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Abstract

We propose a new method for aggregating the information of multiple users rating multiple
items. Our approach is based on the network relations induced between items by the rating
activity of the users. Our method correlates better than the simple average with respect to
the original rankings of the users, and besides, it is computationally more efficient than
other methods proposed in the literature. Moreover, our method is able to discount the infor-
mation that would be obtained adding to the system additional users with a systematically
biased rating activity.

1 Introduction

When many reviewers rate goods or projects, the exercise of aggregating all this information is
a useful one, especially for big online sellers, when reporting huge feedback data from consum-
ers. Being able to offer a reliable aggregate ranking benefits the consumers to recognize favorite
goods, and it is a service provided e.g. by Amazon (www.amazon.com), Ebay (www.ebay.com)
and Taobao (www.taobao.com). Moreover, it is actually the core of the service of other online
sites, such as Tripadvisor (www.tripadvisor.com). Many works in the recent past have demon-
strated the significance of scores and remarks given by the online shoppers: some of them are
[1,2,3,4].

Given a set of items, a set of users and the rating scores of each user—item pair, the general
rating problem is to rate each item with a single comprehensive score. In this context, this
paper aims to present a reasonable rating method, implementable in efficient polynomial time
by an algorithm, and whose results can be in accordance with most of customers’ rankings. A
strictly related problem is the one of collaborative filtering in recommender systems, where an
algorithm tries to extrapolate missing information about the items from the rating activity of
the users, in order to provide a specific ad-hoc ranking for each users also on the items that she
has not rated (on this see [5, 6, 7, 8] discuss how to aggregate the information from multilayer
networks, while [9] show the importance of centrality measures for this problem). We discuss
in the conclusion how our method could be adapted to this setting.
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The commonly adopted rating method in those real world applications is the averaging,
which is implementable in linear time, but has been found defective. In particular, the result of
the averaging is likely to violate most customers’ preferences, not only because of the Arrow im-
possibility theorem [10], but also when a coherent ranking is actually available (as in Example
2.6 of this paper—see [11] for a recent analysis of this theoretical problem). On the other hand,
more complicated methods must take into account other constraints. One is that in many cases
most of the users rate only a small fraction of all the available items, and it becomes useful to
consider also the weight of all this missing information. Another one is that the computational
complexity of every aggregate rating must be taken seriously into account, because the numbers
of items and users can be hundreds of thousands. So, it is important to find a good trade off
that is at the same time efficient in approaching a good correlation with most of cutomers’ pref-
erences, but is also actually implementable by the online sites.

Another important issue to be considered in the online rating applications is the problem of
fake data. In some cases, true or fake users could be maliciously biased in favor of some specific
items. This can happen because single fake accounts, known as Sybils (see [12, 13]), are created;
or many of them are systematically included in the system to induce an intentionally biased
evaluation (a phenomenon called Crowdturfing, see [14]). In such cases the simple rating meth-
od of averaging is considered as a much better solution than the methods that preserve order-
ing, as averaging can be thought as an unbiased estimator of the true value of the items when
evaluations are affected by some white noise (on this, see [15]). However, if the additional fake
users are all coordinated in favor of or against to some items, then this added noise will clearly
not have an average null effect on the final average, and a ranking method should be able to dis-
count the information that comes from systematically biased users.

We propose a new rating method, which we call the network centrality method. In a setting
where the set of available scores is finite, we consider a network where each node is a score for
one item, i.e. a couple score—item, and there is a link between two nodes if there is at least one
user that ranked the two items with exactly those two scores. Looking at the centrality of the
nodes in this network, we find what are the score-item couples that are more coherent with
rankings of the users. We do so borrowing from the literature on complex networks that have
analyzed the importance of the centrality of a node. We adopt the Katz-Bonacich spectral mea-
sure of centrality (see [16] for a fairly recent exposition) to define a network centrality method
of aggregate ranking (see Bramoullé et al. (2014) for a recent discussion of the applications of
the Katz-Bonacich centrality to economic environments with peer—effects). The intuition be-
hind the effectiveness of our method is that a couple score-item gets recursively more weight
the more weight have other score-item couples linked to it. Thus, since the link between those
couples are created by some users, those users become more authoritative sources on those
items. In this way, our method approaches a good correlation with most of costumers rating, in
a recursive way that is typical to all spectral measures of centrality: score-item couples are
more central when more users link them to other central score-item couples.

