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Abstract
Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wildG. soja (PI 326582A)
exhibited significant differences in root architecture and root-related traits. In this study, phe-

notypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed

from the cross Dunbar/PI 326582A were identified. The root systems of the parents and

BILs were evaluated in controlled environmental conditions using a cone system at seedling

stage. The G.max parent Dunbar contributed phenotypically favorable alleles at a major

quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root

length and lateral root number) and shoot length. This QTL accounted for>10% of the phe-

notypic variation of both tap root and shoot length. This QTL region was found to control var-

ious shoot- and root-related traits across soybean genetic backgrounds. Within the

confidence interval of this region, eleven transcription factors (TFs) were identified. Based

on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP

and bZIP TFs were identified in this QTL interval with high expression in roots and nodules.

The backcross inbred lines with different parental allelic combination showed different ex-

pression pattern for six transcription factors selected based on their expression pattern in

root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain

an essential QTL contributing to early root and shoot growth in soybean.
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Introduction
Soybean is a major crop that plays an important role in food and industrial production [1]. The
USA ranks first in soybean production [84.2 million metric tons], accounting for 33% of the
total global production, followed by Brazil at 29% and Argentina at 19% (www.soystats.com).
Soybean production is affected considerably by water deficits and severe drought conditions
[2]. Root size and architecture are important factors for determining yield performance, partic-
ularly under conditions of limited water availability [3]. Drought resistance in plants is
achieved by three different mechanisms: drought escape, avoidance, and tolerance [4]. Plants
that utilize the avoidance mechanism endure drought by balancing turgor through increased
rooting depth, better root architecture, and increased hydraulic conductance [5]. The intrinsic
ability of the plant roots to extract water from deeper soil profiles enables plants to maintain
optimal water relations, as well as carbon assimilation, under drought stress [6]. Deep tap
roots, with greater density of lateral roots that increase the total root absorption surface area,
contribute to drought avoidance in rice [7, 8], maize [9], wheat [10], common bean [11], chick-
pea [12], and soybean [13, 14, 15].

Studying root architecture and identifying genes underlying its function is critical to develop
soybean that suited to water-limited environments [16]. However, several practical constraints
associated with root phenotyping under field conditions make it an uncommon practice in soy-
bean breeding [17, 18]. Molecular markers have been widely used to identify quantitative trait
loci (QTLs) for complex agronomic traits [19]. Mapping QTLs for root traits and their use in
marker-assisted breeding (MAB) (for example, moving a favorable QTL allele present in exotic
germplasm into elite cultivars) is an alternative method for selecting root traits that are difficult
to phenotype [20]. Rapid screenings of root traits at the seedling stage facilitate identification
of contrasting lines to map root QTLs in soybean [21]. Then molecular breeding programs can
be targeted to incorporate alleles that produce desired root phenotypes into elite cultivars to en-
sure productivity under stress environments. Unfortunately, the genetic base of modern soy-
bean cultivars in North America is narrow, due to the small number of ancestors [22] that
comprise the base of this germplasm and to subsequent breeding and selection during cultivar
development [23]. Wild species may have one or more positive alleles at major gene loci that
influence agronomic traits [24]. Mining genes from wild relatives has proven successful in to-
mato [25], rice [26], and soybean [27–34].

Though exotic germplasm offers a vast genetic resource that can broaden soybean’s genetic
base especially for disease and pest resistance [35], it has been difficult to select for yield im-
provement by targeting selection at the progeny derived from interspecific matings of elite cul-
tivars with wild soybean accessions. A better approach is to reduce the genomic contribution of
the wild soybean parent in any given progeny by utilizing one or more backcrosses, before self-
ing the resultant progeny lines to create backcross-derived inbred lines (BILs). This advanced
backcross population approach has been proposed as a means to evaluate random chromosom-
al sections of the donor parent [such as wild soybean] in a genetic background that otherwise
contains 75% (BC1) or even 87.5% (BC2) of the recurrent parent genome [36].

