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Abstract

The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale de-
struction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense
chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds
through the B-oxidation pathway and use them as a source of carbon. It also uses carbon
from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free
fatty acids, however, are toxic and can cause additional stress during host colonization.
Fatty acids induce expression of neighboring genes encoding a cytochrome P450
(CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this
work was to study the function of this novel P450 system. Using LC/MS, we biochemically
characterized CYP630 as a highly specific oleic acid w-hydroxylase. We explain oleic acid
specificity using protein interaction modeling. Our results underscore the importance of w-
oxidation when the main B-oxidation pathway may be overwhelmed by other substrates
such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily
conserved, our work has implications for metabolism studies in other fungi.

Introduction

The ascomycete fungus Grosmannia clavigera (Gs) is associated with the mountain pine beetle
(MPB; Dendroctonus ponderosae) and actively participates in the large-scale destruction of
lodgepole pine forests in western North America [1]. To successfully colonize the tree, the fun-
gus must optimize sequestration of carbon mainly from phloem and sapwood carbohydrates,
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fats and proteins, and retrieve nitrogen and other essential micro-nutrients [2]. In addition, it
must overcome host conifer chemical defenses. Among these, one of the most abundant
groups of chemicals are terpenoids [3]. Several studies have focused on molecular mechanisms
of monoterpene resistance in Gs, which include monoterpene export through ABC transporter
activity, and enzymatic monoterpene detoxification and channeling into metabolic pathways
[4, 5]. Transcriptome analysis of Gs showed that genes up-regulated in response to monoter-
penes included acetyl-CoA-acyltransferase, alcohol dehydrogenase, and genes involved in
fatty acid metabolism and {3-oxidation pathways; many of which are localized in the same ge-
nomic region [4]. Molecular studies, and observed survival and growth of Gs in the presence
of saturating levels of monoterpenes show that this fungus can utilize host monoterpenes as a
carbon source.

Another important source of carbon for the fungus are conifer triglycerides, where the most
common esterified fatty acids in fatty acyl-glycerols are oleic acid and linoleic acid [6]. Triglyc-
erides and fatty acids comprise around 2.5% dry weight of lodgepole pine sapwood [7]. Oleic
acid is also one of the most abundant free fatty acids in pine stems [6, 8, 9]. Like monoterpenes,
excessive amounts of free fatty acids are toxic to the fungal cell and have been shown to affect
membrane fluidity and inhibit membrane protein activity [10-13]. Transcriptome profiling of
Gs grown on these compounds showed induction of genes involved in fatty acid 8-oxidation
[14, 15], as well as extracellular lipases possibly involved in triglyceride hydrolysis [4]. Conspic-
uously, two of the most highly induced genes were co-localized in the genome and encode a cy-
tochrome P450 (CYP) and its redox partner, cytochrome P450 reductase (CPR): GsCYP630
and GsCPR2 [4, 14, 15]. Further, the expression of two genes adjacent to this CYP cluster that
code for a transcription factor and a transporter protein was also induced. The CYP630-CPR
gene cluster has also been identified in genomes of other fungal species [16-20]. However, to
the best of our knowledge, its biochemical and biological functions have not yet
been characterized.

CYPs are ubiquitously present heme-thiolate proteins, which oxidize a vast array of endoge-
nous and exogenous substrates. Fungi possess numerous CYPs, most of which have not been
functionally characterized. Knowledge of functions of CYPs in plant-pathogenic fungi is im-
portant as these enzymes may contribute to detoxification of plant defenses or to biosynthesis
of mycotoxins that affect the host or other organisms [21]. CYPs localized in the endoplasmic
reticulum are known to be involved in w-hydroxylation of fatty acids, which is normally a
minor pathway for fatty acid degradation. However, when 3-oxidation is ineffective, w-hydrox-
ylation becomes more important [22]. In fungi, functionally characterized CYPs involved in
fatty acid w-hydroxylation mainly belong to the CYP52 and CYP505 families [23-28]. Both
CYP families were present in the common ancestor of fungi, and are frequent in the ascomy-
cetes and basidiomycetes. CYP52 is one of the most frequent families, particularly in both asco-
mycetous filamentous fungi and yeasts [29]. No CYP52 family member has been identified in
the Gs genome, and the expression of CYP505 on tested fatty acid substrates is low [14].

In the present study we functionally characterized GsCYP630B18 in combination with two
possible CPR redox partners, GsCPR1 and GsCPR2, as a highly specific oleic acid w-hydroxy-
lase. We tested the catalytic properties of these enzymes in reconstituted systems using saturat-
ed and non-saturated fatty acids of different lengths as substrates and identified reaction
products. We used protein-protein interaction modeling to additionally explain our experi-
mental results. Furthermore, to provide a broader overview of the taxonomic distribution of
the CYP630-CPR2 cluster, specific to fungi, we examined its presence in the genomes of fila-
mentous ascomycetes. Finally, we proposed a pathway model for the role of CYP630B18 in
fatty acid w-oxidation and hypothesized on the importance of this pathway in pine tree coloni-
zation by Gs.
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Materials and Methods
cDNA cloning of GsCYP630B18, GsCPR1 and GsCPR2

All bacterial and yeast strains, plasmids, primers and PCR conditions used in this study are
listed in S1 Table. Coding sequences for GsCYP630B18, GsCPR1 and GsCPR2 from Gs cDNA
were amplified using the Phusion Hot Start IT High-Fidelity DNA Polymerase (Thermo Scien-
tific). Purified GsCYP630B18 PCR products were inserrted into the pET17b vector (Novagen,
USA), and GsCPR1, GsCPR2 products into the pYeDP60U expression plasmid [30].