Our network centrality method results to have some desirable features. First, it is computa-
tionally efficient, if compared to other measures in the literature. Second, it performs very well
in maintaining most of the original rankings of the reviewers, both on randomly generated
data, and on real data from an online rating platform. Third, it is robust to the artificial inser-
tion of users systematically providing fake data.

The rest of the paper is organized as follows. In Section 2 we provide a motivating intuition
for our method, and describe it formally. In Section 3 we report results of an extensive numeri-
cal analysis that compares our method with others from the existing literature. In Section 4 we
apply our method to a real online dataset where people rate movies. Section 5 concludes.
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2 Intuition and theory for our approach

Consider a finite set of items and a finite set of users. In a setting where each user evaluates an
independent subset of the items, the rating problem consists of aggregating all this information
in a single vector by assigning a score to each item. A rating method is an algorithm that pro-
vides a solution. We consider different measures to evaluate rating methods and discuss their
computational efficiency.

2.1 Intuition

Let us start with an example that provides the intuition for our method. In a rating environ-
ment where users assign marks (from 1 to 5) to items, consider the situation illustrated in
Table 1.

What is the score that we should attribute to product b from this table? The situation here is
fully symmetric between two users attributing a mark of 1, and the other two attributing a
mark of 5. This symmetry is not only in the grades they attribute to good b, but also in the over-
all markings through all products, as depicted by the blue lines in Fig. 1: this is a network
where nodes are all possible marks for all goods, and there is a link between two nodes if at
least one user gave those specific two marks to those two goods.

Table 1. A simple example.

Users
Items 1 2 3 4
a 2 — 4 -
b 1 5 5
c - 2 - 4
doi:10.1371/journal.pone.0120247.t001
Products
3 b C

Marks

5 @) O

Fig 1. The network representation of Table 1 (the blue lines) and Table 2 (including the red line).

doi:10.1371/journal.pone.0120247.g001
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Table 2. One more column for Table 1.

Users
Items 1 2 3 4 5
a 2 — 4 - 3
b 1 1 5 5 -
c - 2 - 4 2

doi:10.1371/journal.pone.0120247.t002

Now suppose that a new user 5 enters and assigns marks only to items a and ¢, as depicted
in Table 2, where a new column has been added. Apparently this adds no information on the
value of item b. However, if we look at Fig. 1 this breaks symmetry: now this new user (the red
link) agrees on item ¢ with an agent that gave a low mark to item b. If we want to assign some
value to this new piece of information, we will give more weight to mark 1 for item b, or equiva-
lently a higher weight to node b1 in the network of Fig. 1.

2.2 Formal Model

In general, a rating problem can be formalized and solved in the following way. Consider M
items that receive marks from 1 to a € N, from N users. A user #n will typically assign marks
only to a subset of k,, out of the M items, and consequently assign no mark (the — symbol) to
all the other M — k,, items. We say that xi € S,, if user n assigns mark i to item x. This environ-
ment can be represented by an N x M matrix with elements from {1, . . ., a}U{-}, which will
typically be sparse (i.e. with many ‘-’ elements). We call r this matrix, so that r; ,, is the mark
(or the — symbol) that user i assigns to items m (we will come back to this representation when
analyzing other ranking measures in the literature, in Section 2.4). Another way to represent
this environment is with an undirected weighted network with a - M nodes (one for every pos-
sible non-blank mark for each product) and where links are weighted in the following way.
The weight of a link between the node xi and a different node yj is given by the formula

gxiy}' = Zﬁ <]IXiES” .Hyjes”) ’ (1)

