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Abstract

Background

Eating disorders appear to be caused by a complex interaction between environmental and

genetic factors, and compulsive eating in response to adverse circumstances characterizes

many eating disorders.

Materials and Methods

We compared compulsion-like eating in the form of conditioned suppression of palatable

food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-char-

acterized inbred strains, to determine the influence of gene-environment interplay on this

behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor

(R) availability is a genetic risk factor of food compulsion-like behavior and that environmen-

tal conditions that induce compulsive eating alter D2R expression in the striatum. To this

end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels

in the medial prefrontal cortex, respectively, by western blot.

Results

Exposure to environmental conditions induces compulsion-like eating behavior, depending

on genetic background. This behavioral pattern is linked to decreased availability of accumbal

D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downre-

gulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals.

These findings confirm the function of gene-environment interplay in the manifestation of

compulsive eating and support the hypothesis that low accumbal D2R availability is a “consti-

tutive” genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and

α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential

neuroadaptive responses that parallel the shift frommotivated to compulsive eating.
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Introduction
Eating disorders are caused by environmental and genetic factors and their complex interac-
tions [1, 2]. However, there are few gene- environment studies on human eating disorders [2]
and animal studies that have examined environmental and genetic factors in compulsive food
seeking and intake [3–6].

Stressful experiences interact with genetic factors and increase the risk for addictive behav-
iors inducing changes in the corticostriatal dopamine (DA) and norepinephrine (NE) signals
that mediate motivational salience attribution [7–9]. Mounting evidence has implicated
dopamine receptors in motivated behavior [10–14] and D2Rs in the proclivity toward compul-
sion-driven behaviors, such as addiction [15–17].

Inbred strains of mice provide valuable models for studying the interaction between genetic
and environmental factors [18]. C57Bl6 ⁄ J (C57) and DBA2⁄ J (DBA) mice are among the most
frequently studied inbred strains with regard to psychobiology because they are characterized
by clear differences in a number of behavioral responses. The functional and anatomical char-
acteristics of their brain neurotransmitter systems, as well as the behavioral outputs to reinforc-
ing and aversive stimuli, have been examined extensively in these strains, thus providing
important information on how the response of different neural systems to the same environ-
mental stimuli is related to genetic background, leading to different (or also opposite) behav-
ioral outputs [19–23]. In particular, C57 and DBA mice are commonly used in drug abuse
research because of their different sensitivity to the incentive properties of, and differential re-
sponses to, addictive drugs, such as alcohol, psychomotor stimulants, and opiates [7, 20, 21,
24–31]. Moreover, with regard to psychopathological endophenotypes [32–34], disparities be-
tween C57 and DBA mice in D2R-associated phenotypes appear to depend on gene-environ-
ment interactions [35–37].

DBA mice are poorly responsive to rewarding stimuli compared with C57 mice, a state that
is highlighted by chronic stressful experiences, increasing drug responsiveness in DBA/2 mice
[24]. Thus, we hypothesize that chronic stress exposure (caloric restriction) induces a similar
motivational drive toward palatable food in the DBA strain. We examined compulsive eating
with regard to conditioned suppression of palatable food-seeking under adverse conditions
[38], in C57 and DBA mice. Food restriction in rodents is commonly considered a stressful
conditions leading to, among other effects, altered sensitization of brain reward systems and af-
fecting the attribution motivational salience processes [8, 24, 39–42]. Moreover, it has been re-
ported that greater sensitization of the reward system can lead to excessive intake of highly
palatable food [38, 43, 44], and repeated stimulation of reward pathways through highly palat-
able food may lead to neurobiological adaptations that make the intake behavior more compul-
sive [45]. Of the environmental factors that influence some eating disorders, the availability of
seductive foods is the most obvious [45] and it has been demonstrated that different foods es-
tablish different levels of compulsive behaviors [45, 46]. Of all palatable foods, chocolate has
been showed to have rewarding properties in animals [9, 47–49], and it is the food most typi-
cally associated with reports of food craving in humans. Thus, chocolate craving and addiction
have been proposed in humans [50].

Because caloric restriction is a stressful experience [24], animals were placed on a moderate
food-restriction schedule [38], and because pre-exposure to palatable food is a significant factor
in eating disorders [51], they were also pre-exposed to chocolate. Overeating shares several
neural substrates with compulsive drug-seeking [52, 53]. Based on the function of DA receptors
in drug- and food-related behaviors [17, 51, 54, 55], we measured D1R and D2R subtype levels
in the caudate putamen (CP), nucleus accumbens (NAc), and medial prefrontal cortex (mpFC)
and alpha-1 adrenergic receptors (α1Rs) in the mpFC because prefrontal NE is required for
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compulsive food-seeking [38] and α1Rs mediate motivation and drug-reinforcing effects
[56–58].

We found that exposure to environmental conditions induces compulsion-like eating be-
havior, depending on the genetic background. This behavioral pattern was linked to decreased
availability of accumbal D2Rs. Moreover, such exposure upregulated D2Rs and downregulated
α1Rs in the striatum and medial prefrontal cortex, respectively, of compulsive animals.

These findings confirm the function of gene-environment interplay in the expression of
compulsive eating and support the hypothesis that low accumbal D2R availability is a “consti-
tutive” genetic risk factor of compulsion-like behavior. Thus we propose that D2R upregulation
and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are poten-
tial neuroadaptive responses that parallel the shift from motivated to compulsive eating.

Materials and Methods

Animals
Male C57BL/6JIco and DBA/2J mice (Charles River, Como, Italy), 8–9 weeks old at the time of
the experiments, were group-housed and maintained on a12-h/12-h light/dark cycle (light on
between 7 AM and 7 PM), as described [9, 38]. All experiments were conducted per the Italian
Law (Decreto Legislativo no. 116, 1992) and the European Communities Council Directive of
November 24, 1986 (86/609/EEC) regulating the use of animals for research. All experiments
of this study were approved by the ethics committee of the Italian Ministry of Health and there-
fore conducted under license/approval ID #: 10/2011-B, according with Italian regulations on
the use of animals for research (legislation DL 116/92) and NIH guidelines on animal care. Ad-
equate measures were taken to minimize the pain and discomfort of animals. Control groups
were subjected only to the “brief pre-exposure” to chocolate (2 days); Stressed groups were sub-
jected to the “pre-exposure” to chocolate, “caloric restriction” and “brief pre-exposure” to
chocolate before the conditioned suppression procedure started (see above for methodological
details).

All experiments were conducted during the light phase.

Conditioned Suppression Procedure
The apparatus for the conditioned suppression test has been previously described [38]. A Plexi-
glas cup (3.8 cm in diameter) was placed in each chamber and fixed to prevent movement: 1
cup contained 1 g of milk chocolate (Kraft) (Chocolate-Chamber, C-C), and the other cup was
empty (Empty Safe- Chamber, ES-C).

Briefly, the procedure was as follows: from Day 1 to Day 4 (training phase), mice (Control,
Stressed groups for each strain) were placed individually in the alley, and the sliding doors
were opened to allow them to enter both chambers freely and explore the entire apparatus for
30 minutes. On Day 5, the animals were exposed to light-foot shock pairings. Acquisition of
the conditioned stimulus (CS) (light)-shock association was established in a different appara-
tus, comprising a 15×15×20 cm Plexiglas chamber with a black-and-white-striped pattern on
2 walls (to differentiate it from the conditioned suppression apparatus) and a stainless steel
grid floor through which the shocks were delivered. The light was produced by a halogen lamp
(10W, Lexman) under the grid floor that was turned on for 5, 20-sec periods every 100 sec.;
in each period, after the light had been on for 19 sec, a 1-sec 0.15-mA scrambled foot shock
was delivered. This session of light-shock association lasted for 10 min and was followed by a
10-min rest period, after which another identical 10-min light-shock association session was
administered; overall, the mice received 10 light-foot shock pairings in a 30-min session. On
Days 6–8, the mice were left undisturbed in their home cage. On Day 9, conditioned
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suppression of chocolate-seeking was measured in a test session (conditioned suppression test
day), in which the mice had access to chocolate in 1 of the 2 chambers in which chocolate had
been placed during the training phase. In the chamber that contained chocolate (C-C), the CS
(light) was presented according to the paradigm for the light-foot shock association (except for
the 10-min rest period, which was eliminated). The light was produced by a halogen lamp
under the grid floor that was turned on for 20-sec periods every 100 sec. This session lasted
20 min; overall, the mice received 10 20-sec periods in a 20-min session.