Expression and purification of GsCYP63018B and GsCPRs

The proteins were expressed and purified as described previously [16]. Membrane fractions
were resuspended in 100 mM Tris acetate (pH 7.4)/0.5 M sucrose/0.1 mM EDTA, and stored at
-80°C. For expression of CPRs in yeast, single transformants were grown on SD-URA:URA
dropout medium with D-glucose as a carbon source with amino acids (S2 Table), and sub-
cultured overnight in 5 ml of SD-URA dropout medium. 50 ml cultures into 200 ml YPD-E
growth medium (YP-Yeast extract, Bacto peptone, 10% (20%) D-glucose, 5% ethanol; BD,
USA) were transferred and incubated for 24 h at 30°C. Expression was induced for 18 h at 30°C
in YPGal medium (YP-Yeast extract, Bacto peptone, 10% (20%) galactose; BD, USA). Yeast mi-
crosomal membrane fractions were prepared from 200 ml cultures at 4°C according to [31].

GsCYP630B18 reconstitution systems

The activity of GsCYP630B18 was tested in reconstitution systems with GsCPR1 and GsCPR2
(RSI and RS2, respectively) and substrates as described previously [32]. For RS1 and RS2, 0.2
ml membrane fraction of approximately 16.8 uM GsCYP630B18 and 0.2 ml of the yeast micro-
somes of 13 uM GsCPR1 and GsCPR2 for RS1 and RS2, respectively, was prepared in 50 mM
Tris/HCI (pH 7.4)/0.1 mM EDTA/10% glycerol. The reactions were initiated by adding 0.1 M
NADPH and substrate (50 uM oleic acid (C18:1), linoleic acid (C18:2), stearic acid (C18:0),
palmitic acid (C16:0), palmitoleic acid (C16:1), myristic acid (C14:0), lauric acid (C12:0), capric
acid (C10:0) or arachidonic acid (C20:4)). After one hour of incubation at RT the reactions
were stopped. We extracted the organic product with methanol and analyzed it with LC/MS.

Metabolite identification

The activity of GsCYP630B18 was measured by monitoring product formation on the LC Agi-
lent 1100 Series system (Agilent Technologies, USA) using a YMC-ODS-AQ chromatograph-
ic column coupled to an Applied Biosystems 4000 hybrid linear ion trap-triple-quadrupole
mass spectrometer (QTrap; AB SCIEX, Concord, ON, Canada). For the analysis of fatty acids,
10 pL of the enzyme reaction extract was injected, separated and analyzed as described [33]
using a gradient program with a two solvent system (S3 Table) and negative mode ESI ion
source for ionization. For statistical analysis, a Welch’s t-test with unequal variances using
XCMS software was calculated [34, 35]. A P-value < 0.05 indicated significant differences be-
tween controls and samples. The product was confirmed using high-resolution mass spec-
trometry with Agilent technologies 1260 infinity LC system and Agilent technologies 6224
TOF/LC/MS instrument. The product was fragmented on the Agilent 1100 series LC/MSD
ion trap XCT Plus system. The fragmentation pattern was analyzed with the ACD/MS Frag-
menter software (ACD/MS Fragmenter v.12, Advanced Chemistry Development, Inc. (www.
acdlabs.com; Toronto, ON, Canada). All fragmentation data were generated using a collision
energy of 20 volts.
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Activity and kinetics of GsCPRs

The activity of membrane-bound CPRs was assayed using the protocol optimized previously
[16]. To test the catalytic power of the two CPRs, the reduction of ferricyanide was followed in
the presence of saturating 100 mM NADPH on a UV-2450 Shimadzu spectrophotometer at
420 nm [16]. The initial kinetic parameters were evaluated using ENZO [36]. Based on con-
structed curves, equation 1 was set to:

E 4+ NADPH
ko LT Ky
E — NADPH + Ferricyanide
ky LT ks
E — NADP™ + Ferricyanide
ki 11 ks
K + NADP*

and the modified classical Michaelis—Menten equation 2 was set to:

Ky A, E,

cat

4, + K,

where: v—reaction rate, Eo—enzyme concentration, and A,—substrate concentration. Ky

Ky kg g kg ok
o and ke (k s +k

The reduction of ferricyanide to ferrocyanide was quantitated by the loss of absorbance at 420
nm. In our plots, we used point zero as the baseline and normalized all points relative to this
baseline [37, 38]. The calculated AU units were therefore negative.

) represent the Michaelis and the catalytic constants, respectively.