neN - n

where II, ¢ x is the indicator function that has value 1 if x is an element of X, and has value 0 other-
wise. We set by definition ¢,; ,; = 0, so that there are no links from any node to itself. What formula
(1) says is that if a user n, who already marked k,, items, assigns mark i to item x, then this will add a
value of k]_n to each link between node xi and all those nodes yj already assigned by user n and present

in the set S,,. Algebraically this just adds an aggregate value of 1 to all the links of node xi. We call L
the symmetric aM x aM adjacency matrix obtained from (1).
If we sum any row or column of this matrix, say the one labelled xi, the result is

1 k,—1
S (s s ) = D2 =l xie s}

yj#xi neN =N n: xi€S, N

where the first passage is due to the fact that each user rating xi puts node xi in relation with other
k, — 1 nodes. So, the sum on each row or column of matrix L is just the number of users that actually
rated good x with mark i. In other words, in this network the degree of a node is just the amount of i
marks provided to x by the N users. However, as is well known from network theory (see e.g. [17,

18, 19]), the degree of a node is only one piece of information about its role in the network structure.
Going back to the example in Fig. 1, even if nodes b1 and b5 have the same degree, node b1 is more
central in the network, because there are more other nodes connected to it.
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Another way to measure centrality is to consider network paths. A network path is a set of
links that connects indirectly two nodes. In the network representation of our rating environ-
ment, a path of length d is given by d ordered users who, pairwise, agreed on the same mark to
assign to the same item. In Fig. 1, considering all links, there is a path of length 3 between a2
and a3 because user 1 picked a2 and agreed with user 2 on b1, then user 2 agreed with user 5
on ¢2, and finally user 5 picked a3. The fact that this path passes through bl and c2 assigns
some structural centrality to these two nodes. Let us be more formal, the weight of the paths of
length 1 between any two nodes are represented by matrix L itself, those of length 2 are simply
described by its square L, and so on, with longer paths that are exactly represented by higher

powers of matrix L. If we call I the aM x aM identity matrix, and 1 the column vector made of
aM ones, the Katz-Bonacich centrality ¢ of a node is given by the implicit formula (see also
[20, 21] and note [22])

¢ = pLé

Aslong as B is not larger than the inverse of the maximum eigenvalue of A, this can be made
explicit by its unique solution

¢ = PLT + LT + LT +- -

= (I-pL)'1-1 @)

Parameter 8 > 0 plays the classical role of a multiplicator factor, and tells us how much we

want to decrease the weight of longer paths. Element L1 in the second line of Equation (2) is
exactly the vector that counts the degree of each node, while the following elements consider
larger paths. As for any other spectral measure of centrality (see [19]), a node gets recursively
more weigth the more weight its neighbors have, and this makes spectral centrality measures
the natural candidates when we want to find an endogenous weight of importance for the
nodes of a network (see also [23]). In our context, this simply tells that a specific grade for one
item (i.e. a score—item node of the network) has higher weight the more users, among those
that gave that score to that item, also agreed on highly weighted scores for other items.

Then, to attribute a score to product x one can make an average of all the possible marks for
this product (i.e. x1, x2, . . ., xa), weighted by their centrality:

=t )
> i1 G

This score takes into account the aggregate information of the whole network and the correla-
tions between the opinions in the overall poll of users. In this way we obtain a vector s that is
our solution to the rating problem, and we call it the network centrality (NC) method. An im-
portant property of Equation (3) is that at the limit of f — 0 it coincides with the simple aver-
age, which is what would be obtained truncating the second line of Equation (2) after the first

element ﬁLI.

