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Abstract
White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for

unprecedented mortalities in North American cave bat populations. There have been few

descriptions of enzyme activities that may function in WNS host/pathogen interactions,

while no study has isolated and described secreted proteases. To address the hypothesis

that Pseudogymnoascus destructans secretes extracellular proteases that function in wing

necrosis during WNS infection, the object of this study was to culture P. destructans on vari-

ous media, then isolate and structurally identify those proteases accumulated stably in the

culture medium. We found a single dominant protease activity on minimal nutrient broth en-

riched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluo-

ride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric

focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular

weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature opti-

mum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and

Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein ac-

cession from the sequenced P. destructans genome that is further identified as a MEROPS

family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3,

were identified in the P. destructans genome with 90% and 53% homology, respectively. P.
destructans S8A serine proteases showed closer sequence conservation to P. pannorum
and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific poly-

clonal antibodies developed from the PdSP1 sequence detected the protein in western

blots. These subtilisin-like serine proteases are candidates for further functional studies in

WNS host-pathogen interaction.
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Introduction
Pseudogymnoascus (basionym: Geomyces) destructans is the fungus responsible for white nose
syndrome (WNS) in bats [1–3]. WNS has caused unprecedented mortalities in North Ameri-
can cave dwelling bats to the point of possible regional extinctions [4, 5]. A clinical sign in
WNS-infected bats is necrosis of the wing membrane, which may lead to infarction and elec-
trolyte imbalances [6–12]. In addition to locomotion function, bat wings play important roles
in their ecology ranging from microbial protection to fecundity [13, 14]. To date, there has
been no causal evidence provided for bat wing lesions. One hypothesis is that as bats exhibit
frequent arousal from torpor, they “scratch” their wings to remove irritating fungal hyphae
and physically damage tissues. Another hypothesis is P. destructans secretes proteases during
infection, allowing mycelial penetration into underlying tissues. In addition to these possible
roles in wing necrosis, immune reconstitution inflammatory syndrome (IRIS) in post-hiber-
nating bats may exacerbate damage intensity [15].

Wingmembranes consist of a thin load bearing portion and a thicker “scaffold” connective tis-
sue trabeculae portion that serves to reinforce the wing structure [16]. The thin portion (epider-
mis) consists of thin epithelial cells and the keratin-rich stratum corneum. The dermis is thin and
indistinguishable from the hypodermis. Elastin/collagen fibers, nerves, blood vessels, and muscle
fibers are found throughout. The thicker “scaffold” region contains higher concentrations of elas-
tin/collagen fibers and sebaceous glands. Elastin’s composition is rich in hydrophobic amino
acids including glycine, valine, alanine, and proline. Structurally, collagen is a triple helix com-
posed of amino acid triplet motifs Gly-Pro-X or Gly-X-Hyp [17]. The combination of elastin/
collagen fiber network is the primary contributor to tissue elasticity; however, the contribution of
each fiber type to overall elasticity is debatable [18]. The cornified cells of the stratum corneum
are highly enriched in keratins, which are hydrophobic proteins with high amounts of disulfide
cross-links [19]. The combination of these fibrous structural proteins creates an integumentary
protective matrix aiding in innate immunity as a physical barrier to pathogenic microbes.

Fungi secrete depolymerizing enzymes to digest complex substrates in their environment
for nutritional requirements. Extracellular proteases hydrolyze peptide bonds in protein catab-
olism to yield amino acids for assimilation [20]. Classical protease nomenclature grouped these
enzymes based solely on catalytic mechanism, producing four groups: serine, metal, thiol, and
acid proteases [21]. Currently, seven classes are recognized: serine, metallo-, cysteine, aspartic,
threonine, glutamic, and asparagine proteases, with other proteases with unknown or mixed
functions [20]. Protease classification now includes not only catalytic mechanism, but also ac-
cording to the polypeptide position cleaved, primary amino acid sequence homology, and
structure. Proteases are grouped into families by primary sequence homologies and further
clustered in clans based on common tertiary structures [22]. Two classes frequently implicated
in fungal pathogenesis include secreted metalloproteases and serine proteases [23].

Because extracellular proteases secreted by fungi may function as virulence factors, we hy-
pothesized that P. destructans produces extracellular proteases to enable hyphal penetration
into chiropteran integument. Such secreted enzymes may play a central role in pathogen estab-
lishment and bat wing necrosis during WNS. Our objective was to isolate and identify extracel-
lularly secreted protease activities produced in P. destructans cultures. We separated a
dominant protein accumulated stably in culture medium and identified it to be a subtilisin-like
serine protease. This P. destructans serine protease (PdSP1) produced in vitro is a candidate for
further functional studies in host/pathogen interactions to establish its putative role in WNS.
While other studies have reported general screening for secreted enzyme activities in P. destruc-
tans cultures [24–26], this is the first isolation and description of a P. destructans serine prote-
ase and its association to a specific gene sequence.
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Materials and Methods