The test session began with the first 20-sec burst of light. The time that was spent in each of
the 2 chambers was recorded throughout the session. All experiments were performed in ex-
perimental sound-attenuated rooms that were indirectly lit by a standard lamp (60 W). For all
behavioral tests, data were collected and analyzed using “EthoVision” (Noldus, The Nether-
lands), a fully automated video-tracking system. The acquired digital signal was then processed
by the software to extract “time spent” (in seconds) in the chambers, which was used as raw
data for preference/aversion scores in each sector of the apparatus for each subject.

Two groups of mice for each strain were used in the conditioned suppression experiment:
control (Control n = 6) and stressed (Stressed n = 8).

Experimental Procedure
The experimental procedure is depicted in Fig. 1.

Pre-exposure to chocolate
Animals in the stressed groups (Stressed C57 and Stressed DBA) were exposed to chocolate for
7 days until 18 (from day -24 to day -18, Fig. 1) days before the conditioned suppression proce-
dure began. Mice were “randomly” isolated daily for 4 hours; milk chocolate and standard food
were delivered ad libitum. Two days after the end of this schedule (day -15, Fig. 1), mice in the
Stressed group were subjected to caloric restriction (food restriction, FR).

Caloric Restriction
Mice were assigned to a feeding regimen: they either received food ad libitum (Control groups)
or were subjected to a food restricted regimen (FR, Stressed groups). In the caloric restriction
condition, food was delivered once daily (07.00 p.m.) in a quantity adjusted to induce a loss of

Fig 1. Timeline of Experimental Procedure. (See Methods for details.)

doi:10.1371/journal.pone.0120191.g001
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15% of the original body weight. In the ad libitum condition, food was given once daily
(07.00 p.m.) in a quantity adjusted to exceed daily consumption [38].

Animals were placed on a moderate FR schedule [29] for 10 days (from day -15 to day -6,
Fig. 1), until 6 days before the conditioned suppression procedure began (day 1, Fig. 1). Six
days before the training phase started, the animals were returned to ad libitum feeding in order
to rule out any effects of dietary deficiency on the conditioned suppression test day.

Brief pre-exposure to chocolate
To prevent any unspecific novelty responses to chocolate in the groups that were not subjected
to the “pre-exposure” condition described above (Control groups), both control and Stressed
groups, were exposed to chocolate on the same schedule for 2 days, 2 days before the condi-
tioned suppression procedure started (“brief pre-exposure”).

Chocolate intake and animal weight
Chocolate intake during the various phases of the conditioned suppression procedure (pre-ex-
posure, training, test) was measured, and the animals weight was recorded. Mice were weighed
on: the first day of the experiment (before the experimental procedure began), the training
phase days, and the day of the conditioned suppression test.

Dopaminergic and noradrenergic receptors expression in Control and
Stressed DBAmice
α1R, D1R and D2R receptors expression in 3 brain regions [mpFC (α1R, D1R, D2R); NAc
(D1R, D2R); and CP (D1R, D2R)] was measured by western blot in control (Control DBA n =
6) and stressed animals (Stressed DBA n = 8), the same groups used in the conditioned
suppression experiment.

Dopaminergic and noradrenergic receptor expression in naïve C57 and
DBAmice
Baseline D1R, and D2R receptors expression in the mpFC, NAc, and CP as well as baseline
α1R in the mpFC was measured in naïve animals of both strains [naïve C57 (n = 6) and naïve
DBA (n = 6)] by western blot. This experiment was performed in animals subjected neither to
environmental conditions (pre-exposure to chocolate, FR) nor to the conditioned suppression
procedure (naïve groups) in order to test the hypothesis that low striatal D2 receptors availabil-
ity is a genetic risk factor of food compulsion-like behavior.

Western blotting
The mice were sacrificed by decapitation, and the brains were removed 1 h after the condi-
tioned suppression test, except for the naïve groups. The prefrontal, accumbal, and striatal tis-
sue was dissected and kept in liquid nitrogen. Punches of the mpFC, NAc, and CP were
obtained from frozen brain slices as reported [59] (S1 Fig.) and stored in liquid nitrogen until
the day of the assay. Each tissue sample was homogenized at 4°C in lysis buffer (20 mM Tris
(pH 7.4), 1 mM EDTA, 1 mM EGTA, 1% Triton X-100) with protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA).

The tissue extract was centrifuged at 12,000 g at 4°C for 30 min. The supernatant was treat-
ed in the same way as the tissue extract. Finally, The supernatant was removed and stored at
80°C.

Protein content was measured by Bradford assay (BioRad Laboratories, Hercules, CA, USA).
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The mpFC, NAc, and CP were analyzed using, 60 ug, 30 ug, and 30 ug, respectively, of each
protein sample after addition of sample buffer (0.5 M Tris, 30% glycerol, 10% SDS, 0.6 M dithio-
threitol, 0.012% bromophenol blue) and boiling for 5 min at 95°C. Proteins were separated by
electrophoresis on 10% acrylamide/bisacrylamide gels and transferred electrophoretically to nitro-
cellulose membranes, which were then blocked for 1 h at 22°C–25°C in Tris-buffered saline (in mM:
137 NaCl and 20 Tris-HCl, pH 7.5), containing 0.1% Tween 20 (TBS-T) and 5% low-fat milk.

The membranes were incubated with primary antibodies [rabbit anti-dopamine D1 (Immu-
nological Sciences) and rabbit anti-dopamine D2 receptor (Immunological Sciences), diluted
1:800 in TBS-T with 5% low-fat, or rabbit anti-alpha1-adrenergic receptor (Abcam), diluted
1:400 with 1% low-fat milk overnight at 4°C. After being washed extensively in TBS-T, the
membranes were incubated for 1 h at room temperature (22°C–25°C) with HRP-linked sec-
ondary antibodies [anti-rabbit IgG diluted 1:8000 (immunological sciences) in TBS-T with 5%
low-fat milk] and developed with ECL-R (Amersham). The signals were digitally scanned and
quantified using densitometric image software (imagej 64), normalized to tubulin.

Statistics
Conditioned Suppression experiment. For the conditioned suppression test, statistical

analyses were performed for the time (sec) spent in the center (CT), in the chamber that con-
tained chocolate (C-C) and in the empty safe chamber (ES-C) during the training phase (over-
all mean of 4 days of training) and on the day of the conditioned suppression test. The data
were analyzed using repeated-measures ANOVA, with 2 between-group factors (strain, 2 lev-
els: C57, DBA; treatment, 2 levels: Control, Stressed) and 1 within-group factor (chamber, 3
levels: CT, C-C, ES-C). Mean time spent in the C-C and ES-C chambers was compared using
repeated-measures ANOVA within each group. Between-group comparisons were analyzed
when appropriate by one-way ANOVA.

Chocolate intake and weight. Chocolate intake during training (overall mean of 4 days)
and on the conditioned suppression test day was analyzed by two-way ANOVA (strain, 2 levels:
C57, DBA; treatment, 2 levels: Control, Stressed). Chocolate intake during the pre-exposure
phase was analyzed by one-way ANOVA (strain: Stressed C57, Stressed DBA). The animals
weight was also recorded on the first day of the experiment (before the experimental procedure),
during the training phase, and on the day of the conditioned suppression test. The data were ana-
lyzed by two-way ANOVA (strain, 2 levels: C57, DBA; treatment, 2 levels: Control, Stressed).

Dopaminergic and noradrenergic receptors expression in Control and Stressed DBA
mice. D1R and D2R expression in the mpFC, NAc, and CP and D1R, D2R, and α1R levels in
Stressed DBA versus Control DBA were analyzed by one-way ANOVA (treatment, 2 levels:
Control DBA, Stressed DBA).

Dopaminergic and noradrenergic receptors expression in naïve C57 and DBAmice.
D1R and D2R expression in the mpFC, NAc, and CP and D1R, D2R, and α1R levels in naïve
C57 and DBA animals (naïve C57, naïve DBA) were analyzed by one-way ANOVA (strain, 2
levels: C57, DBA).