2.3 What is the best value for §?

The Katz-Bonacich centrality has the additional advantage of being tunable with a single pa-
rameter 3, which accounts at one extremum for the simple degree—centrality measure. Variable
B represents the peer effect between neighboring judgments in the adjacency matrix L filled by
all possible ranks for each item. The best value for § may clearly depend on the other variables
of the problem, and in particular on the adjacency matrix. From the way it is built (Equation
(1)), matrix L is an aM x aM symmetric matrix with all non-negative entries.
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It is well known (see e.g. [24]) that the strength of the peer effect depends on the largest ei-
genvalue of the adjacency matrix. From the Perron-Frobenius theorem, the largest eigenvalue
of L is its unique positive eigenvalue A", that lies in the interval (0, N) (see note [25]).

It is possible to balance the peer effect of the network structure with some f that is inversely
proportional to N, or to do it with a 3 that is inversely proportional to the actual ™ of matrix L.
In the simulations of next section we try the following 6 values for § (in decreasing order): 1/
A%, 1/N, 1/5N, 1/10N, 1/25N and 1/50N. Actually, when 8 = 1/A¥, Equation (2) is not defined;
however, at this limit ¢ approximates the eigenvector of L corresponding to A", and this is what
we compute in this case (it is also well known, as discussed in [16], that this limiting result con-
verges on a path that is extremely volatile to tiny fluctuations, simply because Equation (2) ap-
proximates the inversion of a singular matrix).

At the other side of the interval, namely at the limit § — 0 the NC method will coincide
with the average. Then, we conjecture that a larger S would lead to a better result, but there is a
trade off at 1/A%, which is the actual limit to stability of the infinite series in Equation (2). Be-
cause of this, we try also an intermediate value between the first two, which is 2/(2" + N).

2.4 Computational efficiency

The infinite series of Equation (2) is perfectly computed in the third line, and matrix inversion
is a very well studied problem. Actually, [26] has recently proposed an algorithm that computes
the inverse of a general n x n matrix in O(n**”?) computational time. Moreover, faster algo-
rithms provide good enough approximate solutions when the original matrix is sufficiently
sparse. On this see e.g. [27]. Note also that the infinite sum in the second line of Equation (2)
can be truncated at the i"" step, and so its computational cost can be arbitrarily reduced at the
expenses of accuracy. In fact, at the limit # — 0 we have the truncation i = 1 and the NC meth-
od coincides with the average, whose computational cost is linear. So, our method needs to in-
vert an aM x aM matrix, where a is a constant, and the matrix inversion can be solved at worst
in O(M*?”?) computational time.

Our ranking method is not the first one that applies spectral analysis. The first method
based on spectral analysis is the Analytical Hierarchy Process proposed by [28], which requires
that all the users rate all the items. More in general, methods based on eigenvector centrality
(as the one used by [29]), are unstable, as has been shown in the literature on peer effects in so-
cial networks above).

With a different approach, [30] proposed an algorithm to minimize the aggregate discrep-
ancy of an overall ranking with respect to each individual’s ranking, but their algorithm is NP-
hard, which makes it unfeasible for instances with many items and users. [31] propose an ap-
proximation algorithm that works in polynomial time and approximates the one of [30]. Build-
ing on that, another ranking method that has recently been proposed in the literature is the
Separation-Deviation (SD) method provided in equation (8a) of [32]. In this paper we actually
adopt the SD method as a comparison with respect to our method, and the objective measure
they minimize as one of the benchmarks of evaluation. Here, we adapt it to our notation. They
aim to find the vector § that solves the following minimization problem

(355 5o )+ (S50 )

m=1 i=1 j=i+1 m=1 i=1

(4)

1 if r. — and 7, — 1 if r _
such that wf.‘. = w7 Jk 7 and Vf = 17 7&
' 0 otherwise

0 otherwise
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where o is a positive real number that weights how much the first part of the objective function
(the separation penalty) is relatively important with respect to the second part (the deviation
penalty).

[31] and [32] discuss how their SD method, from Equation (4), can be solved in O(MNlog
(N?*/M)logN) time, constructing first an NM x NM adjacency matrix, and then applying the
minimum cut problem to the network resulting from that matrix, with the algorithm proposed
by [34].