In soybean, molecular markers have been used extensively in recent decades to construct
linkage and physical maps, and thereafter to identify and in some cases, confirm QTL for many
agronomically important traits [37]. Soybean QTL studies that focused on root traits utilized
crosses between G.max parental genotypes [5, 38, 39, 40]. But QTL alleles from exotic soybean
germplasm have been reported by several researchers [34, 35, 41] to influence the seed yield in
soybean. Informative markers flanking QTLs governing root-system architecture will facilitate
marker-assisted selection of desirable root ideotypes. The objective of the present study was to
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identify QTLs for root architectural traits in an interspecific mapping population between G.
max and its wild relative, G. soja.

Materials and Methods

Plant materials
This study utilized a backcross-derived inbred line (BIL) mapping population, created by mat-
ing the G.maxmaturity group III soybean cv. ‘Dunbar’ (PI 552538) with a G. sojamaturity
group II so-called “wild” soybean accession (PI326582A). The phenotypic descriptors of the
parental lines are presented in Table 1. The phenotypic variation of root traits in G. soja,
PI326582A is shown in comparison to other soybean accessions in Fig. 1a. The segregation of
seed size and color in Dunbar/PI326582A population is shown in Fig. 1b. The F1 plants were
backcrossed to the Dunbar parent and the resulting 300+ BC1F1 plants were independently
backcrossed again to the Dunbar parent to produce more than 300+ BC2F1 plants. Plant to
progeny row (not single-seed descent) was used for generation advancement from the BC2F1 to
the BC2F4 generation from which 296 BC2F4.5 progeny rows were separately harvested to pro-
duce F4-derived F5 inbred lines, henceforth referred to as BILs.

Phenotypic data collection
The genotypes were grown using the “cone" system [21] developed to study seedling root traits.
The screening of the parental lines and 251 BILS were replicated six times in a randomized
complete block design. The entire population was screened at the same time in a walk-in
growth chamber that accommodated 76 racks (Stuewe and Sons, Oregon, USA) set on wooden
pallets to facilitate support and water drainage (Fig. 1c). As G. soja exhibits considerable seed
dormancy, the parental G. soja seed coat was scarified before planting by making a slanted cut
in the seed coat at the opposite end of the embryo from the hilum to facilitate the germination
process. A turface:sand (2:1 v/v) mixture (www.Hummert.com) was used as the growth medi-
um [21]. The mixture is a growth medium similar to field soil and facilitates easy collection of
the entire root system without damage [42]. Turface is calcined clay and has cation exchange
capacity, so it is likely to have nutrients associated with its exchange sites. It adds water and
air-holding pore space, prevents soil compaction, and allows better drainage. Sand facilitates
the optimization of the air—water balance in the root zone. The media has no mechanical re-
sistance to root penetration under well-watered conditions [21]. The seedlings were grown in
cones to the V1 stage in a growth chamber with controlled conditions of 27/21°C day/night
temperature, photoperiod of 16/8 day/night, 65% relative humidity, and an average light

Table 1. Growth characteristics of the parental lines used in the study.

Trait ♀ parent Dunbar ♂ parent PI 326582A

Background PI 552538 Glycine max (L.) Merr. FABACEAE (cultivated soybean)
Platte x A3127

Plant introduction line Glycine soja Siebold & Zucc. FABACEAE
(wild soybean)

Maturity group MGIII MGII

Stem term indeterminate indeterminate

Flower color purple purple

Hilum color imperfect black black

Pubescence
color

gray tawny

Seed coat color yellow black

doi:10.1371/journal.pone.0120490.t001
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intensity of ~262 μmol m-2 s-1 measured at canopy level. At 12 days after sowing, intact seed-
lings were separated by cutting the cones longitudinally. The tap root length was measured
with a ruler from the portion of the shoot that appeared white to the tip of the tap root. The
length of the shoot was determined as that of the region above the white portion (either purple
or green) up to the shoot apical meristem. The root system of each seedling was clipped and
immediately washed in a tray of water, labeled, wrapped individually in wet paper towels and
stored at 4°C for image analysis. Shoot dry weight was determined after shoot tissue (with coty-
ledons and leaves) had been dried in an oven at 65°C for 48 h.