Results

Conditioned suppression experiment: Food-seeking behavior in
Stressed DBAmice
In order to assess the interplay between genetic background and environmental conditions ex-
posure on the expression of compulsive eating behavior, the time spent in C-C and ES-C on
the different phases (training and test) of the conditioned suppression procedure shown by
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Stressed and Control groups of both strains was assessed (Control C57, Control DBA, Stressed
C57, Stressed DBA).

In the analysis of the training phase, we observed a significant strain x treatment x chamber
interaction (F(1,72) = 6.52; p< 0.001). Comparison of the time spent in the C-C and ES-C in
each group indicated that only the Control C57 and Stressed DBA groups preferred the C-C
versus the ES-C during the training phase (Control C57: F(1,10) = 6.32; p< 0.05; Stressed
DBA: F(1,14) = 15.60; p< 0.05) (Fig. 2), spending more time in the C-C than ES-C.

Concerning the test results, we observed a significant interaction between strain, treatment
and chamber (F(1,72) = 6.0; p< 0.001). The two strains showed different patterns of time spent
in the C-C and ES-C. Both control groups (C57, DBA) spent more time in ES-C in comparison
with the chamber that contained chocolate (C-C), in which the conditioned stimulus (CS) was
present (C57: F (1,10) = 6.04; p< 0.05; DBA: F (1,10) = 12.32; p< 0.01), indicating condi-
tioned suppression of chocolate-seeking during presentation of the CS. In contrast, whereas
Stressed C57 mice showed no significant tendency or aversion for either chamber (F (1,14) =
.381; n.s.), Stressed DBA animals spent more time in the C-C in comparison with the ES-C,

Fig 2. Conditioned Suppression Training in C57 and DBAmice. Time spent (sec ± SE) in the chamber
containing chocolate (C-C) and in the empty safe chamber (ES-C) during training phase by Control C57/DBA
groups (n = 6 for each group) (A) and Stressed C57/DBAmice (n = 8 for each group) (B). * p< 0.05 in
comparison with ES-C.

doi:10.1371/journal.pone.0120191.g002
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(F (1,14) = 7.38; p< 0.05) (Fig. 3), thus indicating food-seeking behavior despite its possible
harmful consequences.

These results indicate that the exposure to our environmental conditions rendered choco-
late-seeking impervious to punishment signals, transforming adaptive food-seeking behavior
into compulsive seeking only in DBA mice (Fig. 3).

Chocolate intake and weight
To evaluate the chocolate intake shown by Control and Stressed groups of both strains (Con-
trol C57, Control DBA, Stressed C57, Stressed DBA), the consumption of chocolate was as-
sessed during the different phases (pre-exposure, training, test) of the conditioned
suppression procedure.

With regard to chocolate intake on pre-exposure phase, there was no significant difference
between stressed C57 and Stressed DBA mice (F(1,14) = 0.83; n.s.) (Fig. 4).

With regard to chocolate intake during the training phase, there was a significant interac-
tion between strain and treatment F(1,24) = 20.10; p< 0.001). In the individual between-group

Fig 3. Conditioned Suppression Test in C57 and DBAmice. Time spent (sec ± SE) in the chamber
containing chocolate (C-C) and in the empty safe chamber (ES-C) during conditioned suppression test by
Control C57/DBA groups (n = 6 for each group) (A) and Stressed C57/DBAmice (n = 8 for each group) (B).
* p< 0.05; ** p< 0.01 in comparison with C-C.

doi:10.1371/journal.pone.0120191.g003
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comparisons, we noted a significant difference between Control DBA versus Stressed DBA
((F(1,12) = 46.17; p< 0.001), Control C57 versus Stressed C57 ((F(1,12) = 24.25; p< 0.001),
and Stressed C57 versus Stressed DBA mice ((F(1,14) = 27.52; p< 0.001) (Fig. 4). Stressed DBA
animals showed significantly higher chocolate intake compared to all other groups.

Analysis of chocolate intake on the test day revealed a significant strain x treatment interac-
tion (F(1,24) = 21.48; p< 0.005). Individual between-group comparisons showed a significant
difference between control and Stressed DBA ((F(1,12) = 38.49; p< 0.001), Control and
Stressed C57 ((F(1,12) = 7.90; p< 0.05) and Stressed C57 and Stressed DBA mice ((F(1,14) =
33.32; p< 0.001) (Fig. 4). Stressed DBA animals experienced significantly greater chocolate
intake compared with all other groups, suggesting compulsive chocolate consumption, in
agreement with the seeking behavior in the conditioned suppression test.

Finally, concerning weight results, statistical analysis showed that the animals weight did
not differ significantly between groups on the first day of the experiment (before the experi-
mental procedure started (F(1,24) = 2.22; ns), on the training phase (F(1,24) = 2.97; n.s.) and
on the day of the conditioned suppression test (F(1,24) = 0.58; n.s.) (Fig. 5).

Overall, our data demonstrate a strong interaction between genetic factors and environmen-
tal conditions in the expression of compulsive eating, consistent with previous studies that re-
ported a critical function of these factors in certain eating disorders [3–5, 38].

Dopaminergic and noradrenergic receptor expression in mpFC, NAc,
and CP of Stressed DBA vs Control DBAmice
To assess the expression of dopaminergic and noradrenergic receptors in animal showing com-
pulsion-like eating behavior (Stressed DBA), the expression of α1R, D1R and D2R in the
mpFC as well as D1R and D2R in the NAc and CP was evaluated in Stressed vs. Control DBA
mice (Fig. 6).

D2Rs were upregulated in the NAc (F(1,12) = 5.58; p< 0.05) and in the CP (F(1,12) = 10.74;
p< 0.01) of Stressed DBA compared with Control DBA mice (Fig. 6), indicating a selective ef-
fect on striatal D2 receptors in animals showing compulsion-like eating behavior. No signifi-
cant effect was evident for D1 receptors. α1Rs expression was lower in the mpFC of Stressed
DBA group compared to Control DBA mice (F(1,12) = 7.27; p< 0.05) (Fig. 6). No significant
effect was observed for prefrontal D1R or D2R receptors expression.

Dopaminergic and noradrenergic receptor expression in mpFC, NAc,
and CP of naïve DBA versus naïve C57 mice
In order to evaluate the baseline receptors availability of α1R, D1R and D2R, the expression of
α1R, D1R and D2R in the mpFC as well as D1R and D2R in the NAc and CP was evaluated in
two different groups of naïve animals of both strains (naïve C57 and naïve DBA) (Fig. 7).

We observed significantly selective lower D2R availability in the NAc of naïve DBA versus
naïve C57 mice (F(1,10) = 11.80; p< 0.01). No other significant difference was seen in D1R,
D2R, or α1R in the other areas of the brain (Fig. 7). These results, consistent with previous data
[4, 54, 60, 61], support the hypothesis that low D2R availability is a “constitutive” risk genetic
factor underlying the vulnerability to maladaptive eating.

Discussion
We assessed compulsive eating in terms of conditioned suppression of palatable food-seeking/
intake under adverse conditions [38] in C57 and DBA mice. Exposure to environmental condi-
tions induced compulsion-like eating behavior, depending on genetic background. Moreover,
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this behavioral pattern appeared to be linked to low availability of accumbal D2 receptors. We
also observed D2R upregulation and α1R downregulation in the striatum and mpFC,

Fig 4. Chocolate intake in C57/DBA Control and Stressed groups.Chocolate intake in C57/DBA Control
(n = 6 for each group) and Stressed (n = 8 for each group) animals recorded during pre-exposure (A), training
(B), and test (C). Data are expressed as mean grams (overall mean of days ± SE for A and B). * p< 0.05; ***
p< 0.001 in comparison with the control group of the same strain. ### p< 0.001 in comparison with the same
group of the other strain.

doi:10.1371/journal.pone.0120191.g004
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Fig 5. Animal weight.Weight in Control (n = 6 for each group) and Stressed (n = 8 for each group) C57/DBA
groups measured before manipulation started (A), on the first training day (B) and on the Test day (C). Data
are expressed as gram ± SE.

doi:10.1371/journal.pone.0120191.g005
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Fig 6. Expression of DA and NE Receptors in DBA strain. Expression of D1R and D2R in CP and NAc (A)
and D1R, D2R and α1 in mpFC (B) of Stressed DBA (n = 8) and Control group (n = 6). * p< 0.05; ** p< 0.01
in comparison with control group. Data are shown as relative ratio ± SE.

doi:10.1371/journal.pone.0120191.g006
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respectively – a potentially neuroadaptive response that parallel the shift from motivated to
compulsion-like eating behavior.