Comparing the two computational times O(M**”®) (our method) and O(MNlog(Nle)
logN) (the SD method), it is clear that when N is large (and it may easily exceed M'*”* in the
online applications that we have in mind), then our method is computationally more efficient
than the SD one. Also, in terms of memory storage, we deal with an aM x aM matrix while the
SD method needs to store an NM x NM adjacency matrix. Again, a large N makes the SD
method unfeasible.

2.5 Objective measures

How do we compare different rating methods? Any method that aggregates the score from an
N x M matrix of marks will result in an M vector § € [1, a], where [1, a] is the set of real num-
bers in-between 1 and a. When many data in the N x M matrix r of marks are missing, simple
correlation between this vector 5 and the rows of the matrix are ambiguously defined and diffi-
cult to interpret.

First of all, we adopt the objective measure of the SD method from Equation (4), where we
impose o = 1, calling it SD measure. This optimization problem is not trivial, but its solution is
obtained from a system of linear equations, so it is generally unique. However, this measure
has a huge variance across different random realizations of matrix r. As we have checked in the
simulations (see Section 3 below), the value of this objective function computed in the opti-
mum and the value computed on the simple average are not different with statistical signifi-
cance over random realizations of matrix r. Also, when we apply this measure to real data in
Section 4 we observe that any method does not differ more than 1% from any other with re-
spect to this measure.

The measure that we use to evaluate the performance of the result §'is the Kendall’s Tau, as
used in [35], where the relation between 5'and 7, on each couple of items i and j, is given by
the following formula:

0.5 if (r,,=‘~') or (r,; ="'~
otherwise
1 if (s, <1 ands; <r ) or (s, >r; and s; > 1, )
or (s, =1, and s, =r1,;)
0.5 if (s;=r, and s;# ;) or (s, # 1, and 5, =1, ;)

0 otherwise

The Kendall Tau correlation between s and 7, is given by

M—1 =M
_ 421':1 Zj:i+l Cij 1

MM - 1) ’ ®)

which lies always between —1 and 1. And finally, the aggregate Kendall Tau correlation between
§and r is given by the average t = 3", 7,/N. The analogy of this measure with the SD objec-
tive function shown in Equation (4) are that absent marks have weight 0 in the overall
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computation process. However, it differs in two ways: firstly this measures increases with
higher correlation; secondly, it is only an ordinal measure, in the sense that only the ordering
between numbers is important. We show in next section, when presenting the outputs of our
simulation exercise, that this measure has the necessary stability that guarantees identification
of better methods.

We end this section with an example.

2.6 Example

Consider a simple case of three items and four users, depicted by Table 3. In this case, averag-
ing results in values (2, 2.33, 2.67) assigned to the items, and this conflicts with the rankings of
users 2 and 4. A ranking that instead values item 2 in the first place, then item 3 and finally
item 1 would coincide with the order of each user. If we look at the network representation of
Fig. 2, analogous to the one in Fig. 1 (where the weight of each link is given by formula (1)), we
see that user 1 represents just an isolated component of the network, so that its scores have little
in common with the other users.

Table 3. Table for Example 2.6.

Users

Items 1 2 3 4
a 4 = 1

b - 2 2 3
c 5 1 - 2
doi:10.1371/journal.pone.0120247.t003

Products
a b c

Marks

5 O 0

Fig 2. The network representation of Table 3 (a bolder line means higher weight).

doi:10.1371/journal.pone.0120247.g002
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Table 4. Different methods applied to the example of Table 3.

products SD

a 1.667
b 2.889
c 2.444
D)o 18.111
TKendall 0.5

doi:10.1371/journal.pone.0120247.1004

Avg

2.000
2.333
2.667
22.380
0.1667

B
VA W W el o & 50N
1.000 1.783 1.879 1.982 1.991 1.997 1.998
2.302 2.325 2.330 2.333 2.333 2.333 2.333
1.403 2.322 2.460 2.632 2.650 2.660 2.663
24.438 20.580 21.111 22.100 22.218 22.292 22.310
0.5 0.5 0.1667 0.1667 0.1667 0.1667 0.1667

