theorem 2.1, F(S3)> 0 if

b6 >
�2a6d1

pF1

; g6 >
2d6d2

pF2

: ð16Þ

Now, Q3d > 0 if

a3 > 0; b3 > 0; g3 > 0 and d3 > 0:

The above discussion leads to the following result:
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Theorem 4.1 The C1 triangular pactch P in Eq (4) is positive if the following conditions are
attained.

a1 > 0; a2 > 0; a3 > 0; a4 > 0; a5 > 0; a6 > 0;

d1 > 0; d2 > 0; d3 > 0; d4 > 0; d5 > 0; d6 > 0;

b1 > max 0;
�2R1a1
pF1

� �
; g1 > max 0;

2R2d1
pFðS1Þ

� �
;

b2 > max 0;
�2R3a2
pF2

� �
; g2 > max 0;

2R4d2
pFðS2Þ

� �
;

b3 > max 0;
�2R5a3
pF3

� �
; g3 > max 0;

2R6d3
pFðS3Þ

� �
;

b4 > max 0;
�2a4d3
pF2

� �
; g4 > max 0;

2d4d4
pF3

� �
;

b5 > max 0;
�2a5d5
pF3

� �
; g5 > max 0;

2d5d6
pF1

� �
;

b6 > max 0;
�2a6d1
pF1

� �
; g6 > max 0;

2d6d2
pF2

� �
:

The above constraints can be rearranged as

b1 > l1 þ max 0;
�2R1a1
pF1

� �
; g1 > m1 þ max 0;

2R2d1
pFðS1Þ

� �
; l1;m1 > 0;

b2 > l2 þ max 0;
�2R3a2
pF2

� �
; g2 > m2 þ max 0;

2R4d2
pFðS2Þ

� �
; l2;m2 > 0;

b3 > l3 þ max 0;
�2R5a3
pF3

� �
; g3 > m3 þ max 0;

2R6d3
pFðS3Þ

� �
; l3;m3 > 0;

b4 > l4 þ max 0;
�2a4d3
pF2

� �
; g4 > m4 þ max 0;

2d4d4
pF3

� �
; l4;m4 > 0;

b5 > l5 þ max 0;
�2a5d5
pF3

� �
; g5 > m5 þ max 0;

2d5d6
pF1

� �
; l5;m5 > 0;

b6 > l6 þ max 0;
�2a6d1
pF1

� �
; g6 > m6 þ max 0;

2d6d2
pF2

� �
; l6;m6 > 0:

5. Numerical Examples
This section illustrates the positivity preserving scheme for scattered data devised in
Section 4.3.

Example 5.1 Positive scattered data is taken in Table 1. Fig 4 represents corresponding delau-
nay triangulations. The data is interpolated first by Eq (4) for arbitrary values of free parame-
ters, α1 = 4.1, α2 = 3;α3 = 2.5, α4 = 1.6, α5 = 2.7, α6 = 2.8, β1 = 3.8, β2 = 2.4, β3 = 4.2, β4 = 2.5, β5
= 1.5, β6 = 4, γ1 = 1, γ2 = 6, γ3 = 1, γ4 = 2, γ5 = 2, γ6 = 3, δ1 = 1, δ2 = 3, δ3 = 3, δ4 = 1, δ5 = 2, δ6 =
1. The resulting surface is displayed in Fig 5. It is clear from Fig 5 that the inherent shape feature
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Table 1. A Positive scattered data set I.

x y F

0 0 0.7487

0 0.125 0.5779

0 0.25 0.4668

0 0.375 0.4042

0 0.625 0.4042

0 0.75 0.4668

0 0.875 0.5779

0 1 0.7487

0.125 0 0.5779

0.125 0.125 0.4248

0.125 0.5 0.251

0.125 0.625 0.2691

0.125 0.75 0.3252

0.125 1 0.5779

0.25 0 0.4668

0.25 0.125 0.3252

0.25 0.25 0.2331

0.25 0.375 0.1813

0.25 0.5 0.1645

0.25 0.875 0.3252

0.375 0.125 0.2691

0.375 0.25 0.1813

0.375 0.625 0.1317

0.375 0.75 0.1813

0.375 0.875 0.2691

0.375 1 0.4042

0.5 0 0.384

0.5 0.375 0.1157

0.5 0.625 0.1157

0.5 0.75 0.1645

0.5 0.875 0.251

0.5 1 0.384

0.625 0 0.4042

0.625 0.125 0.2691

0.625 0.375 0.1317

0.625 0.5 0.1157

0.625 0.625 0.1317

0.75 0 0.4668

0.75 0.125 0.3252

0.75 0.375 0.1813

0.75 0.75 0.2331

0.75 0.875 0.3252

x y z

0.875 0 0.5779

0.875 0.125 0.4248

0.875 0.375 0.2691

0.875 0.625 0.2691

(Continued)
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Table 1. (Continued)