Fungal Cultivation and Secreted Protein Production
P. destructans was obtained from Dr. Kevin Keel (Southeast Cooperative Wildlife Disease
Study, College of Veterinary Medicine, The University of GA, USA) and cultured in the Envi-
ronmental Pathogen Lab at Arkansas State University [permits: CDC (#2009–09–136),
USFWS (#LE227131–0), IBC (SOP#AMP-001–111009 and SOP#AMP-002–111009)]. Stock
cultures were maintained on malt agar at 8°C (Difco, Becton Dickinson, Sparks, MD, USA). To
prepare inocula for protein-production cultures, P. destructans was grown on malt broth for
two months. Mycelial plugs (4 of ca. 2 cm dia.) were inoculated in liquid culture media (100 ml
in 2 L Fernbach flask for high surface area to volume ratio) and grown statically in the dark at
8°C. Total protease production was determined in complex culture media (Difco): tryptone
peptone, brain/heart infusion, proteose peptone, tryptic soy broth (TSB), and compared with
minimal nutrient broth (MNB) (NH4Cl 9.34 mM, NaCl 8.55 mM, K2HPO4 1.72 mM, KH2PO4

2.92 mM, MgCl2
.6H2O 0.49 mM, FeSO4

.7H2O 0.49 mM, 0.01% SDS, and 0.01% yeast extract)
supplemented with 0.5% protein: gelatin (G), keratin (K), casein (C), or elastin (E).

Cultures were grown for 6–8 weeks then harvested when mycelia covered the entire liquid
surface. Culture supernatants were recovered by centrifugation at 10,000 x g for 30 min, filtered
through a 0.45 μmmembrane, and then concentrated by lyophilization or ultrafiltration. Con-
centrated media were exchanged into deionized water (containing 0.02% w/v NaN3) with
Econo-Pac 10 DG desalting columns (Biorad # 732–2010).

Preparative Isoelectric Focusing
Preparative isoelectric focusing (IEF) was performed for six hours at 12 W with a BioRad Roto-
for cell using 1% BioRad pH 3–10 ampholytes added to salt-free protein samples following
manufacturer’s instructions. The pH of each fraction was recorded and adjusted to pH 7.0 with
HCl/NaOH. Fractions were brought to an equal volume with ultrapure H2O (18 mO), and pro-
tein and protease activity (measured at pH 7.0) was determined for each.

Lectin Affinity Chromatography
Glycosylated proteins were separated by lectin affinity chromatography with concanavalin A
Sepharose (ConA; Sigma # C7911) following manufacturer’s recommendation. Briefly, ConA
(ca. 10 ml) packed in small columns (1.5 cm ID x 12 cm) was washed with five bed volumes of
binding buffer (20 mM Tris, 0.5 M NaCl, pH 8), and then sample was applied twice. Following
washing the ConA column with five bed volumes of binding buffer, the glycoproteins were
eluted with five bed volumes of elution buffer (20 mM α-D-methylglucoside, 0.5 M NaCl,
20 mM Tris, pH 4). The eluted fraction was neutralized with Tris buffer (pH 9). ConA samples
were exchanged into ultrapure H2O with Bio-Rad Econopak 10DG column prior to further
analysis by protein and enzyme assay or gel electrophoresis. All samples were stored with
0.02% (w/v) NaN3 at 4°C.

Protein Determination and Electrophoretic Analyses
The total protein concentration was determined using Bradford’s Coomassie Brilliant Blue re-
agent and BSA as a standard [27]. Samples were prepared for gel electrophoresis using trichlo-
roacetic acid (TCA) precipitation. TCA pellets were washed with ice-cold acetone, dried in
vacuo and reconstituted in 50 μl SDS Laemmli sample buffer. Proteins in culture medium sam-
ples were separated using the BioRad Mini-PROTEAN TCX 12% pre-cast gels with the
Laemmli Tris/glycine buffer system and staining with Coomassie Brilliant Blue reagent
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according to manufacturer’s instructions [28]. Protein size was estimated with Precision Plus
Protein All Blue standards (BioRad # 161–0373) using U-SCAN-IT Graph Digitizing Software
(v 5.1, Silk Scientific Corp, USA). Percentage protein composition stained bands were also esti-
mated with U-SCAN-IT software.

Samples were desalted with Econo-Pac 10 DG desalting columns. Extracellular proteins
were separated by 10% Ready Gel Zymogram Gel (gelatin; BioRad # 161–1113) following
the manufacturer’s instructions. Samples were concentrated for electrophoresis with a single
acetone precipitation, run in non-reducing conditions, incubated for 30 min in renaturation
buffer (BioRad # 161–0765), then incubated for 16 h at room temperature in development
buffer (BioRad # 161–0766). Gels were stained with 30% methanol, 10% acetic acid,
0.5% Coomassie Brilliant Blue R-250 (30 min) and destained in the methanol/acetic
acid solution.