Modeling and docking of GsCPR2 and GsCYP630B18

The FMN-binding domain of GsCPR2 was modeled using the structure of human-yeast chime-
ric CPR (PDB ID: 3FJO) as template, as described previously [32]. Briefly, the two sequences
were aligned (residues 48-214 from 3FJO with residues 27-199 from GsCPR2), the residues
mutated accordingly with the Whatif molecular modeling tool (35.3% identity) and the gaps
manipulated manually (two insertions with two residues each) (Vriend, 1990). After adding
FMN in its original orientation to 3FJO and structure optimization, 13559 explicit water mole-
cules were added and a 1 ns constant pressure and temperature (CPT) dynamic simulation
(300K, 1bar, time step 1fs) invoking the EWALD summation for calculating the electrostatic
interactions was run using CHARMM molecular simulation software [39]. CYP638B18 was
modeled following the same protocol and using crystal structures of two human drug-metabo-
lizing cytochromes as templates (PDB IDs: 1210 and 1PQ2).

The last frame of each dynamic run was optimized (50 steps of steepest descent, followed by
50 ABNR steps) and used as input for protein-protein docking. The initial orientation of the two
structures was chosen on the basis of the binding site searching algorithm, implemented in Pro-
Bis (http://probis.cmm.ki.si/) [40]. Subsequently, the complex was submitted to the RosettaDock
server for local protein-protein docking (http://rosettadock.graylab.jhu.edu/viewjob?id=4294)
[41]. From the several suggested structures, the one that predicted the shortest FMN—heme dis-
tance was selected. Further modeling comprised another 1 ns CPT-EWALD dynamic simulation
of the complex. Finally, a phospholipid bilayer was added, and the complex, oriented with the
N-terminal regions and the putative CYP638B18 active site entrance towards the membrane.
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In parallel, oleic and stearic acids were docked into the active site by positioning their w-
methyl group at 3.5 A distance from the iron and the aliphatic chain towards the membrane-
oriented surface. After structure optimization, a short 0.2 ns CPT-EWALD dynamic simulation
was run. For comparison, the movements were analyzed with CHARMM. In all simulations,
the latest CHARMM force fields were used and the complexes visualized using VMD, a pro-
gram for displaying, animating, and analyzing biomolecular systems [42].

GsCYP630-CPR2 cluster conservation in Pezizomycotina

The Pezizomycotina genomes deposited in the NCBI and JGI databases (http://www.ncbi.
nlm.nih.gov/ and http://www.jgi.doe.gov/, respectively) were mined with the protein BLAST
program [43] using protein sequences of GsCYP630B18 (Genbank ID: EFX05103) and
GsCPR2 (Genbank ID: EFX05108) as separate queries. Other fungal taxa were checked for
the presence of the cluster, however they were not investigated thoroughly, since the CPR1-
CPR2 gene duplication event was independent in Pezizomycotina [19]. Genomes, where hits
to both queries with low E-values (E-value cutoff = 1e-50) were located adjacently on the
same contig were considered to have retained the CPR2-CYP630 gene cluster. Genomes with
significant hits to either of the queries, but not located on the same contig were excluded
from the analysis.

Results
GsCYP630B18 is an oleic acid w-hydroxylase

We expressed the cDNA of GsCYP630B18 in E. coli [16]. Optimal expression was achieved in
culture induced with IPTG at OD600 0.6-0.8 and then grown for 24 h at 30°C. The average ex-
pression level of GsSCYP630B18, detected in the purified membrane fraction was 3.1 umol 1.
Protein homogeneity was verified via SDS-PAGE, showing a 61 kDa band corresponding to
GsCYP630B1. We successfully expressed GsCPR1 and GsCPR2 genes in yeast, under the galac-
tose-inducible GAL10-CYC1 hybrid promoter. Average protein expression levels were

10.3 pmol 1" for CPR1 (76.2 kDa) and 15.4 pmol I"* for CPR2 (77.3 kDa), which is within the
range of protein expression values reported for other fungal CPRs [16, 44, 45].

For functional characterization, we expressed GsCYP630B18 in two different reconstitu-
tion systems (RS), RS1 and RS2, with GsCPR1 and GsCPR2, respectively. We tested substrate
conversion and specificity of RS1 or RS2 with saturated and unsaturated fatty acids of differ-
ent chain lengths: oleic acid (C18:1), linoleic acid (C18:2), stearic acid (C18:0), palmitic acid
(C16:0), palmitoleic acid (C16:1), myristic acid (C14:0), lauric acid (C12:0), capric acid
(C10:0) and arachidonic acid (C20:4). Product formation was analyzed in methanol extracts
by LC/MS. Both CPRs supported activity of GsCYP630B18 in in vitro assays, despite having
different catalytic efficiencies. CYP630B18 converted oleic acid, but none of the other tested
compounds (SI and S2 Figs.).