Root imaging and data analysis
The root systems of individual plants were scanned using a root scanner LA2400 coupled with
WinRhizoPro software (Regent Instruments Inc., Canada). The images were analyzed using
the WinRhizoPro software to count lateral roots. The phenotypic data was analyzed by the
PROCMIXED procedure of SAS (version 8.2, SAS Institute, Inc., Cary, N.C, USA) with repli-
cates and entries as random and fixed effects, respectively.

Fig 1. Variation for seed and plant architectural traits in soybean and the BIL population. a) Variation in root architecture in soybean accessions 12
days after sowing (das); b) Seed coat color of parents (Dunbar, P1 and PI 326582A, P2) and RILs c) Cone system for root screening d) Dunbar 12 das e) PI
326582A 12 das.

doi:10.1371/journal.pone.0120490.g001
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QTL and candidate gene identification
An initial survey of 768 simple sequence repeats (SSR) and 243 single-nucleotide polymor-
phism (SNP) markers was performed with the Dunbar/PI 326582A parental lines. 312 poly-
morphic markers (103 SNPs, 205 SSR, and 4 classical loci {I/i, T/t, L1/l1, and L2/l2}) were
identified. A genetic linkage map was constructed with 256 markers that align with the soy-
bean consensus map 4.0 [43]. Some chromosomes have to be split owing to internal linkage
gaps more than 50 Haldane cM (S1 Dataset). The information on molecular markers and
their segregation pattern among 251 BILs are given in the S1 Dataset. These polymorphic
markers spanned a genetic map distance of 2,118 cM. The mean chromosome length was
106 cM, with a mean genetic distance of 6.8 cM between any consecutive pair of mapped
markers. Inclusive composite interval mapping was performed using ICI mapping software
[44] to detect QTL and study the digenic epistatic QTL interaction. This software program
uses an improved algorithm of composite interval mapping with increased power to detect
QTLs, reduce false detection rates and have less biased QTL effect estimates. This is accom-
plished in two steps; stepwise regression followed by QTL scanning [44]. Based on the confi-
dence interval spanning each major QTL identified in the study was compared to the QTLs in
SoyBase [37] to determine whether any SoyBase-listed QTLs had positions within the same
confidence intervals. In addition, candidate genes located within the confidence interval of
the QTL peak were identified, extracted, and analyzed using the Soybean Knowledge Base
(SoyKB) database [45]. DNA Sequence data of wild soybean accessions published [46, 47]
were compared with Williams 82 reference sequence to identify single nucleotide variation
for genes identified within the major QTL interval region. A meta-analysis of the candidate
genes and their expression was performed using soybean Affymetrix expression data available
in the Genevestigator database [48] and transcriptome dataset [49]. Based on these expression
datasets, six genes were selected for quantitative real time PCR for studying the transcript
abundance among parental lines and selected BILs (S1 Text) with different allele combination
in major QTL region.