Table 4 shows the outcome of the SD method and of the simple averaging, with respect to
our NC method, with the values of S listed in Section 2.3 (in this example A" is 1.560 and
N = 4). The first three lines display the aggregated score for each of the three items: it is clear
from here that as § — 0 we asymptotically approximate the average. The last two lines report
the SD measure and the Kendall’s Tau of each method. The NC method with 8=2/(A" + N) is
the second best compared to the SD measure (which is the measure that the SD method mini-
mizes by definition). The two NC methods with higher S values are also those that preserve the
correct ordering implied by the users, as shown by the Kendall’s Tau. This example anticipates
the results that we obtain from simulations and from an application to real data in Sections 3
and 4: the NC method with 8=2/(1" + N) performs almost as well as the SD method, being
computationally more efficient.

3 Simulations

We test the quality of our method, with the values of § listed in Section 2.3, by comparing them
with the SD method and with the simple averaging, on synthetic data generated in the follow-
ing way. We consider a = 5 (so, five possible scores) and we vary the number of users from

N =10 (ten users) to N = 50 (fifty users). For M, the number of items, we have two cases:

M =10 and M = 50. Each user i rates randomly, with i.i.d. probabilities, in the following way:
each item j is not rated with probability 1 — p (so that r; ; = =) and rated with probability p.
When rated, r; ; has one of the 5 possible values from {1, 2, 3, 4, 5} with uniform probabilities.
In this way, every single element of the matrix r; ; is i.i.d. with respect of all the others, and a
fraction 1 — p of them are expected to be empty: *—’. First, we analyze how the different rating
methods perform with respect to the Kendall’s Tau correlation from Equation (5), in the four
cases (N, M) = (10, 10), (N, M) = (10, 50), (N, M) = (50, 10) and (N, M) = (50, 50), showing
that the results are not sensitive to size. Then, in a case with N = 30 and M = 50, we check for
robustness of different measures when additional users with systematically biased reports are
added into the sample, varying the way in which this bias is generated.

3.1 Kendall’s tau correlation

For the four cases (N, M) = (10, 10), (N, M) = (10, 50), (N, M) = (50, 10) and (N, M) = (50, 50)
we generate 200 i.i.d. realizations of r, for 13 evenly spaced values of p in-between 0.4 (less
than half of the items are expected to be rated by each user) and 1 (all items are rated by each
user). For each realization we compute the average mark for each item, the measure resulting
from the SD method of [32], and our centrality measure with respect to the 7 different values
of B discussed in Section 2.3: largest eigenvalue 1" of the L matrix, 1/N, 2/(A* + N), 1/5N, 1/
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10N, 1/25N and 1/50N. Finally, for each of these M-dimensional vectors of measures, we com-
pute the Kendall’s Tau correlation from Equation (5).

Results of the average outcomes for the four cases are reported in the upper parts of Figs. 3,
4, 5 and 6. From these average trends, it comes out clearly out that SD is the best performing
measure (but it is more costly than the NC method both in terms of computational time and
memory storage), and that averaging is the worse, while the centrality measure with different
values of 3 lies in-between. The best value of S seems to be 2/(A" + N). However, we need to
take variance into account when analyzing these results. In the Supporting Information, Fig-
ures S1 to S4 display the boxplots of all the 200 realizations, for each of the four cases, of the fol-
lowing three measures: DS, average, and NC measure with § = 2/(1" + N). The lower parts of
Figs. 3 to 6 take also variance into account and plot the Student’s t-test to check whether the
centrality measure with 8 = 2/(1" + N) is statistically different from the SD measure and the
simple average, as p changes. When (N, M) = (10, 10), (N, M) = (50, 10) and (N, M) = (50, 50)
(Figs. 3, 5 and 6) the NC measure is not statistically different from the other two measures for
most values of p: it performs significantly better than the average for high p, and significantly
worse than the MS measure for low p. But when (N, M) = (10, 50) (Fig. 4), the NC method is al-
ways better than the average with 99% statistical confidence, while it is not statistically different
form the MS measure for p above 0.6.