The major peak of a single product of molecular weight 298 in the extracted ion chromato-
gram (Fig. 1) was identified by its fragmentation pattern as 18-hydroxyoleic acid which could
be formed by either epoxidation or hydroxylation of oleic acid (S3 Fig., S4 Table). TOF/LC/MS
confirmed the enzyme product as C;3H3303 (calculated for hydroxyoleic acid C;gH3305
[M-H]": 297.2508; found: 297.2435; difference 0.1ppm). Control microsomes without
GsCYP630B18 did not oxidize any of the fatty acids (Fig. 2). Welch’s t-test showed highly sig-
nificant differences between controls and samples for the presence of the major product peak.
P-values for RS1 and RS2 were 0.0007 and 0.0057, respectively (Fig. 1).
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Fig 1. Oleic acid oxidation by GsCYP630B18 in combination with GsCPR1 or GsCPR2. Extracted ion chromatograms (297.2-297.4 m/z, run in
negative-ion ESI-MS) for oleic acid conversion by GsCYP630B18 in combination with GsCPR1 or GsCPR2 with the highest peak (m/z 297.3) identified as
18-hydroxyoleic acid. Darkened lines indicate where the peaks were integrated for relative ion intensity comparison. Samples GsCYP630 with GsCPR1 (top
left panel) and GsCYP630 with GsCPR2 (top right panel) are shown in red. Controls (empty E. coli membrane fractions with GsCPR1or GsCPR2) are shown
in black. Significant differences for the major product peak between controls and samples were indicated by P-value (P < 0.05, n = 3). Additional data for
each analysis are shown below the LC/MS traces as m/z value, retention time, fold change as ratio of mean intensities between samples and controls, P-
value, and peak intensity as average feature intensity within sample/control class.

doi:10.1371/journal.pone.0120119.9001
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Fig 2. Single extracted ion chromatograms of RS1 and RS2 products. Extracted ion chromatograms (297.2—-297.6 m/z run in negative-ion ESI) from
LC/MS analyses for GsCYP630B18 activity in RS1 and RS2 with oleic acid as substrate. Empty E. coli membrane fractions were used as control. Mass
spectra representing hydroxyoleic acid peaks with RT 15.04 and 14.99 min are shown on the right.

doi:10.1371/journal.pone.0120119.g002
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GsCPR1 and GsCPR2 have different catalytic properties

We used a standard cytochrome c reduction assay to test the NADPH-dependent activity of the
yeast microsomal fractions containing GsCPRI or GsCPR2. While both CPRs reduced cyto-
chrome ¢, GsCPR2 was more active than GsCPR1. Membrane fractions of yeast cells with the
empty plasmid used as control showed substantially lower cytochrome c reducing activity
(Table 1). CPR1 and CPR2 had comparable affinities for the substrate as revealed by their Ky,
values, which were 274 uM and 256 uM, respectively (Fig. 3, Table 2). The turnover number
Keae was 37 s ' for GsCPR1 and 989 s ! for GsCPR2. The enzyme catalytic efficiency, or the spec-
ificity constant (k.,/Kys) was thus about thirty times higher for GsCPR2 (3.87 x 10°M*s™)
than for GsCPR1 (0,14x 10° M ™' s™).

The CYP630-CPR2 gene cluster is specific to Pezizomycotina

Database mining revealed that the adjacent gene organization of orthologous CYP630 and CPR2
genes is conserved in around 30% of the 204 investigated genomes of Pezizomycotina fungi that
belong to several Pezizomycotina classes (Fig. 4). The CYP630-CPR2 cluster was identified in
over half of the Eurotiomycetes, mostly due to its presence in three quarters of the Eurotiales ge-
nomes where both genes were oriented in the same direction (co-oriented)[46]. The cluster was
further found in nearly a quarter of Dothideomycete genomes and 17% of Sordariomycete ge-
nomes. In Dothideomycetes, the two genes were oriented in the opposite directions on the DNA
strand with adjacent promotor regions (divergently), with the exception of the taxa Capnodiales
and incertae sedis. In Sordariomycetes, the gene orientation relative to one another was exclu-
sively divergent. No homologs of either gene were found in basal clades of Pezizomycotina
(Orbilomycetes and Pezizomycetes), or ascomycetous yeasts (Saccharomycotina).

Discussion

Putative biological role of GsCYP630B18 as a specific oleic acid
hydroxylase

To the best of our knowledge, functions of CYP630 family enzymes have not previously been
reported, and the biological roles of GsCYP630B18 and GsCPR2 homologs are not known in
fungi. In this study, we have biochemically characterized the first fungal CYP630 family mem-
ber, peculiar to the Pezizomycotina taxon, as an w-hydroxylase, highly specific for oleic acid
conversion. In fungi, the well-characterized CYP52 family (P450Alk) contains members that
can metabolize n-alkanes and fatty acids [35]. CYP52 enzymes are present in filamentous

Table 1. Enzyme activity of GsCPR1 and GsCPR2.

