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Abstract

Objective

We evaluated the effects of prenatal docosahexaenoic acid (DHA) supplementation on off-
spring development at 18 months of age.

Design

Randomized placebo double-blind controlled trial.

Settings

Cuernavaca, Mexico.

Participants and Methods

We followed up offspring (n = 730; 75% of the birth cohort) of women in Mexico who partici-
pated in a trial of DHA supplementation during the latter half of pregnancy. We assessed
the effect of the intervention on child development and the potential modifying effects of gra-
vidity, gender, SES, and quality of the home environment.

Interventions or Main Exposures
400 mg/day of algal DHA.

Outcome Measures

Child development at 18 months of age measured using the Spanish version of the Bayley
Scales of Infant Development-Il. We calculated standardized psychomotor and mental
development indices, and behavior rating scale scores.
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Results

Intent-to-treat differences (DHA-control) were: Psychomotor Developmental Index -0.90
(95% CI: -2.35, 0.56), Mental Developmental Index -0.26 (95% Cl: -1.63, 1.10) and Behavior
Rating Scale -0.01 (95% CI: -0.95, 0.94). Prenatal DHA intake attenuated the positive asso-
ciation between home environment and psychomotor development index observed in the
control group (p for interaction = 0.03) suggesting potential benefits for children living in
home environments characterized by reduced caregiver interactions and opportunities for
early childhood stimulation.

Conclusions

Prenatal DHA supplementation in a population with low intakes of DHA had no effects on
offspring development at 18 months of age although there may be some benefit for infants
from poor quality home environments.

Trial Registration
Clinicaltrials.gov NCT00646360

Introduction

The long-chain polyunsaturated fatty acids (LCPUFAs) docosahexaenoic acid (DHA) and ara-
chidonic acid (AA) comprise more than 30% of the phospholipid content of the brain and ret-
ina and accumulate during the brain growth spurts that occur in the latter half of pregnancy
and early childhood [1-3]. DHA is especially concentrated in the nonmyelin membranes of the
brain and retina, and inadequate DHA intake during early life may be associated with changes
in both structural and functional development of visual-sensory, perceptual, and cognitive sys-
tems [4-6]. The need to provide preformed DHA during pregnancy has received much atten-
tion since dietary intakes are low in many populations, and the primary sources, namely fish
such as tuna, may be contaminated with heavy, neurotoxic elements like mercury [7][8].
Although in humans DHA can be synthesized from the essential parent n-3 fatty acid, alpha
linoleic acid (ALA), recent work suggests that the rate of conversion is insufficient to meet the
increased demands of pregnancy and infancy [9,10]. The n-3:n-6 fatty acid ratio in the diet and
prevalence of the genetic polymorphisms for the rate limiting enzymes (fatty acid desaturases 1
and 2) that catalyze the conversion of ALA to DHA may influence the amount of DHA
required during pregnancy [11].

Experimental animal studies and observational human studies have shown positive associa-
tions between intakes during pregnancy of the n-3 LCPUFAs eicosapentanoic acid (EPA) and
DHA and a range of measures of offspring neurodevelopment [12-17]. The published random-
ized controlled trials (RCTs) examining the effects of prenatal supplementation on child devel-
opment have used fish oil supplements containing both EPA and DHA and have reported
inconsistent effects on infant cognitive development [18-25]. Several recent meta-analyses and
systematic reviews examining the effects of LCPUFA supplementation during pregnancy and/
or lactation revealed no differences on infant neurodevelopment outcomes; a major limitation
identified by the authors was the heterogeneity among studies regarding the timing, type, con-
centration and duration of LCPUFA supplementation and methods used to assess the out-
comes [26-30]. Further, few studies have examined the benefit of providing DHA without EPA
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during gestation especially in low-middle income countries. This gap was the rationale for Pre-
natal Omega 3 Supplementation on child Growth and Development (POSGRAD), which was
conducted in Mexico from 2005-2007 [31]. In POSGRAD, we investigated the benefits of pro-
viding only DHA from an algal source from 18-22 weeks gestation to parturition (clinical trial
registration: NCT00646360) in a population with very low intakes of preformed DHA (median
intakes = 55 mg/d) [32]. We have previously reported that DHA improved birth size only
among primigravid women [31], and the intervention was effective in improving maternal
DHA status; women who received prenatal DHA had higher maternal plasma DHA concentra-
tions at delivery and 1 month postpartum and breast milk DHA concentration at 1 month
postpartum compared to women who were assigned to placebo [33]. In this paper, we present
the findings for offspring development measured by the Bayley Scales of Infant Development-
II (BSID-II) at 18 months of age. We hypothesized that prenatal DHA supplementation would
improve scores on the BSID-II for the offspring at 18 months.