RNA isolation and quantitative reverse- transcription (q-RT) polymerase
chain reaction (PCR)
The selected BILs and parental lines were grown to the V1 stage and the root tissues were col-
lected for RNA isolation. RNA was extracted from root tissues (100 mg tissues) using RNeasy
Plant mini kit (Qiagen, CA, USA) according to manufacturer’s protocol. On-column DNA di-
gestion was performed using RNase-Free DNase Set (Qiagen, CA, USA) according to the man-
ufacturer’s protocol. Each sample (2μg of total RNA) was reverse-transcribed to cDNA in a
20μL reaction volume using RNA to cDNA EcopryTM Premix (Double primed) cDNA Syn-
thesis Kit (Clontech, CA, USA). Quantitative RT-PCR (qRT-PCR) was performed using the
cDNA product corresponding to 25 ng of total RNA in a 10μL reaction volume using Maxima
SYBR Green/ROX qPCR Master Mix (2X) (Thermo, USA) on a ABI7900HT detection system
(Applied BioSystems, Foster City, CA, USA). The expression data for each sample was generat-
ed from three biological and two technical replicates. The relative expression of the selected
genes were expressed as mean standard deviation, in comparison to transcript abundance levels
of ubiquitin, a housekeeping gene and analyzed using Delta Ct method [50]. The PCR condi-
tions were as follows: 50°C for 2min, 95°C for 10 min, then 40 cycles of 95°C for 15 s, and 60°C
for 1 min. To normalize the gene expression, ubiquitin (Glyma20g27950) was used as an inter-
nal control. All primers were designed using Primer3 web-interface (http://frodo.wi.mit.
edu/primer3/ input.htm) [51] and the primer sequence information is given in S2 Text.
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Results

Phenotypic variation among traits
During the seedling stage (V1) and at 21 and 35 days after sowing (V3 and V4 stages, respec-
tively) Dunbar showed a significantly longer tap root and higher lateral root number than PI
326582A (Fig. 1 d,e and Fig. 2; Table 2). The measured phenotypes of tap root length (TRL),
lateral root number (LRN), shoot length (SL), shoot dry weight (SDW), and root dry weight
(RDW) exhibited a normal distribution (Fig. 3), as confirmed by the application of the Shapiro-
—Wilk test. The respective coefficients of variation for the traits were TRL (17.0%), LRN
(21.64%), SL (10.6%), SDW (5.04%), and RDW (8.85%). Dunbar, the cultivated soybean,
showed the highest phenotypic values for shoot and root traits in comparison to the wild soy-
bean, PI 326582A. However the backcross inbred lines (BILs) showed a transgressive segrega-
tion pattern for all traits reported with a higher range of phenotypic variation than either of the
parental lines (Table 2).

QTLs and their interaction
The use of interval mapping (IM) applied to the six measured shoot and root trait means led to
the identification of five QTLs with their permutation-generated LOD score criteria for QTL
significance declaration (Table 3). QTLs controlling TRL, LRN, SL and SDW were mapped on
chromosome 8 within a confidence interval of 15 cM between Satt315 and the I locus

Fig 2. Root architecture contrasts between the two parents at: a) 12 days; b) 21 days; and c) 35 days after sowing.

doi:10.1371/journal.pone.0120490.g002
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(Table 3). The LOD score peak of each of these four QTLs exceeded 3.0 and accounted for
from 4.6 to 10.3 percent of phenotypic variation (Table 3, Fig. 4). With respect to the signifi-
cant QTLs identified on chromosome 8 for TRL, LRN, SL and SDW, the allele conferring great-
er length and number was contributed by the cultivated soybean parent, Dunbar (Table 3). The

Table 2. Statistical analyses of seedling root and shoot traits in the BIL population and the parents (n = 6) with a significant P value <.0001.

Traits Parental lines Mean value BIL (Number of lines: 251)

Dunbar PI 326582A Mid Parent Mean± S.E Range

TRL 23.8 16.8 20.3 21.5±1.3 12.25–29.22

LRN 126.00 50.67 88.3 113±10 49.33–192.83

SL 12.10 8.92 10.5 10.5±0.5 5.95–13.92

RDW 140.75 54.02 97.4 110.6±4.0 10.07–186.2

SDW 197.45 98.78 148.13 161.2±3.3 74.45–252.25

TRL: Tap root length (cm); LRN: Lateral root number; SL: Shoot length (cm); RDW: Root dry weight (mg); SDW: Shoot dry weight (mg).