Enzyme Activity * SD (EU/mI)
GsCPR1™ 1.540 £ 0.140
GsCPR2™ 2.380 £ 0.320
Positive control 0.200 + 0.020
Negative control 0.010 £ 0.003

EU—one enzyme unit of CPR reduces 1.0 umol oxidized cytochrome ¢ per minute in the presence of 100
mM NADPH at pH 7.8 and 25°C.

m—membrane-bound

Positive control—rabbit liver CPR

Negative contro—membrane fraction of yeast strain expressing empty plasmid pYEDP60U

doi:10.1371/journal.pone.0120119.t001
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Fig 3. Standard plots for determining ferricyanide reduction kinetics catalyzed by GsCPR1 or GsCPR2 in the presence of NADPH. The CPR-
catalyzed reduction of ferricyanide in concentrations between 2 yM and 500 uM at 420 nm in the presence of saturating 100 mM NADPH in 100 mM
potassium phosphate (pH 7.6). Different concentrations of ferricyanide are represented in shades of grey and dashed lines. Decreasing absorbance at 420
nm, quantifying the reduction of ferricyanide to ferrocyanide, was plotted by normalizing all points relative to the point zero baseline.

doi:10.1371/journal.pone.0120119.g003

ascomycetes, several of which are plant pathogens, and putatively involved in the penetration
of host cuticle, which is made up of hydrocarbons [28, 49]. Up to 12 CYP52 paralogs have been
identified in plant symbiontic fungi from the genus Trichoderma [36, 50]. The isozymes of this
multigene CYP family abundant in n-alkane-assimilating ascomycetous yeasts have different
but often overlapping substrate specificities ([28], and references therein). They are capable of
converting exogenous n-alkanes, alkenes, fatty alcohols, and fatty acids of various chain
lengths. Enzymes belonging to completely different CYP families, CYP63A2 and CYP5136A3,
were functionally characterized in the basidiomycete Phanerochaete chrysosporium [51, 52].
These catalytically diverse CYPs are capable of converting polycyclic aromatic hydrocarbons,
alkylphenols and alkanes. Structural modeling revealed an unusually large active site cavity in
CYP63A2, which was also found to act as an alkane w-hydroxylase [51]. This is in contrast to
the comparatively narrow substrate specificity of CYP630B18 and its active site cavity modeled
in this study, which can specifically accommodate oleic acid.

Enzymes of the CYP505 family, where the CYP and CPR are fused into one protein encoded
by a single ORF, have also been characterized as fatty acid w-hydroxylases, however their phys-
iological role is not clear [53-55]. In Fusarium verticillioides, CYP505 is part of a secondary

Table 2. Calculated kinetic parameters for GsCPR1 and GsCPR2.

Kinetic parameters Values (s™) £SD
GsCPR1

Ko 6.14 - 10° 0.37 - 10°

ky 0.86 0.06

ko 0.61 - 10° 909.65

ks 16.68 - 10° 0.33-10°

Ka 37.14 0.76

ks 2.86 - 10° 1.76 - 10°
GsCPR2

ko 5.07 - 10° 0.36 - 10°

kq 13.27 0.72

ko 0.26 - 10° 93.23

ks 6.65 - 10° 0.00

ks 1028.60 48.80

ks 9.74 - 10° 0.00

doi:10.1371/journal.pone.0120119.t002
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Fig 4. Schematic representation of selective conservation of the CYP630-CPR2 gene cluster in
Pezizomycotina. The presence of the gene cluster found in seven Pezizomycotina classes is given as a
fraction of the species that the gene cluster was identified in relative to all the species of a given class whose
genomes were searched. Homologs of either gene were not identified outside of Pezizomycotina. The
relative orientation of both genes is given (< >—divergent; > <—convergent, << or >>—co-oriented) [47].
The phylogeny was modeled after [48].

doi:10.1371/journal.pone.0120119.9004

metabolite gene cluster and implicated in mycotoxin biosynthesis [56]. Of the above listed
CYP families, only a CYP505 ortholog is present in Gs. It is not localized in a biosynthetic gene
cluster, nor is its expression highly induced on fatty acid substrates, so it is difficult to hypothe-
size on its function [14].