Enzyme Activity Assays
Protease activity in culture media was initially determined with fluorescein isothiocyanate
(FITC) casein according to the manufacturer’s instructions and compared to a trypsin standard
(Thermo Fisher Scientific, kit # 23266). Values are expressed as units/ml, where one unit is de-
fined as 1.0 mg / 1.0 ml trypsin standard. For determining optimal pH, protease activities were
determined with azocoll (Sigma # A4341) added in 5.0 mg portions to 1.0 ml 100 mM potassi-
um phosphate buffer, pH 7.0 at 37°C. Affinity-purified protein samples were added in 200 μl
aliquots, the reaction was continued at 37°C for 30 min with gentle shaking, and absorbance
was measured at 520 nm [29].

Serine protease activity of affinity-purified proteins was quantified using a peptide-pNA
(Suc-Ala-Ala-Pro-Phe-NHPhNO2) colorimetric substrate (Sigma # S7388; 0.1 mM). Protein-
ase K (E.C. 3.4.21.64; Sigma # P6556) was used as a positive control to determine relative serine
protease activity. Substrate was prepared in 0.1 M Tris-HCl, 0.01 M CaCl2 buffer at pH 7.5.
The protein samples (100 μl) were mixed with peptide-pNA substrate (600 μl) and incubated
for 10 min at room temperature, then product absorbance was determined at 410 nm and com-
pared to a 4-nitroaniline standard curve. One unit serine protease activity was defined as
1 μmol 4-nitroaniline released per minute at 25°C.

Biochemical Characterization
The contributions of protease classes in mixed protein samples was assessed by adding various
reagents and salts followed with an activity assay with FITC casein substrate: [phenylmethyl-
sulfonyl fluoride (PMSF, 1 mM, MeOH), iodoacetamide (IAA, 10 mM, H2O), sodium dodecyl
sulfate (SDS, 0.5%), dithiothreitol (DTT, 0.1%), and Ca2+, Mg2+, and Zn2+, (all metal ions
5 mM)]. The pH optima of crude medium and affinity-purified protein were determined with
azocoll as a substrate.

Amino-Terminal Sequence Determination
Amino-terminal protein sequences for individual proteins blotted to PVDF membrane were
determined by Edman sequencing chemistry with an AB Procise 494 instrument at the Protein
Core Facility of the Iowa State University (www.protein.iastate.edu/nsequence494). Individual
proteins resolved by SDS-PAGE were electroblotted to 0.45 μm Immobilon-P PVDF mem-
brane with 10 mM CAPS, pH 11, with 10% methanol (v/v) transfer buffer for 1 hr at 150 V
constant as previously described [30].

Pseudogymnoascus Destructans Secreted Serine Protease

PLOS ONE | DOI:10.1371/journal.pone.0120508 March 18, 2015 4 / 18

http://www.protein.iastate.edu/nsequence494


Peptide Mass Fingerprint by MALDI-TOF MS
Structure-based protein identification was performed by peptide mass fingerprinting using
trypsin digestions and separation by MALDI-TOF MS [31]. Briefly, SDS-PAGE-resolved pro-
tein bands were excised from gels, processed with 0.1% w/v Rapigest (Waters, Milford, MA,
USA), and digested overnight with Trypsin-Gold (Promega, Madison, WI, USA) according to
manufacturer’s instructions. Tryptic peptides were recovered and desalted with C18 ZipTips.
Peptides were mixed with α-cyano-4-hydroxy-cinnamic acid before being spotted onto a
MALDI plate. Spectra were obtained with a Waters MALDI Micro MXMS in positive reflec-
tron mode (pulse voltage, 2,000 V; reflectron, 5,200 V; source, 15,000 V) with a 20 Hz N2 laser
at 337 nm. Spectral data were processed with MassLynx v 4.1 and ProteinLynx Global Server
2.5 (Waters).

De novo Peptide Sequencing by Orbitrap MS/MS
Sequence data from trypsin digests from affinity-purified proteins was obtained from the Uni-
versity of Arkansas for Medical Sciences Proteomics Core Facility (tri.uams.edu/research-
resources-services-directory/core-facilities-technical-services/proteomics-core/) using a
Thermo Scientific LTQ-Orbitrap Velos mass spectrometer [32]. The five most abundant pep-
tides were selected for high-resolution tandemMS, with a 99.0% confidence protein threshold
and 95.0% confidence peptide threshold.

Bioinformatics
The peptide ion list generated by MALDI-TOFMS was used for putative fungal enzyme identi-
fication by the Mascot search engine (www.matrixscience.com). Processed spectra were submit-
ted to MASCOT (Fixed Modification: Carbamidomethyl, Variable Modification: Oxidation,
Peptide tol. ± 200 ppm) for comparison to in silica digested proteins. The BLASTp program at
NCBI (www.ncbi.nlm.nih.gov/blast/) was used to determine gene sequence identity and corre-
late identity to known fungal proteases [33]. Putative enzyme function was determined with the
Universal Protein Resource (UniProt; www.uniprot.org) [34]. The presence of a signal peptide
was determined with the SignalP 4.1 server (www.cbs.dtu.dk/services/SignalP/). Phylogenetic
analysis of P. destructans enzyme to dermatophytic and plant pathogenic fungi was performed
by www.phylogeny.fr/ [35, 36]. A 3-D structure of the protein was generated by FirstGlance in
Jmol (bioinformatics.org/firstglance/fgij/). Multiple sequence alignments for the three homolo-
gous PdSP proteins were performed with Clustal Omega v 1.2.0 (www.ebi.ac.uk/Tools/msa/
clustalo/).