x y F

0.875 0.75 0.3252

0.875 0.875 0.4248

0.875 1 0.5779

1 0 0.7487

1 0.125 0.5779

1 0.25 0.4668

1 0.375 0.4042

1 0.5 0.384

1 0.625 0.4042

1 0.75 0.4668

1 0.875 0.5779

1 1 0.7487

0.75 1 0.4668

doi:10.1371/journal.pone.0120658.t001

Fig 4. Delaunay triangulation of positive data in Table 1.

doi:10.1371/journal.pone.0120658.g004
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of positivity of data could no be held in visual model. This detriment is removed in Figs 6, 7 and
8 by implementing positivity preserving conditions summarized in Theorem 4.1. It is worth men-
tioning here that parameters αi and δi for i = 1,2, . . .,6 are left free to refine the shape according
to user’s requirement. The effect of free parameters are shown in Figs 6, 7 and 8. Figs 6 and 7 are
constructed against the parameter choice α1 = 12, α2 = 0.4, α3 = 13, α4 = 0.22, α5 = 12, α6 = 0.33,
δ1 = 13, δ2 = 0.3, δ3 = 14, δ4 = 0.3, δ5 = 15, δ6 = 12 and α1 = 0.1, α2 = 1.0, α3 = 0.5, α4 = 1.6,
α5 = 0.7, α6 = 0.8, δ1 = 0.8, δ2 = 0.4, δ3 = 1.2, δ4 = 1.5, δ5 = 1.5, δ6 = 1.0 respectively, which lacks
smoothness. A smooth visibly pleasant representation is obtained in Fig 8 by setting α1 = 1.0,
α2 = 1.0, α3 = 0.5, α4 = 0.6, α5 = 0.7, α6 = 0.8, δ1 = 0.8, δ2 = 0.4, δ3 = 1.2, δ4 = 0.5, δ5 = 1.0,
δ6 = 1.0

Example 5.2 A Positive scattered data set is displayed in Table 2. Delauny triangulation is il-
lustrated in Fig 9 and the corresponding surface in Fig 10 is obtained by interpolating the data

Fig 5. Rational cubic trigonometric surface of the positive data in Table 1.

doi:10.1371/journal.pone.0120658.g005
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for arbitrary values of free parameters, α1 = 4.1, α2 = 3;α3 = 2.0, α4 = 1.5, α5 = 2.7, α6 = 2.5, β1 =
3.5, β2 = 2.3, β3 = 3.2, β4 = 2.2, β5 = 1.0, β6 = 4.5, γ1 = 1.4, γ2 = 5.5, γ3 = 1.5, γ4 = 2.2, γ5 = 1.5, γ1
= 2.5, δ1 = 0.5, δ2 = 3.1, δ3 = 3.5, δ4 = 0.4, δ5 = 2, δ6 = 1.2, in description of Eq (4). It is evident
from Fig 10 that the positivity of data could not be conserved in visual model. This impediment is
removed in Figs 11, 12 and Fig 13 by implementing positivity preserving constraints on parame-
ters βi, γi for i = 1,2, . . .,6, summarized in Theorem 4.1. Here, it is noteworthy that parameters αi
and δi for i = 1,2, . . .,6 are set free to refine the shape as required by the user. The effect of free pa-
rameters are shown in Figs 11, 12 and 13. Figs 11 and 12 are constructed against the parameter
choice α1 = 2.0, α2 = 0.1, α3 = 0.5, α4 = 0.5, α5 = 1.0, α6 = 0.63, δ1 = 1.0, δ2 = 0.33, δ3 = 0.5, δ4 =
0.4, δ5 = 1.0, δ6 = 0.3 and α1 = 2.2, α2 = 1.1, α3 = 2.5, α4 = 1.5, α5 = 1.0, α6 = 1.0, δ1 = 1.0, δ2 =
1.0, δ3 = 1.5, δ4 = 1.4, δ5 = 1.0, δ6 = 0.3 respectively, which lacks smoothness. A smooth visibly
pleasant representation is obtained in Fig 13 by setting α1 = 2.0, α2 = 0.4, α3 = 0.5, α4 = 0.5, α5 =
1.0, α6 = 0.63, δ1 = 0.3, δ2 = 0.33, δ3 = 0.5, δ4 = 0.3, δ5 = 0.5, δ6 = 0.2.