Methods
Study population and setting

Between February 2005 and February 2007, pregnant women were recruited during routine
prenatal care visits at the Mexican Institute of Social Security (Instituto Mexicano del Seguro
Social [IMSS]) General Hospital I and three associated health clinics, all located in Cuernavaca,
Mexico. Women are eligible for care at the hospital if they or their husbands are employed.
Women who were in gestation week 18-22, age 18-35 years, planned to deliver at the IMSS
General Hospital and to remain in the area for the next 2 years, and planned predominant
breastfeeding for at least 3 months were eligible to participate in the study. Women were
excluded from the study if they were considered a high risk pregnancy, had any lipid metabo-
lism/absorption conditions, regularly took DHA or fish oil supplements, or used certain
chronic medications (such as antiepileptic drugs).

The Emory University Institutional Review Board and the Research, Biosecurity and Ethics
Commissions of the Instituto Nacional de Salud Publica (INSP) approved the study on Feb 28,
2004. After a thorough explanation of study details, written informed consent was obtained from
each woman. An external data safety committee monitored the trial for adverse events. The clini-
cal trial was registered in clinicaltrials.gov (NCT00646360) in 2008 when registration of clinical
trials started to become common practice; this was after participants were already enrolled. The
authors confirm that all ongoing and related trials for this intervention are now registered.

Sample Size

As described previously [31], we estimated that a final sample of 338 infants per group would
have at least 90% power to detect an effect size of 0.25 Standard Deviation (SD) units or greater
for the major outcomes at the end of the study, assuming a significance level of o. = .05 for a
two-tailed test. We therefore planned to recruit at least 994 pregnancies, assuming a 15% loss
to follow-up during pregnancy and a further 20% loss in infancy, to have 393 births and 338
mother-child pairs per group complete the study at 18 months of age. The final analytic sample
of 365 children per group at age 18 mo was higher than expected and gave us at least 95%
power to detect a difference of at least 0.25 SD as planned [34].

Intervention

Women were assigned randomly to receive 2 capsules of 200 mg of DHA or placebo from
weeks 18 to 22 of gestation through delivery. The DHA capsules were derived from an algal
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source (Martek Biosciences Corporation, Columbia, MD). The placebo pills contained a mix of
corn and soy oils with no added antioxidants, and they were similar in appearance and taste to
the DHA capsules. The amount of precursors of DHA in the placebo was negligible. Fieldwor-
kers delivered 14 capsules weekly to the woman’s home or workplace, and compliance was
monitored by counting any remaining pills and through interviews with the participants.
Women were instructed to take both capsules together, at the same time each day, and supple-
ment ingestion was discontinued at delivery.

Randomization and Blinding

A block randomization scheme was used to create balanced replication of four treatments (two
colors for DHA and two for control) using a block size of eight. The list was generated for a
sample size of 1,104, and assignment codes were placed in sealed envelopes kept at Emory Uni-
versity. All participants and members of the study team were blinded to treatment assignment
throughout the intervention period. The participants and fieldworkers in Mexico remain
blinded as follow-up data are still being collected.

Outcome Measures

We measured child development at 18 months of age using the Spanish version of the second
edition of the Bayley Scales of Infant Development (BSID-II) [35-37]. The BSID-II assesses
motor (fine and gross), cognitive, and behavioral development from one to forty-two months
of age, and yields three scales: the Mental Scale, the Psychomotor Scale, and the Behavior Rat-
ing Scale. The Mental Scale evaluates memory, habituation, problem solving, early number
concepts, generalization, classification, vocalizations, and language. The Psychomotor Scale
tests both gross and fine motor movements including those associated with rolling, crawling,
sitting, standing and walking and imitation of hand movements. The Behavior Rating Scale
aids in interpretation of the Mental and Psychomotor Scales by assessing the child’s behavior
during the testing. The BSID-II was chosen because it was recommended by experts at time of
planning [38] and used widely in Mexico [36,37].