Our experiments suggest that the interaction between access to chocolate pre-exposure and
caloric restriction renders chocolate-seeking impervious to signals of punishment, transform-
ing adaptive food-seeking behavior into compulsion-like eating behavior. Notably, this behav-
ior depends strongly on genotype. The conditioned suppression test results indicate that only
Stressed DBA animals showed food-seeking behavior, despite possible harmful consequences.

This effect can’t be ascribed to a difference in shock sensitivity between C57 and DBA mice,
as shown by the supporting experiment (see S1 Methods and S2 Fig.) and as reported by other
groups [62]. Moreover, food-seeking behavior developed, in Stressed DBA animals, in parallel
to intake behavior as demonstrated by the high chocolate intake shown by this group. Although

Fig 7. Expression of DA and NE Receptors in naïve C57 and DBA animals. Expression of D1R and D2R
in CP and NAc (A) and D1R, D2R, and α1 in mpFC (B) of naïve C57/DBA groups (n = 6 for each group).
** p<0.01 in comparison with naïve group of the other strain. Data are shown as relative ratio ± SE.

doi:10.1371/journal.pone.0120191.g007
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consuming large quantities of palatable foods can indicate increased motivation for food, doing
so despite harmful consequences, such as tolerating punishment to obtain it, reflects pathologi-
cal motivation for food (compulsion) [5].

Thus, whereas DBA mice constitute an “ideal model” of resistance to drugs of abuse [24]
and food-related disorders under normal conditions (present results), they become most sensi-
tive to drug- [24] and food-related effects when subjected to specific environmental pressures.
Moreover, preliminary experiments indicate that exposure to only one of these variables (pre-
exposure to chocolate or caloric restriction, separately) fails to induce this phenotype (S1 Meth-
ods and S3 Fig.). Thus, only the addictive effect of the environmental conditions (pre-exposure
to chocolate and caloric restriction) makes eating behavior refractory to signals of punishment
(compulsion-like eating behavior). This result is consistent with evidence that shows that avail-
ability of palatable [46, 51], stress exposure [1, 63–65], and a synergistic relationship between
stress and calorie restriction are the most important factors that promote eating disorders in
humans and animal models [65–67].

The shift from motivated to compulsion-like eating behavior shown by Stressed DBA mice
seems to be related to altered dopaminergic and noradrenergic receptors expression in the
pFC-NAc-CP circuit. In fact, Stressed DBA mice, which exhibited compulsive eating behavior
(as shown by the absence of conditioned suppression), showed an upregulation of D2R in the
NAc and CP and a downregulation of α-1AR in the mpFC, compared to control DBA. To rule
out that the effects observed could be induced by different amount of chocolate consumption
on the test session shown by Control and Stressed DBA, an additional experiment was per-
formed. The experimental conditions and the procedure were as described for Control and
Stressed DBA, but receptors expression was performed on the brains removed from mice with-
out chocolate consumption (on the test day). Results from this experiment (S1 Methods and
S4 Fig.), clearly exclude that the upregulation of D2R in the NAc and CP as well as the downre-
gulation of α-1AR in the mpFC shown by Stressed DBA can be induced to chocolate
consumption.

The results observed in the NAc and CP of Stressed DBA mice do not allow us to determine
the effects on DA transmission – i.e., whether the changes increase dopaminergic tone,
necessitating more detailed information on the D2 receptor form – e.g., the proportion of the
2 alternative mRNA splice variants, D2R-long (D2L) and D2R-short (D2S) – in the 2 areas, be-
cause the relative proportion of the isoforms in the striatum influences neural and behavioral
outcomes of D1R and D2/3R co-activation [68–70]. We hypothesize that the increase in post-
synaptic receptors and consequent rise in dopamine transmission sustain motivation and in-
vigorate food-seeking behavior [11]. However, more details studies are needed to investigate
which type of D2Rs is affected in our experimental procedure.

Increased striatal D2R expression in Stressed DBA mice seems to be in contrast with the hy-
pothesis suggesting that the downregulation of striatal D2R is a neuroadaptive response to the
overconsumption of palatable food. However, downregulation of striatal D2R has been re-
ported to be a neuroadaptive response to overconsumption of palatable food and drug intake
in humans and animals [4, 44, 60, 71–75] but also a genetic risk factor underlying vulnerability
to maladaptive eating [4, 54, 60, 61, 75]. The greater striatal D2R expression that we observed
in this study could be the result of a neuroadaptive response to our environmental conditions
(pre-exposure, calorie restriction) underlying a specific symptom (compulsive eating) that is
shared by other, more complex eating disorders. The debate over this issue has often consid-
ered obesity and binge eating disorders, in which complex behavioral patterns (such as in-
creased weight, intermittent feeding episodes, extended access to a high-fat diet) develop—not
compulsion-like eating behavior per se, as evaluated in this study.
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Increasing evidence implicates striatal D1R and D2R in the cost-benefit computation that
determines the willingness to expend effort in obtaining a preferred reward, thus affecting mo-
tivated behavior [10–14]. Moreover, optimal goal-directed behaviors and motivation appear to
correlate with higher D2R levels in the striatum [12, 76–79]. Our study indicates that excessive
striatal D2R expression is also linked to a pathological behavioral phenotype, prompting the
hypothesis that optimal D2R expression is a neural correlate of ideal goal-directed behaviors
and motivation.

Another significant result was the lower availability of D2R in the NAc of naïve DBA versus
naïve C57 mice. As discussed, reduced D2R expression has been suggested to be a genetic risk
factor of the vulnerability to maladaptive eating [4, 54, 60, 61, 75]. Moreover, decreased D2/D3
dopaminergic receptor availability in the ventral striatum has been proposed to confer an in-
creased propensity to escalate drug intake and correlate with high impulsivity [16, 79, 80]. Fur-
ther, DBA/2 mice have been reported to have high impulsivity levels [81, 82]. Thus, we
speculate that low accumbal D2R availability observed in naïve DBA mice accounts for the dis-
parate inclination toward the development of compulsive eating under specific environmental
conditions, such caloric restriction and availability of palatable food—factors that affect the
development and expression of eating disorders [4, 46, 64, 83, 84].

We observed decreased prefrontal α1R expression in Stressed versus Control DBA mice. Al-
though prefrontal NE transmission has been suggested to be required for food-related motivat-
ed behavior [9] and although NE neurons (in particular through α1Rs) mediate the reinforcing
effects of drugs of abuse [57, 58, 85], no study has examined the involvement of prefrontal nor-
adrenergic receptors in compulsion-like eating behavior. Our results extend previous findings
on the function of prefrontal NE transmission in food-related motivated behavior, suggesting
that specific receptors govern aberrant motivation related to compulsive eating. Downregula-
tion of α1R in the mpFC could be indicative of an adaptive process that underlies the shift
from motivated toward compulsive behavior, driven by a faded role of the cortex and a domi-
nant function of the striatum. However, further studies are needed to investigate this
hypothesis.

The hypothalamus is one of the most important brain area regulating food-intake [86–88].
However, different brain circuits, other than those regulating hunger and satiety, have been
suggested to be involved in food consumption [60, 89]. Moreover, several neurotransmitters
and hormones, including DA, NE, acetylcholine, glutamate, cannabinoids, opiods and seroto-
nine, as well as neuroptides involved in homeostatic regulation of food intake, such as orexin,
leptin and ghrelin, are implicated in the rewarding effects of food [60, 90–92]. Thus, the regula-
tion of food intake by the hypothalamus seems to be related to different neural circuits process-
ing the rewarding and motivational aspects of food intake [60], such as prefrontal-accumbal
system. It's to note that C57 and DBA mice show numerous behavioral differences and the
functional and anatomical characteristics of their brain neurotransmitter systems have been ex-
tensively examined in these inbred strains [19, 23], thus suggesting a different, strain-depen-
dent, regulation of motivation, reward, learning, and control circuits.