PdSP1 antiserum andWestern Blotting
Rabbit polyclonal antibodies recognizing PdSP1-specific peptide GSVDSTDTRASSSN were
generated and affinity purified by the GenScript Corporation (Piscataway, NJ, USA) [37]. Pep-
tides were selected by sequence hydrophilicity, orientation, sequence length, and homology to
closely related proteins identified by a BLASTp search. Proteins were electroblotted to PVDF
membrane in the manner described to prepare samples for N-terminal sequencing. Protein-
blotted membranes were blocked with 20% nonfat dry milk and incubated in PdSP1 primary
antibody (1:10,000) in Tris buffered saline (TBS) tween solution (1.5 M NaCl, 0.5 M Tris-base,
1 ml/L Tween 20, pH 7.5). Proteins were incubated in secondary goat anti-rabbit alkaline phos-
phatase conjugate antibody (1:3,000) in TBS-Tween and visualized with nitro-blue tetrazolium
chloride and 5-bromo-4-chloro-3’-indolyphosphate p-toluidine salt in alkaline phosphatase
buffer (150 mMNaCl, 1 mMMgCl2, 100 mM Tris, pH 9).
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Results

Fungal cultivation and enzyme production
Representative P. destructans cultures comparing growth on MNB (minimal nutrient broth
with supplemented protein, e.g., MNB+G) media, on complex fungal culture media (e.g., TSB),
and extracellular protein profiles are shown in Fig. 1. More diffuse and slower hyphal growth
was observed on defined MNB, requiring ~6 weeks to form a mycelial mat across the surface.
Hyphal-growth occurred more quickly on complex media (~4 weeks for considerable hyphal
mass), but the mycelial mass formed thick localized clumps rather than the thin mycelial mat
observed on MNB surfaces. Growth on MNB resulted in consistent secreted protein profiles
(observed by SDS-PAGE) regardless of protein supplement used (G, E, C, or K), while growth
on complex media produced variable protein profiles. Protease zymogram screening of culture
media showed two different activity profiles represented by MNB+G and TSB, which indicated
differences in the dominant protease activities present. The location of protease activity at the
top of the gel MNB media indicated the protein migrated into the gel poorly, whereas the

Fig 1. Pseudogymnoascus destructans growth in static liquid cultures. Left panel depicts typical culture
morphology in minimal nutrient broth with gelatin (A) compared to a nutritionally complex tryptic soy broth (B).
The right panel depicts a SDS-PAGE (Coomassie-Brilliant Blue G-250 stain) of extracellular proteins
recovered from culture media and a native gel zymogram (casein) illustrates protease activity from total
protein extract.

doi:10.1371/journal.pone.0120508.g001
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dominant activity in the TSB migrated midway down the gel, indicating distinct differences in
size and charge for the associated protein.

Qualitative differences were observed in total protease activity (determined with FITC ca-
sein substrate assay) secreted into culture media (Fig. 2). P. destructans grown on MNB with
supplemented proteins accumulated ~3X more total protease activity compared to the complex
media treatments. MNB samples treated with representative protease inhibitors (EDTA,
PMSF, and E-64) showed a dramatic reduction in activity occurred with PMSF, indicating
dominant serine protease activity. E-64 treatment resulted in no protease activity inhibition, in-
dicating measurable cysteine proteases were not secreted in media tested. EDTA treatment re-
sulted in pronounced inhibition in MNB media only. While EDTA generally inhibits metallo-
proteases, it can also de-stabilize other broad class activities, including certain serine proteases.
Though metallo-proteases may be secreted in MNB media, they likely represent a minor class
compared to serine proteases due to the singular activity band observed by zymogram analysis
(Fig. 1A). MNB+G provided the highest total protease activity yield, with nearly complete inhi-
bition of serine protease activity with PMSF. Further experimentation to isolate serine prote-
ases focused on culturing P. destructans with MNB+G.