doi:10.1371/journal.pone.0120490.t002

Fig 3. Distribution of means of 251 BILs for root and shoot traits. Parental values are indicated by arrows.

doi:10.1371/journal.pone.0120490.g003
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QTL analysis also identified a SDWQTL on chromosome 12 (Table 3) and no significant QTL
with LOD score>3.0 was detected for RDW. However, the interaction analysis identified
QTLs for RDW involving five chromosomal regions with (Chromosomes 8 and 12) without
(Chromosomes 1, 6, and 10) main effects, with positive alleles contributed by Dunbar. Both
these chromosomal regions on chromosomes 8 and 12 have additive effects on RDW individu-
ally and have negative effect on interaction (Table 4). Thus the RDWQTL in this mapping
population might be controlled by polygenes or QTLs with minor effects. However, the similar

Table 3. Quantitative trait loci (QTL) for root and shoot architecture traits and their additive effects identified by inclusive composite interval
mapping approach using ICI Mapping software.

Trait Chromosome QTL peak Position (cM) Left Marker Right Marker ThresholdLOD LOD PVE (%) Additive effect

TRL 8 71 Satt315 class I 3.09 6.52 12.28 1.87

LRN 8 71 Satt315 class I 3.22 5.72 11.04 16.13

SL 8 69 Satt315 class I 3.21 10.27 20.77 1.01

SDW 8 71 Satt315 class I 3.04 4.61 8.49 16.74

12 16 Satt253 Satt142 3.54 7.77 23.34

TRL: Tap root length (cm); LRN: Lateral root number; SL: Shoot length (cm); SDW: Shoot dry weight (mg); cM: Centi Morgan

doi:10.1371/journal.pone.0120490.t003

Fig 4. QTLs for root and shoot traits identified on chromosome 8 using inclusive composite interval
mapping approach.

doi:10.1371/journal.pone.0120490.g004
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chromosomal regions of chromosomes 8 and 12 showed higher additive effects for the shoot
length trait.

In Soybase, the markers flanking the root QTL regions identified on chromosome 8 were
also associated with several other agronomic traits in soybean. The flanking marker Satt315 of
this region was also associated with QTL for seed length, row spacing response, seed isoflavone
components, and several other agronomic traits (Fig. 5). The Satt424 locus near the locus I was
positively associated with map positions for internode length, hypocotyl length, and shoot dry
weight. The QTL map location for root and shoot traits (Table 3) near the I locus on chromo-
some. 8 is also closely linked to a gene for soybean cyst nematode (SCN)
resistance/susceptibility.

Table 4. Epistatic QTLs identified for root dry weight with LOD value < 5.0 in Dunbar/PI 326582A population.

Chromosome Marker interval AE+ Chromosome Marker interval AE+ PVE (%) AA interaction

1c Satt408-Satt129 22.18 6b Sat_062-Satt281 23.44 10.8 -25.82

6b Satt281-Satt457 21.27 8 S08906-Satt315 22.36 12.6 -26.68

8 S08906-Satt315 15.71 10b Satt592-Satt331 20.01 9.8 -19.76

6b Satt281-Satt457 22.15 12b Satt142-Satt434 23.32 11.5 -27.25

8 S08906-Satt315 21.77 12b Satt142-Satt434 23.53 10.7 -25.23

AE: Additive effect; PVE: Phenotypic variation explained in per cent; AA: Additive x Additive interaction
+Positive value indicate that the Dunbar allele increase the phenotypic value.

doi:10.1371/journal.pone.0120490.t004

Fig 5. Co-location of other plant and seedmorphology traits in the identified candidate QTL region on chromosome 8.