The BSID-II was administered in a quiet setting at IMSS hospital by a team of psychologists
(n = 5) who were trained and supervised by the study psychologist (LS), who was involved in
the development and previous applications of the Spanish version. Supervision included peri-
odic direct observation and routine examination of all completed forms. As described in the
BSID-II manual, scores were adjusted for children who were not exactly 18 months of age at
time of testing. Children received credit for each item on the Mental and Psychomotor Scales.
The mental and psychomotor scores were computed by adding the total number of items for
which the child received credit; these scores were converted to the Mental Developmental
Index (MDI) and Psychomotor Developmental Index (PDI) using the scales provided in the
manual. The normative mean of each index is 100 with a standard deviation of 15 and range of
50-150; an index score between 85 and 114 is considered Within Normal Limits for both MDI
and PDI. Children who received a score below 70 were considered as significantly delayed and
those 70-84 were mildly delayed. The Behavior Rating Scale (BRS) is translated into a percen-
tile rank, with scores > 26 percentile relative to age being classified as Within Normal Limits.
Additional factor scores within the Behavior Rating Scale include Motor Quality, Orientation/
Engagement, and Emotional Regulation [35].

Other measures

At child age 12 months, trained field workers conducted home visits to collect information about
the home environment, using a Spanish version of the Infant/Toddler Home Observations for

PLOS ONE | DOI:10.1371/journal.pone.0120065 August 11,2015 4/14



@’PLOS ‘ ONE

Prenatal DHA and Offspring Development

Measurement of the Environment inventory (HOME) that has been pretested and used in previ-
ous studies in Mexico [39,40]. This widely-used measure consists of 45 yes/no questions divided
into six subscales: parental responsivity, acceptance of child, organization of the environment,
provision of appropriate materials, parental involvement, and variety of stimulation. HOME
scores were obtained through observation and interview with the primary caregiver (usually the
mother), and the sum of all six subscales was used as a continuous variable. Higher HOME scores
indicate a more enriched home environment, and although no cutoff scores are specified in the
manual, scores are divided into quartiles on the summary sheets. Scores falling in the lowest
quartile indicate an environment that may pose some risk to child development [39]. We
obtained additional information on the mother by interview at the time of recruitment [31]. Gra-
vidity was characterized as first pregnancy or other. Socio-economic status was derived using
principal component analysis of data including occupation, housing quality and asset ownership
including major household goods, and was modeled as a continuous variable. Maternal intelli-
gence was assessed using the Raven’s Progressive Matrice (RPM)s, a non-verbal assessment of
cognitive ability, which requires the participant to figure out complementary abstract patterns
[41]. The test measures the ability to form comparisons, reason by analogy, and to organize spa-
tial perceptions into systematically related wholes, with higher scores signifying higher levels of
maternal intelligence. The RPM has been shown to be a useful measure of generalized intelli-
gence, especially in low-literacy societies, including Guatemala and Mexico [42,43]. A trained
psychologist administered the RPM, containing 60 items presented in five sets (12 items per set)
and the number of accurate responses was computed. Maternal and infant anthropometric mea-
surements were obtained by trained field workers during study visits, and details of birth out-
comes and infant feeding practices were obtained as described in earlier publications [31][44,45].

Statistical Analysis

We computed treatment compliance as the total number of capsules consumed expressed as a
percentage of the total number expected to be consumed. All children with BSID-II measure-
ments at 18 months were included in the analysis, regardless of treatment compliance. We
compared maternal characteristics at baseline and selected infant characteristics between treat-
ment groups using Student’s t-test for comparison of means or X* tests for comparison of pro-
portions. We also assessed inter-interviewer variability in the mean and variance of the
outcome measurements. We followed an intent-to-treat approach and examined group differ-
ences in BSID-II scores, both without and with adjustment for maternal height at recruitment
(which differed between DHA and placebo, p<0.05), child sex, child age at measurement and
psychologist performing the test using general linear models.

We also tested (post-hoc analysis) for effect modification by gravidity, gender, SES, and
HOME score using general linear models (PROC GLM). We developed multiplicative interac-
tion terms for each of these four variables with treatment assignment, and tested whether the
interaction term was significant at p<0.05 in separate models. Sensitivity analysis was also
done for the overall and post-hoc testing of interactions by testing additional regression models
that also adjusted for gestational age and maternal intelligence and socioeconomic status,
which are known to be associated with the primary outcomes [19,46-48] for the overall sample
as well as only singleton term births. SAS 9.2 (SAS Institute, Cary, NC) was used for analyses
and statistical significance was defined as p<0.05.