Isolation of the serine protease activity
While the extracellular protein profile in MNB+G culture media is simple, the considerable so-
lution viscosity (possibly due to secreted polysaccharides) of concentrated samples was prob-
lematic for isolating the serine protease present. To address this issue, two separation methods
were evaluated—preparative IEF and affinity chromatography. For the first, the concentrated

Fig 2. Total protease activity (units x 103/ml) secreted by P. destructans grown in static liquid
cultures. Various protein-supplemented minimal nutrient broth media and complex culture media were used.
Controls are total activity accumulated in culture medium, and residual activity was determined following
treatment with the protease inhibitors EDTA, PMSF, and E-64. Minimal nutrient broth with K, keratin, G,
gelatin, E, elastin, C, casein. Complex media: TSB, tryptic soy broth, TP, tryptone peptone, BHI, brain-heart
infusion, PP, proteose peptone. (Mean and standard error for triplicate samples.)

doi:10.1371/journal.pone.0120508.g002
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enzyme solution was mixed with broad range ampholytes (pH 3–10) and fractionated in a
Rotofor cell. Protease activity was resolved as a peak over fractions 10–13 (pH 7–9; Fig. 3).
PMSF completely inactivated protease activity in the pooled fraction, confirming presence of
the serine protease (data not shown). The SDS-PAGE profile for proteins in pooled peak frac-
tions showed enrichment of two major bands at 27.9 kDa and 55.0 kDa in the pooled fraction
(their co-isolation indicates a similar pI for both proteins).

Further treatment of concentrated culture medium evaluated affinity binding to benzami-
dine-Sepharose and ConA chromatography media. No protein or activity was adsorbed to ben-
zamidine-Sepharose, suggesting the serine protease is not a family S1-type serine peptidase
[38]. In contrast, serine protease activity in extracellular preparations bound to the ConA lectin
affinity column, indicating it contains an N-linked glycan. SDS-PAGE of proteins eluted from
ConA (Fig. 4) showed the 27.9 kDa band was greatly enriched by this separation, and the 55.0
kDa band being eliminated. The specific activity of the ConA-bound fraction was increased 33-
fold, implicating the 27.9 kDa protein as the P. destructans serine protease (PdSP).

Electrophoretic and biochemical properties determined for the ConA-treated PdSP are
summarized in Table 1. The enzyme showed a broad pH optimum covering pH 6 to 8. Its tem-
perature optimum was ~60°C, suggesting modest thermal stability. Addition or DTT or SDS to
substrate (casein) solution showed increased enzyme activity, while divalent cation addition
did not further increase activity.

MALDI-TOF MS screening to identify P. destructans proteins
There were 7 major bands observed consistently by SDS-PAGE for proteins isolated from P.
destructansMNB+G culture medium (Fig. 1). All 7 proteins were excised from SDS-PAGE
gels, trypsin-digested, and then analyzed by MALDI-TOF MS to establish identity based on se-
quence by matching tryptic peptide sets using the MASCOT search engine with the Broad In-
stitute’s P. destructans genomic sequence database [Geomyces destructans Sequencing Project,

Fig 3. Preparative IEF separation and analysis of P. destructans extracellular proteins. Secreted proteins were recovered fromMBN-G culture medium
with broad-range ampholytes. Activity profile separated with broad-range ampholytes in the Rotofor cell (A). pH gradient indicated by dashed line. Protease
activity assayed with FITC-casein: activity indicates fluorescence units per ml. Pooled activity peak fractions (10–13) resolved by SDS-PAGE and stained
with Coomassie-brilliant blue.

doi:10.1371/journal.pone.0120508.g003
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Broad Institute of Harvard and MIT (www.broadinstitute.org)] and NCBI’s Reference Se-
quence database [39]. Tentative identifications were initially made for 5 proteins (Table 2). The
largest band, 115 kD, matched to a putative catalase/peroxidase HPI. The dominant 106 kD
protein, which co-separated by ConA binding, is without annotated function, but structural el-
ements and sequence homology implicate it to be a FAD-binding oxidoreductase. A minor
84 kD protein is also putatively identified as a C-N ligase. The 55 kDa protein, enriched in the
IEF peak fractions but not ConA, is putatively identified as a glycoside family 18 chitinase.
The smallest protein identified, 12.5 kDa, is putatively identified as a phosphatidylglycerol /
phosphatidylinositol transfer protein. The 70 kDa protein remains unidentified, but is

Fig 4. SDS-PAGE of P. destructans extracellular proteins separated by ConA lectin affinity
chromatography. Lane 1, Biorad Precision Plus mass standards; lane 2, Crude enzyme substrate; lane 3,
ConA elution (from non-adjacent gel lane); lane 4, western blot analysis detection in enriched protein
concentrate using a PdSP1 antiserum.

doi:10.1371/journal.pone.0120508.g004

Table 1. Properties observed for the Pseudogymnoascus destructans serine protease isolated by
ConA lectin affinity chromatography.

Molecular mass (SDS-PAGE) 27,900 Da

Estimated pI pH 7 to 8

Concanavalin-A binding Yes (N-linked glycoprotein)

N-terminal peptide ALETRSGAT

pH optimum pH 6 to 8

Temperature optimum 60°C

PMSF (1 mM) >90% inhibition

0.1% DTT 155% activity increase

0.5% SDS 178% activity increase

CaCl2 (5 mM) No change

MgCl2 (5 mM) No change

ZnCl2 (5 mM) No change

doi:10.1371/journal.pone.0120508.t001
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eliminated as the serine protease since it was separated from the isolated enzyme activity by
both IEF and affinity chromatography treatments.