The best-established mechanism involved in processing the rewarding and motivational as-
pects of food (and drug) is the brain’s dopaminergic reward circuitry [45, 51, 60]. Repeated
stimulation of DA reward pathways is believed to trigger neurobiological adaptations in vari-
ous neural circuits, thus making seeking behavior “compulsive” and leading to a loss of control
over one’s intake of food (or drugs) [51, 60].

It has been suggested that under different access conditions, the potent reward-inducing ca-
pacity of palatable foods can drive behavioral modification through neurochemical alterations
in brain areas linked to motivation, learning, cognition, and decision making that mirror the
changes induced by drug abuse [83, 93–99]. In particular, the changes in the reward,
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motivation, memory, and control circuits following repeated exposure to palatable food is simi-
lar to the changes observed following repeated drug exposure [60, 95]. In individuals who are
vulnerable to these changes, consuming high quantities of palatable food (or drugs) can disrupt
the balance between motivation, reward, learning, and control circuits, thereby increasing the
reinforcing value of the palatable food (or drug) and weakening the control circuits [51, 60].

Based on this observation and on results from present study, it can proposed that the shift
from motivated behavior to compulsive eating behavior observed in DBA mice could be related
to an interplay between genetic vulnerability (low accumbal D2 receptors availability observed
in this study as well as differences in other neurotransmitters and hormones involved in food-
related brain circuits) and exposure to environmental conditions that, inducing a D2R upregu-
lation and α1R downregulation in the striatum and mpFC, respectively, can lead at an “unbal-
anced” interaction between circuits that motivate behavior and circuits that control and inhibit
pre-potent responses [60, 95].

Conclusions
There are few studies on gene-environment interaction in human eating disorders [2]. The ani-
mal model that we propose here could be used to understand how environmental factors inter-
act with genetic liability and neurobiological factors to promote the expression of compulsion-
like eating behavior, also providing new insights into drug addiction.

Supporting Information
S1 Fig. Punching position. Representative position of punching in the medial preFrontal Cor-
tex (mpFC) (A), Nucleus Acumbens (NAc) and Caudate-Putamen (CP) (B).
(TIFF)

S2 Fig. Shock sensitivity threshold in C57 and DBAmice. Shock sensitivity in C57 and DBA
animals (Methods S1). Mean (μA ± SE) shock threshold observed in C57 and DBA animals.
(TIFF)

S3 Fig. Conditioned Suppression Test in DBA mice. Time spent (sec ± SE) in chamber con-
taining chocolate (C-C) empty-safe chamber (ES-C) during Conditioned Suppression Test by
DBA pre-exposed and DBA Food Restricted Groups.
(TIFF)

S4 Fig. Expression of DA and NE Receptors in DBAmice. Expression of D2 receptors in the
CP and NAc as well as of α1 in the mpFC of Stressed and Control DBA mice (n = 6 for each
group). � p< 0.05 in comparison with Control group. Data are shown as relative ratio ± SE.
(TIFF)

S1 Methods. Supporting Materials and Methods.
(DOC)

Acknowledgments
We thank Dr. Sergio Papalia for his skillful assistance.

Author Contributions
Conceived and designed the experiments: RV EP MDS. Performed the experiments: EP MDS
DA ECL AF LP AV. Analyzed the data: RV AP AG SPA. Contributed reagents/materials/analy-
sis tools: AF EP MDS. Wrote the paper: RV SPA EP MDS.

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120191.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120191.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120191.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120191.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120191.s005


References
1. Campbell IC, Mill J, Uher R, Schmidt U (2010) Eating disorders, gene-environment interactions and epi-

genetics. Neuroscience Biobehav Rev 35: 784–793.

2. Bulik CM (2005) Exploring the gene-environment nexus in eating disorders. J Psychiatry Neurosci 30:
335–339. PMID: 16151538

3. Heyne A, Kiesselbach C, Sahùn I (2009) An animal model of compulsive food-taking behaviour. Add
Biol 14: 373–383.

4. Johnson PM, Kenny PJ (2010) Addiction-like reward dysfunction and compulsive eating in obese rats:
role for dopamine D2 receptors. Nat Neuroscience 13: 635–641. doi: 10.1038/nn.2519 PMID:
20348917

5. Oswald KD, Murdaugh DL, King VL, Boggiano MM (2011) Motivation for palatable food despite conse-
quences in an animal model of binge eating. Int J Eatg Disord 44: 203–211. doi: 10.1002/eat.20808
PMID: 20186718

6. Teegarden SL, Bale TL (2008) Effects of stress on dietary preference and intake are dependent on ac-
cess and stress sensitivity. Physiol & Behav 93:713–723.

7. Cabib S, Puglisi-Allegra S (2012) The mesoaccumbens dopamine in coping with stress. Neurosci Bio-
behav Rev 36:79–89. doi: 10.1016/j.neubiorev.2011.04.012 PMID: 21565217

8. Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S (2008) Prefrontal norepinephrine de-
termines attribution of “high”motivational salience. PLoS ONE, 3:e3044. Biol Psychiatry 71:358–365.
doi: 10.1371/journal.pone.0003044 PMID: 18725944

9. Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines
motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA
104: 5181–5186. PMID: 17360372

10. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neu-
ron 76: 470–485. doi: 10.1016/j.neuron.2012.10.021 PMID: 23141060

11. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens
dopamine and associated forebrain circuits. Psychopharmacology 191: 461–482. PMID: 17225164

12. Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, et al.(2013) Increasing dopamine D2 re-
ceptor expression in adult nucleus accumbens anhances motivation. Mol Psychiatry 18: 1025–1033.
doi: 10.1038/mp.2013.57 PMID: 23711983

13. Van den Bos R, van der Harst J, Jonkman S, Schilders M, Sprijt B (2006) Rats assess costs and bene-
fits according to an internal standard. Behav Brain Res 171: 350–354. PMID: 16697474

14. Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JI, et al.(2012) Dissociation of he-
donic reaction to reward and incentive motivation in an animal model of the negative symptoms of
schizophrenia. Neuropsychopharmacology 37: 1699–1707. doi: 10.1038/npp.2012.15 PMID:
22414818

15. Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, et al. (2009) Functional variants of the
dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 132:417–
425. doi: 10.1093/brain/awn248 PMID: 18829695

16. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley J, Robbins TW (2008) Neural mechanisms under-
lying the vulnerability to develop compulsive drug-seeking habits and addiction. Phylos Transact R S
London Series B: Biological Sciences 363: 3125–3135. doi: 10.1098/rstb.2008.0089 PMID: 18640910

17. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine's role in drug abuse and
addiction. Neuropharmacology 1: 3–8.

18. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, et al. (1997) Behavioral phe-
notypes of inbred mouse strains: implications and recommendations for molecular studies. Psycho-
pharmacology (Berl) 132:107–124. PMID: 9266608

19. Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains
of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130: 103–109. PMID:
11864725

20. Puglisi-Allegra S, Ventura R (2012) Prefrontal/accumbal catecholamine system processes emotionally
driven attribution of motivational salience. Rev Neurosci 23: 509–526. doi: 10.1515/revneuro-2012-
0076 PMID: 23159865

21. Puglisi-Allegra S, Ventura R (2012) Prefrontal/accumbal catecholamine system processes high motiva-
tional salience. Front Behav Neurosci 6:31. doi: 10.3389/fnbeh.2012.00031 PMID: 22754514

22. Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system:
an affective neuroethological perspective. Brain Res Rev 56: 283–321. PMID: 17905440