doi:10.1371/journal.pone.0120490.g005
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Candidate genes located within QTL interval on chromosome 8
Based on comparison of the genetic map with the sequence map of Williams82 (Glyma 1.0 ver-
sion) in SoyBase the marker flanking the QTL on chromosome 8, Satt315 and Satt424 were lo-
cated between 6751690 and 6751725 and between 10721723 to 10721881 Mb, respectively.
Within this genomic interval region, 504 genes were identified fromWilliams82 and sorted
based on the expression pattern levels in soybean root and nodule tissues (S2 Dataset). Based
on Soybase transcriptome data only 75 out of 504 genes showed higher and tissue specific ex-
pressions in soybean root and nodules (S3 Text). The nuclear transport factor 2 (Gly-
ma08g11070) showed more than a 300-fold increased expression in root tissues. Although 12
transcription factor (TF) families were identified in this QTL interval, only a few TFs including
Homeobox domain (Glyma08g14130), GRAS (Glyma08g10140), WRKY (Glyma08g12460) and
bZIP (Glyma08g12170) showed more than a 50- fold expression in soybean root tissues (S3
Text). Based on Affymetrix gene chip data, six Transcription factors (MYB HD; Gly-
ma08g12320, TPR: Glyma08g09550, C2H2 Zn: Glyma08g11800, BZIP: Glyma08g12170, GRAS:
Glyma08g10140 and Ring finger: Glyma08g13900) only showed higher expression on soybean
root tissues (Fig. 6). All six TFs showed a higher expression in the wild soybean parental line,
PI326582A than the Dunbar (Fig. 7), except for TPR (Glyma08g09550) transcription factor.
Even the BIL126 with wild soybean parental allele in the QTL region did not showed similar
expression as wild soybean parent. All the selected BILs showed expression level of TFs within
the parental values except in BIL 217 for Ring finger TF (Fig. 7).

Based on public soybean Affymetrix expression data, two TFs, AP2-EREBP (Gly-
ma08g14600) and bZIP (Glyma08g12170) showed higher expression in root tissues (Fig. 6).

Fig 6. Candidate genes identified on QTL region on chromosome 8 and their expression pattern in 12
soybean tissues derived from Affymetrix gene chip data in Genevestigator software.

doi:10.1371/journal.pone.0120490.g006
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This AP2 TF also showed higher expression in root tissues (37- fold) and in nodules (13- fold)
within the transcriptome data (S3 Text). Key cell wall expansion-related genes (Glyma08g11300
and Glyma08g09940) encoding xyloglucan endo-transglycosylases (XET) with high expression
in both root and shoot tissues were identified. However, the gene Glyma08g11300 showed a
higher expression in root tissues than Glyma08g09940.

Genomic variation between cultivated and wild soybeans in the QTL
interval
For the genomic comparison of the QTL region of chromosome 8, the DNA sequence data of
Williams 82 (cultivated soybean) was compared with 17 and 2 diverse wild soybean accessions
from China and Korea, respectively. These accessions showed conserved single nucleotide
polymorphic (SNP) variation within them (S3 Dataset) in comparison to the cultivated soy-
bean reference genome, Williams 82. Among the two Korea wild soybean accessions, PI
407162 sequenced at 15X depth by our lab also enabled us to identify non-synonymous SNPs
in genes located within the QTL interval. Among the 504 genes identified within this QTL in-
terval, 43 genes had non-synonymous SNPs that altered the amino acid (S4 Dataset), resulting
in changing the translated protein. Most of these genes showed conserved SNP variation
among diverse wild soybeans accessions from China and Korea. 12 genes identified with a
non-synonymous SNP also showed higher expression in soybean root and nodule tissues (S3
Text). In particular, two transcription factors like Homeobox domain (Glyma08g14130) and
C3H type 1 (Glyma08g09630) showed high expression in root tissues in both Affymetrix
(Fig. 6) and transcriptome (S3 Text) public datasets.