The tryptic peptide mass spectrum (by MALDI-TOFMS) for the P. destructans 27.9 kDa
protein is shown in Fig. 5A. While the overall sample quality appeared good, the tryptic peptide
ion data was not able to provide statistically significant matching to any existing protein. Sever-
al exogenous peptides are identified in the mass spectrum—the autolytic trypsin peptide,m/z
842.50 and three peptides derived from ConA,m/z 1318.63,m/z 2104.06, andm/z 2832.34.
Further analysis of tryptic peptides from the 27.9 kDa protein was performed with an Orbitrap
(ThermoScientific LTQ Velos) mass spectrometer to obtain sequence data from peptide ions to
establish identity as the PdSP. De novo sequencing was obtained for five peptide ions:m/z
904.46,m/z 892.49 (observedm/z 908.49 for MOx+16),m/z 1435.70,m/z 2011.01, andm/z
3802.74, and the data are included in Table 3. A representative MS/MS spectrum is shown for
peptide ionm/z 908.49 (SVISMOxSLR) (Fig. 5B). The combined MS and MS/MS data matched
unequivocally to a specific open reading frame (UniProt GMDG_08491) from the P. destruc-
tans 20631–21 genome, confirming structure with functional serine protease activity for
PdSP1. The calculated tryptic peptide ions from the translated protein sequence (GenBank
ELR07576.1) are summarized in Table 3.

Sequence analysis for the translated PdSP1 gene
The complete translated amino acid sequence for the P. destructans gene product ELR07576.1,
represented by PdSP1, is shown in Fig. 6. BLASTp database searching (NCBI nrDB) indicated
two conserved structural domains for PdSP1. The first includes a 99 amino acid propeptide se-
quence representing a MEROPS family I9 inhibitor domain, followed by the 256 amino acid se-
quence representing a MEROPS proteinase K-like peptidase S8 family (SB clan) domain [20].
Two serine protease homologues are present in the P. destructans genome. The first, PdSP2,
shows 90% sequence identity with PdSP1, and a second homologue, PdSP3, showed a much
lower 53% sequence identity. There were BLASTp hits for 43 putative S8 serine proteases in
the P. pannorum genome, with sequence similarity falling between the two P. destructans ho-
mologues. The primary sequences for the three PdSP homologues from P. destructans and the
highest matching homologue from P. pannorum are included in Fig. 6.

Features of PdSP primary sequences in Fig. 6 include a 20 amino acid secretory signal pep-
tide and the location for the N-terminal amino acid in the mature protein (determined directly

Table 2. Tryptic peptide-mass fingerprint analysis by MALDI-TOF MS to identify major P. destructans1 extracellular proteins resolved by SDS-
PAGE.

Protein Mass
(kDa)

Gene Identification (and Protein Accesson) Mascot
Score

115 UniProt KATG (L8FYA6_PSED2; GenBank ELR04656.1); Catalase/peroxidase HPI 87

106 UniProt GMDG_07140 (L8FX91_PSED2; GenBank ELR05098.1); Similar to fungal FAD-binding oxidoreductases 162

84 UniProt GMDG_08145 (L8G218_PSED2; GeneBankELR06854.1); Similar to fungal glutamyl-tRNA(Gln)
amidotransferase subunit A

96

70 Not identified —

55 UniProt GMDG_06569 (L8FSW0_PSED2; GenBank ELR04060); Similar to fungal GH family 18 chitinase 85

27.9 UniProt GMDG_08491 (L8G6I7_PSED2; GenBank ELR07576); S8 serine peptidase —

12.5 UniProt GMDG_02579 (L8G2X2; GenBank ELR07487.1); Similar to fungal phospholipid transfer protein 137

1Gene identifications indicate ORF names from Pseudogymnoascus destructans ATCC MYA-4855 (strain 20631–21) genomic sequence. Identification of

the 27.9 kDa protein required both MS and MS/MS data to establish unequivocal identity.

doi:10.1371/journal.pone.0120508.t002
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from PdSP1 by Edman sequencing chemistry; Table 1). The specific order of Asp160-His192-
Ser345 catalytic triad (for family S8 serine endopeptidases), and the conserved motifs around
them, is indicated by shading. There are two predicted calcium-binding sites in PdSP1 (C1:
K294, A296, D319; and C2: G132, S135, H136). The mature PdSP1 is calculated to have a pI 7.21
and molecular weight (average mass) 27,882.70. These are consistent with the experimental re-
sults (Table 1). There is a single N-glycosylation sequon (N187-Y188-S189), which is occupied
based on ConA binding, but the glycan appears to contribute little to the apparent mass by

Fig 5. Peptidemass fingerprint and MS/MS spectra of PdSP1.MALDI-TOF MS spectrum (m/z 700–3000) from PdSP1 tryptic peptides (A). MS/MS
spectrum with b/y-series ions from peptide ionm/z 908.49 (Ox+16) (SVISMSLR) (B).

doi:10.1371/journal.pone.0120508.g005
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SDS-PAGE (Fig. 4). A single cysteine (C196) present in the mature protein sequence indicates
no internal disulfide bonds in PdSP1 structure.