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 17 / 21

http://www.ncbi.nlm.nih.gov/pubmed/16151538
http://dx.doi.org/10.1038/nn.2519
http://www.ncbi.nlm.nih.gov/pubmed/20348917
http://dx.doi.org/10.1002/eat.20808
http://www.ncbi.nlm.nih.gov/pubmed/20186718
http://dx.doi.org/10.1016/j.neubiorev.2011.04.012
http://www.ncbi.nlm.nih.gov/pubmed/21565217
http://dx.doi.org/10.1371/journal.pone.0003044
http://www.ncbi.nlm.nih.gov/pubmed/18725944
http://www.ncbi.nlm.nih.gov/pubmed/17360372
http://dx.doi.org/10.1016/j.neuron.2012.10.021
http://www.ncbi.nlm.nih.gov/pubmed/23141060
http://www.ncbi.nlm.nih.gov/pubmed/17225164
http://dx.doi.org/10.1038/mp.2013.57
http://www.ncbi.nlm.nih.gov/pubmed/23711983
http://www.ncbi.nlm.nih.gov/pubmed/16697474
http://dx.doi.org/10.1038/npp.2012.15
http://www.ncbi.nlm.nih.gov/pubmed/22414818
http://dx.doi.org/10.1093/brain/awn248
http://www.ncbi.nlm.nih.gov/pubmed/18829695
http://dx.doi.org/10.1098/rstb.2008.0089
http://www.ncbi.nlm.nih.gov/pubmed/18640910
http://www.ncbi.nlm.nih.gov/pubmed/9266608
http://www.ncbi.nlm.nih.gov/pubmed/11864725
http://dx.doi.org/10.1515/revneuro-2012-0076
http://dx.doi.org/10.1515/revneuro-2012-0076
http://www.ncbi.nlm.nih.gov/pubmed/23159865
http://dx.doi.org/10.3389/fnbeh.2012.00031
http://www.ncbi.nlm.nih.gov/pubmed/22754514
http://www.ncbi.nlm.nih.gov/pubmed/17905440


23. Andolina D, Maran D, Viscomi MT, Puglisi-Allegra S (2014) Strain-dependent variations in stress coping
behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Interna-
tional Journal of Neuropsychopharmacology doi: 10.1093/ijnp/pyu074.

24. Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and Reversal of Strain Differences in Behav-
ioral Responses to Drugs of Abuse After a Brief Experience. Science 289: 463–465. PMID: 10903209

25. Orsini C, Bonito-Oliva A, Conversi D, Cabib S (2005) Susceptibility to conditioned place preference in-
duced by addictive drugs in mice of the C57BL/6 and DBA/2 inbred strains. Psychopharmacology
(Berl) 181: 327–336. PMID: 15864555

26. Orsini C, Bonito-Oliva A, Conversi D, Cabib S (2008) Genetic liability increases propensity to prime-in-
duced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharma-
cology (Berl) 198: 287–296. doi: 10.1007/s00213-008-1137-4 PMID: 18421441

27. van der Veen R, Piazza PV, Deroche-Gamonet V (2007) Gene environment interactions in vulnerability
to cocaine intravenous self-administration: a brief social experience affects intake in DBA/2J but not in
C57BL/6J mice. Psychopharmacology (Berl) 193: 179–186. PMID: 17396246

28. Young JW, Light GA, Marston HM, Sharp R, Geyer MA (2009) The 5-choice continuous performance
test: evidence for a translational test of vigilance for mice. PLoS ONE 4, e4227. doi: 10.1371/journal.
pone.0004227 PMID: 19156216

29. Elmer GI, Pieper JO, Hamilton LR, Wise RA (2010) Qualitative differences between C57BL/6J and
DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration.
Psychopharmacology 208: 309–321. doi: 10.1007/s00213-009-1732-z PMID: 20013116

30. Fish EW, Riday TT, McGuigan MM, Faccidomo S, Hodge CW, Malanga CJ (2010) Alcohol, cocaine,
and brain stimulation-reward in C57Bl6/J and DBA2/J mice. Alcohol Clin Exp Res 34:81–89. doi: 10.
1111/j.1530-0277.2009.01069.x PMID: 19860803

31. Solecki W, Turek A, Kubik J, Przewlocki R (2009) Motivational effects of opiates in conditioned place
preference and aversion paradigm—a study in three inbred strains of mice. Psychopharmacology
207:245–255. doi: 10.1007/s00213-009-1672-7 PMID: 19787337

32. Caspi A, Moffitt TE (2006) Gene-environment interactions in psychiatry: joining forces with neurosci-
ence. Nat Rev Neurosci 7: 583–590. PMID: 16791147

33. Rutter M (2008) Biological implications of gene-environment interaction. J Abnorm Child Psychol 36:
969–975. doi: 10.1007/s10802-008-9256-2 PMID: 18642072

34. Volkow N, Li TK (2005) The neuroscience of addiction. Nat Neurosci 8: 1429–1430. PMID: 16251981

35. Cabib S, Puglisi-Allegra S, Oliverio A (1985) A genetic analysis of stereotypy in the mouse: dopaminer-
gic plasticity following chronic stress. Behav Neural Biol 44: 239–248. PMID: 4062778

36. Cabib S, Giardino L, Calza L, Zanni M, Mele A, Puglisi-Allegra S (1998) Stress promotes major changes
in dopamine receptor densities within the mesoaccumbens and nigrostriatal systems. Neuroscience
84, 193–200. PMID: 9522373

37. Puglisi-Allegra S, Cabib S (1997) Psychopharmacology of dopamine: the contribution of comparative
studies in inbred strains of mice. Prog Neurobiol 51: 637–61. PMID: 9175160

38. Latagliata EC, Patrono E, Puglisi-Allegra S, Ventura R (2010) Food seeking in spite of harmful conse-
quences is under prefrontal cortical noradrenergic control. BMC Neurosci 8: 11–15. PMID: 21478683

39. Carr KD (2002) Augmentation of drug reward by chronic food restriction:behavioral evidence and un-
derlying mechanisms. Physiol Behav 76: 353–364. PMID: 12117572

40. Rougé-Pont F, Marinelli M, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and
glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends
on stress-induced corticosterone secretion. J Neurosi 15:7189–7195. PMID: 7472473

41. Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization
and glucocorticoids. I. Sensitization of dopamine dependent locomotor effects of amphetamine and
morphine depends on stress-induced corticosterone secretion. J Neurosi 15: 7181–7188. PMID:
7472472

42. Guarnieri DJ, Brayton CE, Richards SM, Maldonado-Aviles J, Trinko JR, Nelson J, et al. (2012) Gene
profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction.
Biol Psychiatry 71:358–365. doi: 10.1016/j.biopsych.2011.06.028 PMID: 21855858

43. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91: 449–458. PMID:
17543357

44. Corwin RL, Avena NM, Boggiano MM (2011) Feeding and reward: perspectives from three rat models
of binge eating. Physiol and Behav 104:87–97. doi: 10.1016/j.physbeh.2011.04.041 PMID: 21549136

45. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8,
555–556. PMID: 15856062

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 18 / 21

http://dx.doi.org/10.1093/ijnp/pyu074
http://www.ncbi.nlm.nih.gov/pubmed/10903209
http://www.ncbi.nlm.nih.gov/pubmed/15864555
http://dx.doi.org/10.1007/s00213-008-1137-4
http://www.ncbi.nlm.nih.gov/pubmed/18421441
http://www.ncbi.nlm.nih.gov/pubmed/17396246
http://dx.doi.org/10.1371/journal.pone.0004227
http://dx.doi.org/10.1371/journal.pone.0004227
http://www.ncbi.nlm.nih.gov/pubmed/19156216
http://dx.doi.org/10.1007/s00213-009-1732-z
http://www.ncbi.nlm.nih.gov/pubmed/20013116
http://dx.doi.org/10.1111/j.1530-0277.2009.01069.x
http://dx.doi.org/10.1111/j.1530-0277.2009.01069.x
http://www.ncbi.nlm.nih.gov/pubmed/19860803
http://dx.doi.org/10.1007/s00213-009-1672-7
http://www.ncbi.nlm.nih.gov/pubmed/19787337
http://www.ncbi.nlm.nih.gov/pubmed/16791147
http://dx.doi.org/10.1007/s10802-008-9256-2
http://www.ncbi.nlm.nih.gov/pubmed/18642072
http://www.ncbi.nlm.nih.gov/pubmed/16251981
http://www.ncbi.nlm.nih.gov/pubmed/4062778
http://www.ncbi.nlm.nih.gov/pubmed/9522373
http://www.ncbi.nlm.nih.gov/pubmed/9175160
http://www.ncbi.nlm.nih.gov/pubmed/21478683
http://www.ncbi.nlm.nih.gov/pubmed/12117572
http://www.ncbi.nlm.nih.gov/pubmed/7472473
http://www.ncbi.nlm.nih.gov/pubmed/7472472
http://dx.doi.org/10.1016/j.biopsych.2011.06.028
http://www.ncbi.nlm.nih.gov/pubmed/21855858
http://www.ncbi.nlm.nih.gov/pubmed/17543357
http://dx.doi.org/10.1016/j.physbeh.2011.04.041
http://www.ncbi.nlm.nih.gov/pubmed/21549136
http://www.ncbi.nlm.nih.gov/pubmed/15856062


46. Ifland JR, Preuss HG, Marcus MT, Rourke KM, Taylor WC, Burau K, et al. (2009) Refined food addic-
tion: a classic substance use disorders. Mel Hypoth 72: 518–526.

47. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may
play a role in the epidemic of obesity. Am J Clin Nutrition 79: 537–543. PMID: 15051594

48. Rogers PJ, Smit HJ (2000) Food craving and food ‘‘addiction”: a critical review of the evidence from a
biopsychosocial perspective. Pharmacol Biochem Behav 66: 3–14. PMID: 10837838

49. Kalra SP, Kalra PS (2004) Overlapping and interactive pathways regulating appetite and craving. J Ad-
dict Dis 23: 5–21. PMID: 15256341

50. Parker G, Parker I, Brotchie H (2006) Mood state effects of chocolate. J Affect Dis 92: 149–159. PMID:
16546266

51. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. (2008) Low dopamine striatal
D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors.
Neuroimage 42: 1537–1543. doi: 10.1016/j.neuroimage.2008.06.002 PMID: 18598772

52. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG (2010) The tempted brain eats: Pleasure and de-
sire circuits in obesity and eating disorders. Brain Res 1350: 43–64. doi: 10.1016/j.brainres.2010.04.
003 PMID: 20388498

53. Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) Obesity and addiction: neurobiological overlaps.
Obese Rev 14: 2–18.

54. Bello NT, Hajnal A (2010) Dopamine and Binge Eating Behaviors. Pharmacol Biochem Behav 97: 25–
33. doi: 10.1016/j.pbb.2010.04.016 PMID: 20417658

55. Wang GJ, Volkow ND, Thanos PK, Fowler JS (2009) Imaging of brain dopamine pathways: implications
for understanding obesity. J Addict Med 3: 8–18. doi: 10.1097/ADM.0b013e31819a86f7 PMID:
21603099

56. Sara SJ, Bouret S (2012) Orienting and reorienting: the Locus Coeruleus mediates cognition through
arousal. Neuron rev 76: 130–141. doi: 10.1016/j.neuron.2012.09.011 PMID: 23040811

57. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, et al. (2002) Alpha1b-adrenergic re-
ceptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:
2873–2884. PMID: 11923452

58. Weinshenker D, Schroeder JPS (2007) There and back again: a tale of norepinephrine and drug addic-
tion. Neuropsychopharmacology 32: 1433–1451. PMID: 17164822

59. Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic
deficit in a genetic mouse model of phenylketonuria. Neuroreport 11: 1361–1364. PMID: 10817622

60. Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications
for obesity. Trends in Cogn Sci 15: 37–46. doi: 10.1016/j.tics.2010.11.001 PMID: 21109477

61. Stice E, Spoor S, Bohon C, Small DM (2008) Relation between obesity and blunted striatal response to
food is moderated by TaqIA A1 allele. Science 322: 449–452. doi: 10.1126/science.1161550 PMID:
18927395

62. Szklarczyk K, Korostynski M, Golda S, Solecki W, Przewlocki R (2012) Genotype-dependent conse-
quences of traumatic stress in four inbred mouse strains. Genes, Brain and Behav 11: 977–985.

63. Cifani C, Polidori C, Melotto S, Ciccocioppo R, Massi M (2009) A preclinical model of binge eating elic-
ited by yo-yo dieting and stressful exposure to food: effect of sibutramine, fluoxetine, topiramate, and
midazolam. Psychopharmacology 204: 113–125. doi: 10.1007/s00213-008-1442-y PMID: 19125237

64. Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, et al. (2003) Chronic stress
and obesity: A new view of “comfort food”. Proc Natl Acad Sci U S A 100: 11696–11701. PMID:
12975524

65. Hagan MM, Chandler PC, Wauford PK, Rybak RJ, Oswald KD (2003) The role of palatable food and
hunger as trigger factors in an animal model of stress induced binge eating. Int Journal Eating Disorders
34:183–197. PMID: 12898554

66. Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and
obesity. Psychopharmacology 199: 313–329. doi: 10.1007/s00213-008-1102-2 PMID: 18317734

67. Parylak SL, Koob GF, Zorrilla EP (2011) The dark side of food addiction. Physiol and Behav 104: 149–
156. doi: 10.1016/j.physbeh.2011.04.063 PMID: 21557958

68. Colelli V, Fiorenza MT, Conversi D, Orsini C, Cabib S (2010) Strain-specific proportion of the two iso-
forms of the dopamine D2 receptor in the mouse striatum: associated neural and behavioral pheno-
types. Genes Brain Behav 9: 703–711. doi: 10.1111/j.1601-183X.2010.00604.x PMID: 20546314

69. Fetsko LA, Xu R, Wang Y (2003) Alterations in D1/D2 synergismmay account for enhanced stereotypy
and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 967:191–200. PMID:
12650980

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 19 / 21

http://www.ncbi.nlm.nih.gov/pubmed/15051594
http://www.ncbi.nlm.nih.gov/pubmed/10837838
http://www.ncbi.nlm.nih.gov/pubmed/15256341
http://www.ncbi.nlm.nih.gov/pubmed/16546266
http://dx.doi.org/10.1016/j.neuroimage.2008.06.002
http://www.ncbi.nlm.nih.gov/pubmed/18598772
http://dx.doi.org/10.1016/j.brainres.2010.04.003
http://dx.doi.org/10.1016/j.brainres.2010.04.003
http://www.ncbi.nlm.nih.gov/pubmed/20388498
http://dx.doi.org/10.1016/j.pbb.2010.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20417658
http://dx.doi.org/10.1097/ADM.0b013e31819a86f7
http://www.ncbi.nlm.nih.gov/pubmed/21603099
http://dx.doi.org/10.1016/j.neuron.2012.09.011
http://www.ncbi.nlm.nih.gov/pubmed/23040811
http://www.ncbi.nlm.nih.gov/pubmed/11923452
http://www.ncbi.nlm.nih.gov/pubmed/17164822
http://www.ncbi.nlm.nih.gov/pubmed/10817622
http://dx.doi.org/10.1016/j.tics.2010.11.001
http://www.ncbi.nlm.nih.gov/pubmed/21109477
http://dx.doi.org/10.1126/science.1161550
http://www.ncbi.nlm.nih.gov/pubmed/18927395
http://dx.doi.org/10.1007/s00213-008-1442-y
http://www.ncbi.nlm.nih.gov/pubmed/19125237
http://www.ncbi.nlm.nih.gov/pubmed/12975524
http://www.ncbi.nlm.nih.gov/pubmed/12898554
http://dx.doi.org/10.1007/s00213-008-1102-2
http://www.ncbi.nlm.nih.gov/pubmed/18317734
http://dx.doi.org/10.1016/j.physbeh.2011.04.063
http://www.ncbi.nlm.nih.gov/pubmed/21557958
http://dx.doi.org/10.1111/j.1601-183X.2010.00604.x
http://www.ncbi.nlm.nih.gov/pubmed/20546314
http://www.ncbi.nlm.nih.gov/pubmed/12650980


70. Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, et al. (2000) Distinct functions of the
two isoforms of dopamine D2 receptors. Nature 408: 199–203. PMID: 11089973

71. Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL (2001) Excessive sugar in-
take alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12: 3549–3552.
PMID: 11733709

72. Halpern CH, Tekriwal A, Santollo J, Keating JG, Wolf JA, Daniels D, et al. (2013) Amelioration of binge
eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J
Neurosci 33:7122–7129. doi: 10.1523/JNEUROSCI.3237-12.2013 PMID: 23616522

73. Olsen CM (2011) Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology
61:1109–1122. doi: 10.1016/j.neuropharm.2011.03.010 PMID: 21459101

74. Stice E, Yokum S, Blum K, Bohon C (2010) Weight gain is associated with reduced striatal response to
palatable food. J Neurosci 30: 13105–13109. doi: 10.1523/JNEUROSCI.2105-10.2010 PMID:
20881128