Fig 7. Differential expression of key transcription factors identified in the QTL interval on chromosome 8.

doi:10.1371/journal.pone.0120490.g007

Mapping Seedling Root QTLs in Soybean

PLOS ONE | DOI:10.1371/journal.pone.0120490 March 10, 2015 11 / 18



Discussion

Root QTL mapping in soybean
Our study is the first to utilize an interspecific mating (G.max × G. soja) to create a BC2F4-
derived population of BILs to map QTLs for root traits. Other studies [5, 39–40] used only
intra-species (G.max × G.max) matings. In our mapping population, the interpretation of the
range in the BIL phenotypes was likely confounded by the BC2-mediated skewing of the Dun-
bar AA genotypes vs. PI aa genotypes to a 7:1 ratio at one locus, but with two loci, the expected
ratio of the genotypes is 49AABB:7AAbb:7aaBB:1aabb. As Dunbar is the “high” parent for all
traits studied, the BILs with Dunbar AABB BIL homozygotes are more frequent (S1 Dataset).
The root and shoot QTLs identified in the present study were identified using a well-watered
cone system in a growth chamber. We do not know whether the measured additive effect in the
BILs with respect to the contrasting parental alleles at each QTL would be the same or different
in a less optimal water scenario.

However, for several root traits detected between Williams 82 and a soybean breeding line,
genetic variation was reported to enable drought avoidance and yield advantage [14]. Soybean
plants with deep rooting ability [52, 53] and more fibrous roots [18] are supposed to offer the
inherent advantage of acquiring water more efficiently than shallow-rooted genotypes: a test of
that supposition has yet to be realized by the release of an elite cultivar with these traits. In the
present study, we discovered that soybean chromosome 8 (previously linkage group A2) har-
bored several QTLs including tap root length, shoot length, and lateral root number. Epistatic
QTLs were detected for root dry weight involving five different chromosomal regions, denoting
that this trait might be controlled by polygenes. These findings are corroborated by recent stud-
ies in soybean root studies at the seedling stage [54–56] and in matured plants under field con-
ditions [57]. This region on chromosome 8 interacts with chromosome 12 region and
negatively affects the root dry weight. Similar negative interactions of additive QTLs have been
reported for root weight in seedling-stage root-mapping studies in soybean [56]. The QTL for
tap root length (Satt315-Satt424) was located in confidence intervals that were close to peak
LOD scores exhibited by QTLs for maximum root length, root weight, and tap root length in
another study [40]. The aggregation of QTLs around markers Satt315—I locus—Satt424 on
chromosome 8 for root and shoot traits indicates a positive relationship exists between them,
and also points to a candidate region governing early seedling vigor in soybean.

Genomic regions for improving abiotic and biotic stress tolerance
The QTLs identified in this study on chromosome 8 influenced both shoot and root growth. It is
of interest to compare the markers associated with our QTL with QTLs that have been reported
earlier. For example, SSR marker Satt424 associated with TRL and SL in this study was, in a
prior study, associated with a QTL that explained 46% of variation for internode length [58],
and in another study was associated with a large-effect QTL conferring flooding tolerance [59].
In addition, this region confers resistance to biotic stresses such as soybean cyst nematode (QTL
SCN30–3 [60]; SCN29–5 [61], and Sclerotinia root rot (QTL Sclero 2–2, 3–2, 5–1, 6–2) [62].
The QTL map location for root and shoot traits (Table 4) near the class I locus, which controls
seed coat pigmentation [63] on chromosome 8, is closely linked to Rhg4 gene [64] that encodes
serine hydroxylmethyltransferase and confers resistance to soybean cyst nematode [65]. A QTL
for soybean seed length was also flanked by this marker [66]. Collectively, the marker interval
Satt315–Satt424 contains QTLs for growth and yield components including leaf width, leaf
shape [67]; days to flowering [68]; seed weight [69,70]; pod maturity and seed protein content
[71] in Soybase [37]. These loci may be investigated as candidates for utilization in marker assis-
ted breeding (MAB) programs to improve root architecture and other traits.
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Based on this study, using an inter-specific backcross population, the observed phenotypes
and the QTL analyses indicate that the cultivated allele was superior to the wild allele for all
root architectural traits. A similar difference in allelic effects between cultivated and wild acces-
sion has been reported for domestication-related traits in soybean [72]. However another re-
cent study in an inter-specific mapping population [73] identified QTLs for root traits, total
root length, and surface area with positive alleles contributed by a wild soybean accession, PI
407162.