The pattern of CYP630B-CPR2 gene expression in a closely related blue-stain fungus,
Ophiostoma piceae, very much resembles the expression profiles in Gs, following the same
treatment with triglycerides and oleic acid [20]. This comparison across species, which in-
habit a similar micro-environment and occupy similar ecological niches, indicates that this
CYP system could be an important alternative in fatty acid degradation. The w-hydroxylation
pathway is possibly a concurrent free fatty acid-removal mechanism when the major 3-oxi-
dation pathways of fatty acids are ineffective or overwhelmed by high levels of potential sub-
strates. Such would likely be the case when the fungus encounters saturating levels of toxic
plant defense monoterpenes, triglycerides and free fatty acids, all of which it must process
and channel into mitochondrial and peroxisomal f3-oxidation. We offer a pathway model for
the role of GsCYP630B18 and fatty acid w-hydroxylation in Gs during host colonization
(Fig. 5). The high specificity of GsCYP630 for oleic acid hydroxylation and the considerable
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Fig 5. Proposed model for the role of GsCYP630B18 in fatty acid oxidation. The putative involvement of
GsCYP630B18 is indicated by grey arrows. Triglycerides from the host plant in the lipoprotein are broken
down to free fatty acids (FFA) and glycerol by the action of the lipoprotein lipase (LpL) [57]. Glycerol is further
phosphorylated by glycerol kinase (GK) [58, 59] and enters glycolysis. On the cytosolic site, FFAs are
activated and coupled to coenzyme A (CoA) by the catalysis of long-chain fatty acyl-CoA synthetases
(ACSLs) [60] or by different fatty acid transporter proteins (FATPs) [61]. The transfer through the plasma
membrane occurs by a protein-mediated mechanism. In the cell, FFAs can act at different sub-cellular
localizations and have functions in energy generation and storage, membrane synthesis, protein
modification, and activation of nuclear transcription factors [62]. Oxidation of FFA in fungi occurs mainly
through B-oxidation in the mitochondrial matrix or peroxisomes, or through the w-oxidation pathway in the
endoplasmic reticulum. Several acyl-CoA ligases (ACLs) [63], involved in fatty acid metabolism, then attach
CoA to the ends of fatty acids to form fatty-acyl-CoA. Fatty-acyl-CoA can pass through the outer
mitochondrial membrane, but requires carnitine acetyl transferase (CT) [64] to cross the inner membrane.
The multifunctional B-oxidation enzyme FOX2[65, 66] was induced in Gs mycelia grown on fatty acids,
indicating possible peroxisomal oxidation. In w-oxidation, the hydroxylase reaction is catalyzed by CYP630
(red bubble) and its redox partner CPR 2. Dicarboxylic acids are then subject to further -oxidation. Gene IDs
and respective changes in transcript abundance in Gs grown on fatty acids are given in Table 3[14, 67].

doi:10.1371/journal.pone.0120119.9005

induction of the GsCYP630B18-CPR2 gene cluster following growth on triglycerides and
oleic acid (Table 3), as well as its genomic organization suggest that this CYP system is an
important detoxification mechanism for the removal of free oleic acid in this conifer-
attacking fungus.
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Table 3. Changes in transcript abundance of genes involved in the GsCYP630B18 putative fatty acid oxidation pathway following growth on
monoterpenes, triglycerides or oleic acid as the sole carbon sources.

Gs Gene ID

CMQ_6790
CMQ_2877
CMQ_4361
CMQ_188

CMQ_2411
CMQ_4724
CMQ_1125
CMQ_6959
CMQ_1282
CMQ_2904
CMQ_5365
CMQ_5370

Enzyme TG+YNB OA+YNB MT+YNB
LpL 322.87 1101.48 2.11*
GK 28.53 17.50 -1.13*
ACSL 8.99 22.73 2.08
FATP 214 212 -1.10*
FATP 2.01 3.64 1.23*
ACL 4.10 2.27 4.63
ACL 2.82 2.21 3.42
ACL 8.76 14.11 1107.00
CT 6.03 11.87 10.70
FOX2 9.09 31.50 1.18*
CYP630B18 326.11 14.21 3.88
CPR2 417.97 28.88 3.28

RNA-Seq data for selected genes from mycelia grown for 10 days on YNB minimal medium with a mixture of monoterpenes (YNB+MT) (monoterpenes:
(+)-limonene, (+)-3-carene, racemic a-pinene and (-)-B-pinene at a ratio of 5:3:1:1), for 5 days with triglycerides (YNB+TG), or oleic acid (YNB+OA) as the
sole carbon source, relative to controls grown on mannose [14, 67].

*P-values are not significant.

LpL—lipoprotein lipase, GK—glycerol kinase, ACSL—Ilong-chain fatty acyl-CoA synthetase, FATPs—fatty acid transporter proteins, ACLs—acyl-CoA
coenzymes, CT—carnitine acetyl transferase, FOX2—multifunctional $-oxidation enzyme, CYP630B18—cytochrome P450, CPR2—cytochrome P450

reductase 2.

doi:10.1371/journal.pone.0120119.t003

Modeling supports substrate specificity of GsCYP630 and its preferential
use of GsCPR2

To comprehensively interpret the functioning of the GsCYP630B18-GsCPR2 redox system, we
constructed a real-scale 3D-visualization of (a) the complex, anchored in the endoplasmic re-
ticulum and (b) its interaction with oleic acid. Our main aim was to check steric requirements
together with the allowed orientation to meet structural restrictions of interacting molecules.
Therefore, we conducted the sequence of tasks to recognize the probable interacting surface of
the GsCPR2 FMN-domain with its counterpart on the surface of GsCYP630B18. In our rea-
soning we included the fact that only two different CPRs exist in Gs. Together, they provide re-
ducing equivalents to over fifty GsCYPs, including GsCYP630B18. We also took into account
our finding that the fastest hydroxylation of highly hydrophobic oleic acid was achieved in the
presence of membranes with app. 30% cholesterol and easy access to GsCPR2.

Using our model, we can explain the specificity of GsCYP630B18 for oleic acid among the
many tested structurally different candidates (Fig. 6). We may also explain why the reaction
specificity of GsCYP630B18 is limited to a single oxidation reaction, and does not catalyze fur-
ther oxidations of the initial reaction product, as has been reported for some w-hydroxylating
fungal CYPs [39]. For example, CYP52A13 and CYP52A17 of Candida tropicalis oxidize the
w-hydroxy products to fatty aldehyde and diacids without the intervention of other enzymes
[68]. In contrast, with GsCYP630B18 we observed no accumulation of fatty aldehyde or diacid
products, suggesting that the structure of GsCYP630B18 is optimized to accommodate the nat-
urally abundant mono-desaturated C, oleic acid.