We have tried, on the same set of simulations, also two other measures of coherence: the ob-
jective measure from Equation (4) and the simple average correlation of a method with those of
all the users (limited for each user to those goods that are actually rated by that user). However,
those two measures have a much larger variance than the Kendall’s tau correlation, and all the
outputs are not statistically different, according to the Student’s ¢-test, in any of the points pre-
sented in Figures S1 to S4. The reason is clearly that while Kendall’s tau correlation is penalized
only by violations in the ordering, and is hence ordinal, the measure from Equation (4) and the
simple correlation are cardinal measures that are affected also by the magnitude of the scores.

3.2 Robustness to biased fake data

Now we pose a different question: what happens to the ranking measure that we are using if we
add fictitious users who adopt a systematically biased report? To do so we consider the previ-
ous case with N = 30 and M = 50, and we add H users (with H from 3 to 15) to the original 30
ones. These users just assign mark 1 to the first three items in the M list, and mark 5 to the last
three ones. It is clear that the order of the items plays no role, and the point is just that some
goods are systematically rated at the top, while others are systematically rated at the bottom.
What is important here is that the two bias balance each others on average, so that we would
expect the simple average ranking to perform well in this scenario. In principle, a good measure
should detect that the fictitious fake users are somehow different from the original ones. The
NC measure does exactly this, because the sub-network generated by the new fictitious users
will be an almost disconnected part with respect to the original network ([12] and [36] propose
algorithms to detect fake accounts, also knows as Sybils, that are based on the same intuition
that sybils’ behavior is unrelated with the ranking activity of real users—clearly this works only
as long as the number of those fake users is small with respect to the number of real users).

As a measure for our simulations we use the difference between the Kendall’s tau correlation
index computed on the measure obtained by aggregating all the users, and the Kendall’s tau
correlation index computed on the measure that would have been obtained only from the origi-
nal users. Clearly, this difference will be negative, but a good measure will be one that mini-
mizes it in absolute value. With the same notation the figures in the last section, Fig. 7 reports
the outcome and the t-test (and Figure S5 in the Supporting Informations shows the boxplots).
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The results speak in great favor of our NC method: when up to 12 fake users are added
to the original 30 ones, the NC measure with = 2/(1* + N) is better than any other measure
with a high statistical significance. When even more fake users are added it further improves
its outcome compared to the SD measure, but it becomes not signifcantly better than
the average.

4 Real data

Finally, we test our method, with the values of § listed in Section 2.3, with respect to the SD
method and to the simple average, on a real dataset. In this case we consider all measures of ef-
ficiency, but since it is a single realization we will not be able to compute statistical significance
when the outcomes are different.

We use a dataset recording rating information on movies provided by the site grouplens.
org, from the University of Minnesota [33]. The data set encompasses 943 users and 1682 mov-
ies. It records the rating scores of each movie rated by its users. All the movies are rated from
score 1 to score 5, with 1 as the worst and 5 as the best. The total amount of rating records are
about 100,000, so each customer rated on average about 106 movies which is far less than
1,682. Such sparse data would pose a challenge for many of the existing evaluation methods.
Also, the SD method would need to construct a matrix of size (NM)? > 2.5 - 10*?, in order to
apply the minimum cut algorithm of [34] (we have computed directly with Matlab the direct
optimization of the objective function shown in formula (4)). For our NC method we need in-
stead to invert a matrix of size (5M)? ~ 7 - 10, which is tractable.

The results, reported in Table 5, are consistent with those of the simulations. The NC meth-
od with §=2/(A" + N) performs almost as well as the SD method with respect to the Kendall’s
tau correlation, and we know that it is computationally more efficient. It is surprising that the
SD method is actually the worst one with respect to the simple Pearson correlation, but we
have discussed in Section 2.5 how it is difficult to interpret correlation when many missing
data are present, as in this case. Finally, the SD method, by definition minimizes the objective
function from Equation (4), and with this respect the NC method is not better than the simple
average, even if all the numbers are very similar and there is no clear added value in not adopt-
ing the simple average. Actually, in relative terms the difference between the NC method with
B=1/1" and the SD method is about 0.5%.