Key candidate gene underlying QTL on chromosome 8
Among the eleven TFs identified within the QTL interval, the MYB TF (Glyma08g11640)
showed higher expression in shoot tissues (shoot apical meristem and trifoliate leaves) (Fig. 6).
But the MYB-HD TF showed a higher expression in root tissues (root, root tip, and pericycle)
in both the Affymetrix gene chip expression data (Fig. 6) and the Soybase RNA sequencing
data (S3 Text). This TF (Glyma08g12320) also showed a higher expression in wild soybean ac-
cession PI407162 and none of the interspecific BILs showed an expression pattern as high as
that of the parental lines (Fig. 7). The allelic interaction between cultivated and wild soybean
may have affected the gene expression in BILs. Similar distinct expression patterns of root re-
lated genes were found in a soybean inter-specific mapping population [73]. Role of MYB TFs
in root formation were reported earlier in soybean and Arabidopsis [74]. In these datasets, (S3
Text; Fig. 6) the AP2 TF as being highly expressed in shoot, root, and nodule tissues. The role
of this TF in nodulation and association with the Nod factor signaling pathway was shown ear-
lier inMedicago truncatula [75] and its over-expression also confers drought tolerance in Ara-
bidopsis [76]. Interestingly, the bZIP TF showed a higher expression in root pericycle and
nodules in both datasets. The pericycle cells are key cell types that form lateral root primordi-
um, which decides the lateral root number. A similar root-specific bZIP TF has been reported
to be responsive during water stress and involved in intracellular signaling in both tepary and
common beans [77]. This TF was also reported to be involved in controlling nodule number by
early initiation of nodulation in Lotus japonicus [78]. Drought-tolerant soybean also showed
high nodule number and size under water-deficit conditions [79,80], resulting in better nitro-
gen fixation ability that translated into higher yield in drought stress conditions [81]. However,
more research is needed to illuminate the role of this TF in increasing nodule number and sus-
taining nitrogen fixation capacity under drought conditions. Among the six TFs selected based
on their Affymetrix gene chip expression pattern, TPR transcription factor showed a higher ex-
pression in cultivated soybean, Dunbar. Similar expression pattern for a TPR TF in the same
gene family was reported in another cultivated soybean, V71–370 with non-synonymous SNPs
in comparison to a wild soybean, PI407162 [73]. A similar class of transcription factor was ex-
pressed in soybean roots as an early response to iron availability [82]. Among the 42 genes
identified with non-synonymous SNPs (S4 Dataset) in wild soybean accessions, only two TFs
(C3H type 1 and Homeobox Domain) that showed higher expression in both Affymetrix and
trancriptome datasets. These TFs might be the possible candidates for downstream genes asso-
ciated with root system architecture in soybeans. An association of SNP variants with the root
phenotype must be established in the future to identify genes that regulate root development in
soybean. The conserved SNPs among diverse wild soybean accessions (S3 Dataset and S4 Data-
set) might be best choices for studying the evolution of root traits in cultivated soybean.

Conclusion
This study aimed to identify quantitative trait loci associated with root and shoot growth at the
seedling stage in soybean. A major locus was identified on chromosome 8 flanked by markers
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Satt315 and Class I spanning a 15 cM region. The beneficial alleles for all the studied traits
were contributed by the Dunbar parent. The BILs with deeper root system than the Dunbar re-
current parent will be tested for root traits and their contribution to productivity in water-
limited/rainfed environments. The development of near-isogenic lines containing these candi-
date regions is also in progress, with the goal of elucidating the biological value of these alleles
under field conditions.
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