We suggest that nonpolar oleic acid enters the CYP active site through the lipid bilayer,
as it has already been shown for hydrophobic substrates that are initially recognized by
the hydrophobic patch of amino acids adjacent to the substrate access channel on the
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Fig 6. The model of RS2 reconstitution system of the FMN domain (red) of GsCPR2 and GsCYP630B18 (orange), its substrate oleic acid (red) and
the non-substrate stearic acid (yellow). (A) The FMN-binding domain of GsCPR2 in open conformation interacts with the GsCYP630B18 that brings the
FMN cofactor in close proximity to the CYP heme cofactor and thus facilitates electron transfer. The GsCYP630B18 transmembrane region is inserted into
the lipid bilayer. (B) Docking of oleic acid (red) versus the stearic acid (yellow) in the active site of GsCYP630B18. Arginine 224 (green) holds both

compounds in the active site channel.

doi:10.1371/journal.pone.0120119.g006

membrane-associated surface of the protein [69, 70]. According to this scenario, oleic acid
enters the buried active site with its w-methyl group, while the carboxyl group interacts with
Arg256 situated at the entrance. In the absence of the substrate, the positive charge of Arg256
is compensated by the electrostatic interaction with Asp137. This positioning of the substrate
would allow for (a) a better steric accommodation of the w-methyl group of mono-desatu-
rated oleic acid over the iron atom of the heme prosthetic group in comparison to, e.g. an un-
saturated stearic acid or the shorter palmitoic acid, and (b) a favorable affinity between
Arg256 and the oleic carboxyl group, which can be readily released upon substitution by the
carboxyl group of Asp137. Our dynamic simulations also show that the distance between the
iron and the C18 atom in oleic acid remains shorter (average 4.7 A) than the distance be-
tween the iron and C17 (average 5.6 A). In contrast, the distances between the atoms C18
and C17 and iron are swapped after a similar dynamic simulation with stearic acid (average
5.5 A and 4.5 A, respectively) (Fig. 7).

PLOS ONE | DOI:10.1371/journal.pone.0120119  March 20, 2015 12/19



. ®
@ ’ PLOS ‘ ONE Fungal CYP630 w-Hydroxylase Activity

CYP630B18 oleic acid CYP630B18 stearic acid
84 constraint no constraint g~ constraint no constraint

c18
— C17

-]
L

RMS for heme in CYP630B18 (A)
RMS for heme in CYP630B18 (A)

4
ettt
2+
c L) T T 1 c T T L) 1
0 50 100 150 200 0 50 100 150 200
ps ps

Fig 7. Time course of the root mean square (RMS) changes of the heme moiety in GsCYP630B18 with oleic acid (left) and stearic acid (right) as a
substrate. The protein was constrained for the first 100 ps.

doi:10.1371/journal.pone.0120119.g007

Modeling of the protein-protein interaction revealed four loops (loop 1: S;95)QSGT, loop
2: T1145)FGDGDASDNA, loop 3: Gp156DSNYQHEN, loop 4: A(2,,;KPGVT) in the FMN-
binding domain of GsCPR2, which interacts with GsCYP630B18. Very similar positioning is
found in the solved crystal structure of an analogous complex between heme and FMN-
binding domains of flavocytochrome P450 BM3 (PDB code: 1BV]Y)—a bacterial P450 system
in which a fatty acid hydroxylase CYP is fused to a eukaryotic-like CPR in a single polypep-
tide [71]. Loops 1-3 are comparable in both GsCPRs. Loop 1 is not comprised of any charged
residues, while loops 2 and 3 can form electrostatic interactions with CYP630B18. However,
considerable differences are found in loop 4. The tip of GsCPR2 loop 4 (residues 221-226)
contains a charged Lys222, while the corresponding loop 4 in GsCPR1 (residues 200-224,
G200]GAGT) lacks positively-charged residues and is one residue shorter than its counterpart
in GsCPR2 (Fig. 8).

Consequently, prior to the interaction with GsCPR2, Asp462 of GsCYP630B18 is possibly
neutralized by it own Arg465. When in complex, however, Arg465 could be substituted by
Lys222 of GsCPR2. In this way, much less binding energy is engaged from the electrostatic in-
teraction, thus allowing for easier dissociation of the GsCPR2 FMN domain from