A phylogenetic tree was constructed with the three P. destructans PdSP sequences and select-
ed dermatophytic and plant pathogenic subtilisin-like serine proteases (S8A) with high sequence
relationship (identified from BLASTp search), Endgyodontium album proteinase K, Bacillus
licheniformis subtilisin (Carlsberg), and with Aspergillus clavatus serine protease chosen arbi-
trarily as an outgroup (Fig. 7). P. pannorum S8A serine protease sequences were not included
due to the very large number of genes (43) and their close sequence conservation (as indicated
by BLASTp) compared to the P. destructans PdSPs. PdSP2 and PdSP3 were 90% and 53% ho-
mologous (by sequence identity) to PdSP1, respectively. P. destructans S8 serine proteases
grouped closer to plant pathogenic fungal proteases [e.g., Botryotinia fuckeliana (gray mold dis-
ease), Sclerotinia sclerotiorum (white mold),Marssonina brunnea (Marssonina leaf spot)] than
to human pathogenic dermatophytes (i.e., Arthroderma, Trichophyton, andMicrosporum).

Western Blotting
The peptide GSVDSTDTRASSSN (corresponding to amino acid positions 400–413 in Fig. 6)
was synthesized and used to generate a PdSP1-specific antiserum for subsequent use in western
blotting detection of the protein. The resulting PdSP1 antisera showed suitable titer and sensi-
tivity for detecting PdSP1 (27.9 kDa band) in blots from total protein isolated from P. destruc-
tans culture medium. Bovine trypsin, proteinase K, or other P. destructans proteins did not
cross-react (data not shown).

Discussion
WNS is an emergent fungal disease with devastating consequences for North American cave-
dwelling bat populations, and little is known about P. destructans’ ecology or relative pathoge-
nicity [1, 2, 26]. Bats play integral roles in our ecosystem as keystone species, pollinators, and
pest control [40, 41]. The unprecedented mass mortality of cave bats may lead to increases in
insect pests, pesticide usage, and insect vector diseases [42]. The loss of bats and their function

Table 3. Tryptic peptide ion masses, position corresponding to the mature protein, and the corresponding amino acid sequences translated
(GenBank ELR07576.1) from the P. destructans gene matched to PdSP1 (27.9 kDa protein).

Mass (M+1) Sequence Position PdSP1 Peptide Sequence

904.461, 2 6–14 SGATWGLGR

3802.742 19–54 ATGSNSYIYDGSAGSGSTVYVLDTGIYIEHSEFEGR

3465.541 57–91 WGANYISGSPDTDENGHGTHCAGTIAGATYGVASK

2025.00 103–123 DGFGATSATIAGINFVGQNGK

892.492 127–134 SVISMSLR

3952.84 135–175 GHYSAAVNSAVESTVSNGVTIVVAAGNDGDDASNYSPASAK

1435.702 176–189 NAITVGSVDSTDTR

2011.011, 2 190–209 ASSSNYGSVVDIFAPGVNVK

2969.582 223–254 SGTSMATPHVAGLAAYLIGLGGLSSPAAIASK

1249.621 269–281 GSVNLIAYNGNGA

1Four peptides are common with a homologue PdSP2 (GenBank ELR03877.1).
2 Peptide ions observed experimentally only.

Only peptide ions with a mass greater than m/z 800 are included. (Theoretical tryptic peptide ions from the propeptide and their sequences are not

included.)

doi:10.1371/journal.pone.0120508.t003
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in natural pest control is estimated to cost at least $3.7 billion/year in damages to agriculture
[43]. A clear understanding of the biochemical ecology between P. destructans and bats is para-
mount in determining proper control strategies to alleviate disease effects.

Extracellular proteases play roles in fungal pathogenesis and are hypothesized to function in
WNS [23]. Epidermal wing necrosis observed in WNS may be partially attributed to protease
activities secreted by P. destructans. Secreted serine proteases are common in saprophytic fungi
and are documented in species pathogenic to plants, insects, mammals, and other fungi
[44–46]. In this study we isolated a 27.9 kDa protein consistently secreted by P. destructans
into liquid culture media and identified it as a family S8A subtilisin-like serine proteinase
(PdSP1). We confirmed structural identification by matching peptide ion masses and de novo
peptide sequences obtained by MS (Table 3 and Fig. 5) to the hypothetical protein (GenBank
ELR07576.1), translated from the gene GMDG_08491 present in the draft genome sequence of
P. destructans isolate 20631–21 (www.broadinstitute.org). The properties determined experi-
mentally for PdSP1 (Table 1 and Fig. 5) matched values predicted for the 281 AA mature