75. Stice E, Yokum S, Zald D, Dagher A (2011) Dopamine-based reward circuitry responsitivity, genetics,
and overeating. Curr Top Behav Neurosci 6: 81–93. doi: 10.1007/7854_2010_89 PMID: 21243471

76. Gjedde A, Kumakura Y, Cumming P, Linnet J, Moller A (2010) Inverted-U-shaped correlation between
dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci USA 107: 3870–
3875. doi: 10.1073/pnas.0912319107 PMID: 20133675

77. Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ (2010) Frontostriatal involvement in task switch-
ing depends on genetic differences in d2 receptor density. J Neurosci 30:14205–12. doi: 10.1523/
JNEUROSCI.1062-10.2010 PMID: 20962241

78. Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND (2008) Incentive motivation is associated with
striatal dopamine asymmetry. Biol Psychol 77: 98–101. PMID: 17868972

79. Trifilieff P, Martinez D (2014) Imaging addiction: D2 receptors and dopamine signaling in the striatum
as biomarkers for impulsivity. Neuropharmacology 76: 498–509. doi: 10.1016/j.neuropharm.2013.06.
031 PMID: 23851257

80. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, et al. (2007) Nucleus accum-
bens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315: 1267–1270.
PMID: 17332411

81. Gubner NR, Wilhelm CJ, Phillips TJ, Mitchell SH (2010) Strain differences in behavioral inhibition in a
Go/No-go task demonstrated using 15 inbred mouse strains. Alcohol Clin Exp Res 34: 1353–1362.
doi: 10.1111/j.1530-0277.2010.01219.x PMID: 20491731

82. Patel S, Stolerman IP, Asherson P, Sluyter F (2006) Attentional performance of C57BL/6 and DBA/2
mice in the 5-choice serial reaction time task. Behav Brain Res 170: 197–203. PMID: 16616787

83. Avena NM, Rada P, Hoebel B (2008) Evidence for sugar addiction: Behavioral and neurochemical ef-
fects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32: 20–39. PMID: 17617461

84. Hoebel BG, Avena NM, Bocarsly ME, Rada P (2009) Natural addiction: a behavioral and circuit model
based on sugar addiction in rats. J Add Med. 3, 33–41.

85. Zhang XY, Kosten TA (2005) Prazosin, an alpha-1 adrenergic antagonist, reduces cocaine-induced re-
instatement of drug-seeking. Biol Psychiatry 57: 1202–1204. PMID: 15866561

86. Blouet C, Schwartz GJ (2010) Hypothalamic nutrient sensing in the control of energy homeostasis.
Behav. Brain Res 209: 1–12. doi: 10.1016/j.bbr.2009.12.024 PMID: 20035790

87. Coll AP, Farooqi IS, O’Rahilly S (2007) The hormonal control of food intake. Cell 129: 251–262. PMID:
17448988

88. Dietrich M, Horvath T (2009) Feeding signals and brain circuitry. Eur. J. Neurosci 30: 1688–1696. doi:
10.1111/j.1460-9568.2009.06963.x PMID: 19878280

89. Rolls ET (2008) Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite
and emotion. Acta Physiol. Hung 95: 131–164. doi: 10.1556/APhysiol.95.2008.2.1 PMID: 18642756

90. Avena NM, Bocarsly ME (2012) Dysregulation of brain reward systems in eating disorders: neurochem-
ical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuro-
pharmacology 63:87–96. doi: 10.1016/j.neuropharm.2011.11.010 PMID: 22138162

91. Alsiö J, Olszewski PK, Levine AS, Schiöth HB (2012) Feed-forward mechanisms: addiction-like behav-
ioral and molecular adaptations in overeating. Front Neuroendocrinol 33(2), 127–139. doi: 10.1016/j.
yfrne.2012.01.002 PMID: 22305720

92. Hadad NA, Knackstedt LA (2014) Addicted to palatable foods: comparing the neurobiology of Bulimia
Nervosa to that of drug addiction. Psychopharmacology 231:1897–912. doi: 10.1007/s00213-014-
3461-1 PMID: 24500676

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/11089973
http://www.ncbi.nlm.nih.gov/pubmed/11733709
http://dx.doi.org/10.1523/JNEUROSCI.3237-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23616522
http://dx.doi.org/10.1016/j.neuropharm.2011.03.010
http://www.ncbi.nlm.nih.gov/pubmed/21459101
http://dx.doi.org/10.1523/JNEUROSCI.2105-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20881128
http://dx.doi.org/10.1007/7854_2010_89
http://www.ncbi.nlm.nih.gov/pubmed/21243471
http://dx.doi.org/10.1073/pnas.0912319107
http://www.ncbi.nlm.nih.gov/pubmed/20133675
http://dx.doi.org/10.1523/JNEUROSCI.1062-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.1062-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20962241
http://www.ncbi.nlm.nih.gov/pubmed/17868972
http://dx.doi.org/10.1016/j.neuropharm.2013.06.031
http://dx.doi.org/10.1016/j.neuropharm.2013.06.031
http://www.ncbi.nlm.nih.gov/pubmed/23851257
http://www.ncbi.nlm.nih.gov/pubmed/17332411
http://dx.doi.org/10.1111/j.1530-0277.2010.01219.x
http://www.ncbi.nlm.nih.gov/pubmed/20491731
http://www.ncbi.nlm.nih.gov/pubmed/16616787
http://www.ncbi.nlm.nih.gov/pubmed/17617461
http://www.ncbi.nlm.nih.gov/pubmed/15866561
http://dx.doi.org/10.1016/j.bbr.2009.12.024
http://www.ncbi.nlm.nih.gov/pubmed/20035790
http://www.ncbi.nlm.nih.gov/pubmed/17448988
http://dx.doi.org/10.1111/j.1460-9568.2009.06963.x
http://www.ncbi.nlm.nih.gov/pubmed/19878280
http://dx.doi.org/10.1556/APhysiol.95.2008.2.1
http://www.ncbi.nlm.nih.gov/pubmed/18642756
http://dx.doi.org/10.1016/j.neuropharm.2011.11.010
http://www.ncbi.nlm.nih.gov/pubmed/22138162
http://dx.doi.org/10.1016/j.yfrne.2012.01.002
http://dx.doi.org/10.1016/j.yfrne.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22305720
http://dx.doi.org/10.1007/s00213-014-3461-1
http://dx.doi.org/10.1007/s00213-014-3461-1
http://www.ncbi.nlm.nih.gov/pubmed/24500676


93. Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS
ONE 2:e698. PMID: 17668074

94. Petrovich GD, Ross CA, Holland PC, Gallagher M (2007) Medial prefrontal cortex is necessary for an
appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27:6436–6441.
PMID: 17567804

95. Volkow ND, WangGJ, Fowler JS, Telang F (2008) Overlapping neuronal circuits in addiction and obesi-
ty: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 363: 3191–3200. doi: 10.1098/
rstb.2008.0107 PMID: 18640912

96. Fallon S, Shearman E, Sershen H, Lajtha A (2007) Food reward-induced neurotransmitter changes in
cognitive brain regions. Neurochem Res 32: 1772–1782. PMID: 17721820

97. Wang GJ, Volkow ND, Thanos PK, Fowler JS (2004) Similarity between obesity and drug addiction as
assessed by neurofunctional imaging: a concept review. J Addict Dis 23: 39–53. PMID: 15256343

98. Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following
exposure to nicotine- or chocolateassociated contextual cues. Neuroscience 105:535–545. PMID:
11516821

99. Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J
Clin Invest 111: 1444–1451. PMID: 12750391

Chocolate and Compulsive Behavior

PLOS ONE | DOI:10.1371/journal.pone.0120191 March 17, 2015 21 / 21

http://www.ncbi.nlm.nih.gov/pubmed/17668074
http://www.ncbi.nlm.nih.gov/pubmed/17567804
http://dx.doi.org/10.1098/rstb.2008.0107
http://dx.doi.org/10.1098/rstb.2008.0107
http://www.ncbi.nlm.nih.gov/pubmed/18640912
http://www.ncbi.nlm.nih.gov/pubmed/17721820
http://www.ncbi.nlm.nih.gov/pubmed/15256343
http://www.ncbi.nlm.nih.gov/pubmed/11516821
http://www.ncbi.nlm.nih.gov/pubmed/12750391


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