Table 5. Different methods adopted on the real dataset.

‘Movielens’ dataset

Method Tkendan - 107° Correlation SD value - 107
B=1/A" 0.48 0.4256 1.699964
B =2/(A* +N) 0.61 0.4208 1.692521
B=1/5N 0.55 0.4205 1.692400
B=1/10N 0.53 0.4202 1.692308
B =1/25N 0.52 0.4202 1.692302
B =1/50N 0.52 0.4202 1.692294
Average 0.44 0.4202 1.692244
SD 0.63 0.4099 1.691011

doi:10.1371/journal.pone.0120247.t005
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5 Conclusion

We have provided a network centrality rating method for aggregating the overall information
of users rating items. We argue that it is an optimal trade-off between computational efficiency
and desirable features, especially when compared with the simple average and with other meth-
ods proposed in the literature. However, the methods actually used by online sites are not evi-
dent, and consumers can only perceive them as a black-box. The algorithms implemented by
those online sites are probably very sophisticated, and make use of many more information
than those we have considered in the present paper. For example, the popular site www.
tripadvisor.com, which is actually based only on its rating service, declares that it gives different
weights to different reports depending on the importance of the reviewer and on the timing, at-
tributing higher value to more recent reports (this is for example explicitly stated in the follow-
ing two urls: http://help.tripadvisor.com/articles/200613987 and http://help.tripadvisor.com/
articles/200614027). The service of aggregating ratings could be also customized upon request,
as the importance could be assigned in a way that reviewers with certain characteristics are
given more or less weights depending on who performs the request (this activity falls in the do-
main of recommender systems). What we want to stress here is that attributing different weights
to consumers or reports is something that can easily be done in any of the methods we have
compared with, including the average and our NC method. Actually, showing that at the limit
of f — 0 our NC method actually coincides with the average, we provide continuity between
any weighted average method and the corresponding NC method with 3 > 0. Thus, the horse-
race exercise that we have performed would not be affected by this extra differentiation.

Also, we have shown that our NC method is, in some cases, the best one in neglecting the
score of systematically biased fake reports. This works as long as those fake users constitute a
minority of the population and behave systematically in a way that is disconnected from the
rating activity of real users. It is clear that knowing who this fake and/or biased users are will
help in disregarding their value, as one could give them less or even zero weight, but our NC
method does it generically by its own nature, starting ex—ante with equal weights and no
extra information.

Besides, any other additional information or algorithm that can distinguish the importance
of users and even single reports will be helpful for our method, as for any other one, but it is or-
thogonal to the properties that we have shown in the present paper. In this sense, we provide
an additional tool that can be implemented in real world applications, and we show that its
properties are very useful in obtaining an aggregate rating measure that preserves the original
rankings implide by users, and is able to detect, without any additional information, those
users who are under suspicion of being not genuine.

Supporting Information

S1 File. Fig. A in S1 File Full boxplot of the simulation summarized in Fig. 3, for the average,
the SD method, and the NC method with 8= 2/(A" + N).

Fig. B in S1 File Full boxplot of the simulation summarized in Fig. 4, for the average, the
SD method, and the NC method with 8=2/(1" + N).

Fig. C in S1 File Full boxplot of the simulation summarized in Fig. 5, for the average, the
SD method, and the NC method with 8= 2/(A" + N).

Fig. D in S1 File Full boxplot of the simulation summarized in Fig. 6, for the average, the
SD method, and the NC method with 8=2/(A" + N).

Fig. E in S1 File Full boxplot of the simulation summarized in Fig. 7, for the average, the SD
method, and the NC method with 8= 2/(1" + N).
(PDF)
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