Fig 6. Sequence alignment of Pseudogymnoascus spp. Family S8 serine proteases. Sequences identified from GenBank accessions: P. destructans,
PdSP3, ELR10046.1; P. destructans, PdSP1, ELR07576.1; P. destructans, PdSP2, ELR03877.1; and P. pannorum KFZ06449.1. Location of catalytic triad,
D160, H192, and S345 (indicated by * below sequence) with conserved motifs for S8A subfamily indicated in gray boxes. Residues predicted to participate in
calcium-binding are also indicated below sequences for sites C1 (+) and C2 (#). Amino acids sequences determined experimentally from PdSP1 are
underlined.N-glycosylation sequons (N-X-S/T) are indicated in bold italics. Alignment prepared with ClustalW Omega.

doi:10.1371/journal.pone.0120508.g006
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protease having a theoretical molecular weight of 27,882.7 and pI of 7.20. The nearly complete
inhibition of total protease activity by PMSF indicates serine protease is the predominant pro-
tease type produced by P. destructans cultured with protein as sole nitrogen source. Subtilisin-
like serine proteases are dominant secreted enzymes in fungi associated with symbiotic interac-
tions, particularly with animals [46]. While PdSP1 is isolated as an extracellular protein pro-
duced in vitro, it may function as a key protease in P. destructions’ virulence.

P. destructans has three homologous genes for S8 subtilisin-like serine proteases. The translat-
ed sequence for PdSP2 (NCBI accession# ELR03877.1) exhibits high sequence identity (90%)
with PdSP1, while PdSP3 (NCBI accession# ELR10046.1) retains 53% sequence identity. Consid-
ering the high sequence conservation between PdSP1 and PdSP2, there are only 4 tryptic pep-
tides (>m/z 750) in common, with two of these observed experimentally (m/z 892.49 and
1435.70; Table 3). Four tryptic peptide ions unique to PdSP1 are observed in sample spectra,
readily confirming identity matching. A recent analysis by Muszewska et al. (2011) suggested in-
dependent expansions of subtilisin-like serine proteases in fungi may be related to use of mam-
malian substrates, rather than pathogenicity [46]. Three isoforms in P. destructansmay reflect a
more obligate relationship with its host(s), whereas the entomopathogenM. anisopliae can have
as many as 25 isoforms and P. pannorum has 43 S8A serine protease genes present [47], with the
latter reflecting a general saprophytic lifestyle [26, 44]. The low number of additional isoforms
may support previous results that P. destructans exhibits reduced saprophytic growth [26].

Fig 7. Phylogenetic tree generated from S8 serine proteases primary sequence from P. destructans and other select microbial organisms.
Included are three serine proteases from P. destructans, selected serine protease sequences (S8A proteinase-K subfamily) from plant pathogenic and
human dermatophytic fungi, proteinase K, Carlsberg subtilisin, and Aspergillus cavatus serine protease. Phylogenetic tree generated with program
Phylogeny.fr (S8A accessions are listed in S1 Fig.)

doi:10.1371/journal.pone.0120508.g007
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To facilitate preparation of PdSP1-specific antisera for future in vivo studies, we selected the
peptide sequence GSVDSTDTRASSSN for synthesizing a peptide antigen. This peptide shows a
suitable hydrophilicity profile, avoids the singleN-glycosylation site, and appears to represent an
exterior loop (determined from a 3-D model generated by FirstGlance in Jmol). We obtained a
monospecific polycolonal antiserum (rabbits) from the synthetic peptide that detected the 27.9
kDa PdSP1 in western blots with good sensitivity (Fig. 4). While PdSP2 may cross-react with this
antiserum, the more divergent sequence for the corresponding peptide in PdSP3 suggests it will
not cross-react. Pending further characterization of the antiserum, it will prove useful service to
detect the presence of PdSP1 in tissue washings or in histological sections from bats displaying
WNS. Antisera may also be generated for the other two PdSP isoforms in a similar approach.

Proteases functioning as virulence factors in fungal epithelial infections may provide targets
for vaccines and disease prophylactics [23]. While extracellularly-secreted proteases can be mo-
lecular biomarkers in disease processes, non-pathogenic fungi secrete many similar enzymes.
Currently, the differential expression of PdSPs in P. destructans upon host tissue infection and
establishment is unknown. Here, we provide two new tools for PdSP1 detection, PdSP-specific
gene sequences that can be used for selecting PCR primer probes and an antiserum to directly
detect the expressed product from P. destructans genes. Current evidence suggests pathogenesis
is a complex process involving host, pathogen, and environmental interactions [48], hence
many factors other than simply enzyme secretion contribute to disease manifestation. Further-
more, if certain enzymes involved in disease processes are inhibited, fungi may compensate by
expressing alternative enzymes. In vitro fermentation systems provide a starting point for identi-
fying fungal-specific extracellular enzymes. The temporal patterns of such enzymes, the pres-
ence of their active vs. precursor forms at different time points, and their secretion in situ within
bat tissue remains an area available for future research. The availability of the P. destructans ge-
nomic sequence and application of highly accurate mass spectrometric techniques will facilitate
such studies. In conclusion, we isolated and identified a dominant subtilisin-like serine protease
produced in vitro by P. destructans, providing new tools to determine its putative function in
bat wing necrosis [6], as well as for assessing expression of other PdSP isoforms duringWNS.
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