Fig 6. Positive surface generated from Theorem 4.1 of the positive data in Table 1.

doi:10.1371/journal.pone.0120658.g006
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Conclusion
In this study, positivity preserving algorithm for scattered data arranged over a triangular do-
main, is established. The rational trigonometric cubic function [13] with four free parameters
is used for the interpolation along each boundary and radial curve. Nielson side vertex has
been applied to construct the interpolating surface. Constraints on half of the parameters are
obtained to guarantee the positive shape of data while half are set free for users modification.
The proposed algorithm, surpasses many prevailing approaches in literature. In [10], authors

Fig 7. Positive surface generated from Theorem 4.1 of the positive data in Table 1.

doi:10.1371/journal.pone.0120658.g007
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Fig 8. Positive surface generated from Theorem 4.1 of the positive data in Table 1.

doi:10.1371/journal.pone.0120658.g008

Table 2. A Positive scattered data set II.

x y F

0 0 0.4486

0 0.125 0.3616

0 0.25 0.4692

0 0.375 0.6827

0 0.5 0.786

0 0.625 0.836

0 0.75 0.8765

0 0.875 0.9125

0 1 0.9447

0.125 0 0.3369

0.125 0.125 0.0001

0.125 0.375 0.6256

0.125 0.625 0.8621

(Continued)
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Table 2. (Continued)

x y F

0.125 0.875 0.9334

0.125 1 0.9634

0.25 0 0.4529

0.25 0.125 0.1767

0.25 0.25 0.3217

0.25 0.375 0.7005

0.25 0.5 0.8555

0.25 0.625 0.9327

0.25 0.75 0.9775

0.25 0.875 0.9686

0.25 1 0.9926

0.375 0 0.696

0.375 0.375 0.8363

0.375 0.625 1.2176

0.375 0.875 1.028

0.375 1 1.0284

0.5 0 0.8329

0.5 0.125 0.8315

0.5 0.25 0.821

0.5 0.375 0.8498

0.5 0.5 0.925

0.5 0.625 1.0925

0.5 0.75 1.1688

0.5 0.875 1.0568

0.5 1 1.0662

0.625 0 0.9049

0.625 0.125 0.8376

0.625 0.375 0.7163

0.625 0.5 0.8608

0.625 0.75 1.0671

0.625 0.875 1.0883

0.625 1 1.1023

0.75 0 0.9639

0.75 0.125 0.8326

0.75 0.25 0.6283

0.75 0.375 0.5976

0.75 0.5 0.8075

0.75 0.625 1.0136

0.75 0.75 1.0989

0.75 0.875 1.1231

0.75 1 1.134

0.875 0 1.0355

0.875 0.125 0.922

0.875 0.25 0.7477

0.875 0.375 0.7193

0.875 0.5 0.893

0.875 0.625 1.0638

(Continued)
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Table 2. (Continued)

x y F

0.875 0.75 1.1335

0.875 0.875 1.152

0.875 1 1.1597

1 0 1.1074

1 0.125 1.0598

1 0.25 0.9848

1 0.375 0.9745

1 0.5 1.054

1 0.625 1.1319

1 0.75 1.1646

1 0.875 1.1744

1 1 1.1791

doi:10.1371/journal.pone.0120658.t002

Fig 9. Delaunay triangulation of positive data in Table 2.

doi:10.1371/journal.pone.0120658.g009
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utilized a cubic function with one free parameter to retain the positive shape of data. Positive
surface was obtained by drawing data dependent constraints on this free parameter, and, hence
the scheme did not offer refinement in the shape. The scheme suggested in this paper does not
suffer this detriment. The developed algorithm is local and can be applied to data with or with-
out derivatives. Moreover, shape preserving algorithms play an instrumental role in many
areas of visualization such as geometric modelling, robot trajectories, evolution game theory,
prisoner’s dilemma game [16], [17], [18], meshless method and inverse kinemaics etc.

Fig 10. Rational cubic trigonometric surface of the positive data.

doi:10.1371/journal.pone.0120658.g010
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Fig 11. Positive surface generated from Theorem 4.1.

doi:10.1371/journal.pone.0120658.g011

Fig 12. Positive surface generated from Theorem 4.1.

doi:10.1371/journal.pone.0120658.g012
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