GsCYP630B18.
CPR2 MEFVLPLALPKTVEKLSEFNVWHIAQP--QTVWDVVAIIMASIASLFLLYKPWERPD-PYNH
CPRl ——memmcmmmmcmcmeem e MAELDTLDMFV-LAAILLGTLAFFTKGKLWAKPKDPYG-
Loopl Loop3
CPR2 VWFEKPQSKNAEKSDGLQTRDIALRLEQLNTNVVLEFWGSQSGTAQAFAARLERHLRSRFA
CPRL —————- SSGNAIGVKAGKTRDIVAAMEESGKNCVIFYGSQTGTAEDYASRLSKEGKSRFEG
CPR2 LDVLVADLSDYEPASLARLPSSSRAVFLLSTFGDGDASDNATEY IAWLQAASPH--—--- S
CPR1 LETMVADLEDYDYETLDAIPSDHVVMEFVMATYGEGEPTDNAVEFIEFIAADEPAFSQSSE
Loop2 Loop4
CPRZ2 HPLONLRYAAFGLGDSNYQHFNRVARQATTLMDRLGAVPVLPLGLADAAKPGVTEDQFEFVV
CPR1 PALANLNYVAFGLGNNTYEHFNFMVRKVDKTLOQKLGAHRIGAAGEGDD-GAGTMEEDFLA
CPR2 WKDGLLHLLODTFTLKETLPRHVAQLAIEEDRSLDIVD--LHRGF-——---- PLGALGSDR
CPR1 WKEPMWAALAEKLGLEEREAVYEPIFGISTVDSLTLEDASVYLGEPNKMHLEGTAKGPFEN

Fig 8. Amino acid alignment of 4 FMN-binding domains of GsCPR2 and GsCPR1, which interact with GsCYP630B18. Loops are underlined and in
bold. Lys 322 in loop 4 is marked in red.

doi:10.1371/journal.pone.0120119.g008
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The possible function of fungal CPR paralogs

Our study further sheds light on putative roles of duplicated paralogous genes coding the typi-
cal eukaryotic microsomal cytochrome P450 partners—cytochrome P450 reductases. It has
been previously shown that, unlike metazoans, plants and fungi may have more than one CPR
gene in their genomes [19]. Furthermore, these duplications were independent events in the
evolutionary history of plants and fungi, as well as within fungi—in zygomycetes, basidiomy-
cetes and ascomycetes. As these two groups of eukaryotes possess the largest and most diverse
CYPomes (all CYP genes per genome), it would seem convenient to have evolved more than
one possible redox partner.

However, the biological roles of CPR paralogs in an organism remain unclear. The present
work and earlier studies, report differences in gene expression levels of CPR under varying
growth and treatment conditions, different catalytic properties and the fact that the choice of
the native CPR redox partner affects CYP product specificity in in vitro experiments [16]. It
was hypothesized that the CPR1 paralog was responsible for providing reducing equivalents to
CYPs in endogenous primary metabolism, while the CPR2 possibly functions in specialized
metabolism. Genomic localization and occurrence of the CPR2 paralog together with CYP630
in numerous Pezizomycotina genomes, their apparent joint gene expression profiles reported
in Ophistomatales fungi grown on fatty acid substrates [14, 20], as well as functionality in oleic
acid w-hydroxylation via CYP630 indicate a narrower niche specialization of CPR2. However,
this evidence does not rule out possible involvement of CPR2 as an alternative redox partner to
other fungal CYPs found in a particular genome.

Evolutionary conservation of the CYP630-CPR2 gene cluster

Despite the fact that genomic sequencing efforts are unevenly distributed across fungal taxa,
our investigation suggests that the cluster was present in the common ancestor of the fungal
classes where the cluster was retained—but not the common ancestor of Pezizomycotina. In
the genome of the last common ancestor, the topological orientation of the reading frames of
both genes was possibly opposite, or divergent, relative to each other on the chromosome. Mul-
tiple losses of the cluster appear to have occurred during the evolution of higher Pezizomyco-
tina, which suggests that cluster retention might be selected against.

Clustered genes with opposite orientation are more tightly regulated and tend to be co-
expressed which may be due to the close proximity of their promoter regions [72, 46]. In cases
of biosynthetic gene clusters, such physical linkage in pairs of fungal genes may be an adaptation
to effectively metabolize harmful pathway intermediates [47]. Although the GsCYP630B18-
GsCPR2 cluster is not a biosynthetic cluster, its genomic organization suggests that it may con-
tribute to efficient elimination of toxic free oleic acid. The presence of the cluster in other fungi
is not correlated with taxonomy, lifestyle (saprophyte vs. pathogen) or ecological niche (special-
ists vs. generalists). It is possible, that cluster conservation could be required in species that need
to process free C18 fatty acids, regardless of their source.

Conclusions

In this study, we have functionally characterized a fungal CYP630 as a highly specific oleic acid
w-hydroxylase. To better understand the metabolic role of this cytochrome P450, we have con-
sidered and integrated information on its genomic co-localization with its probable redox part-
ner, previously published relevant transcriptomic results and the chemical microenvironment
that this fungus encounters during host pine tree colonization. In summary, these data suggest
that this CYP system is an important mechanism for the elimination of toxic free fatty acids,
and helps to counter the metabolic stress in the fungus caused by conifer chemical defenses.
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Further studies on transcriptional regulation, substrate specialization and the function of this
evolutionarily conserved system in other filamentous ascomycetes are needed to better under-
stand the role of the CYP630-CPR2 system in fungal pathogenesis and host-

adapted metabolism.
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