Results

Of the 1836 pregnant women screened for inclusion in the study, 1094 women were eligible
and agreed to participate; 968 women completed the intervention, resulting in 973 live births,
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Assessed for eligibility (n= 1.836)

Excluded (n=742)
J + Not meeting inclusion criteria (n=74 )

[ Enrollment + Declined to participate (n= 668 )

Randomized (n= 1,094)

y { Allocation } y
Placebo DHA
Allocated to Placebo (n= 547) Allocated to DHA (n= 547)
+ Received allocated intervention (n= 517) + Received allocated intervention (n= 523)
(declined to participate) (n=30) (declined to participate) (n=24)
2 [ Follow-Up ] .
Lost to follow-up during pregnancy (withdrawn Lost to follow-up (withdrawn from trial, 1
from trial) (n=29) abortion) (n=38)
Stillbirths (n=3) Spillbirphs (n=2) o
Live births (n=486 from 485 women; 2 twin live Live births (n=487 from 483 women; 8 twin live
births) births)
Postnatal losses to follow-up (death, congenital Postnatal losses to follow-up (death,
abnormalities, withdrawn from study, moved congenital abnormalities, withdrawn from
out of town,etc) (n=92) study, moved out of town etc) (n=90)
, [ Analysis
Analysed (n=365) Analysed (n= 365)
+ Excluded from analysis (missing information + Excluded from analysis (missing information
on BSID) (n=29) on BSID) (n=32)

Fig 1. CONSORT diagram of Prenatal Omega-3 Supplementation on Child Growth and Development trial.
doi:10.1371/journal.pone.0120065.g001

including 5 twin pairs (Fig 1). A description of the intervention trial and results for birth out-
comes, safety, adverse events and compliance has already been reported [31]. Compliance was
high (> 90%) and similar between the two groups (p = 0.6). Loss to follow-up during preg-
nancy was <10%; an additional 15% were lost to follow-up during the first 18 months of life.
The main reasons for loss to follow-up during the post-natal period (e.g., relocation, death,
etc.) did not differ by treatment group. Comparison of the final sample with outcome data

(n =730) to those randomized but lost to follow-up (n = 364) showed that the offspring in the
final sample were similar in terms of selected maternal and infant characteristics, including
treatment group.
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Table 1. Selected maternal characteristics at randomization and child characteristics among 730 chil-
dren born to women who participated in a trial of 400 mg/d docosahexaenoic acid during pregnancy
and had measures of infant development at 18 mo of age, by intervention group®.

Variables Placebo DHA P®
(n = 365) (n = 365)
Maternal characteristics at randomization
Age (y) 26.3 (4.6) 26.5 (4.9) 0.76
Gestational age (wks) 20.5 (2.1) 20.6 (2.0) 0.71
Socio-economic status 0.0 (1.0) 0.0 (1.0) 0.81
Schooling (High school or more), % 61.2 56.8 0.23
Raven’s score 41.5(9.1) 40.8 (8.8) 0.33
Primigravida, % 40.1 36.6 0.34
Weight (kg) 63.6 (11.5) 62.1 (10.6) 0.08
Height (cm) 155.8 (5.8) 154.9 (5.6) 0.03
Body mass index (kg/m?) 26.2 (4.4) 25.9 (4.0) 0.34
Child characteristics at birth
Weight (g) 3225 (472) 3246 (432) 0.53
Length (cm) 50.4 (2.5) 50.3 (2.2) 0.65
Head circumference (cm) 34.3 (1.8) 34.5 (1.5) 0.18
Low birth weight (<2500g), % 5.2 4.1 0.48
Gestational age (wks) 39.1 (1.7) 39.1 (1.8) 0.90
Preterm (<37 wks), % 8.3 8.8 0.81
IUGR, % 9.9 10.7 0.73
Sex (male), % 53.7 54.3 0.88
Child Characteristics during early childhood
Breastfed at least 6 months (%) 58.1 61.9 0.30
HOME total score at 12 mo of age 36.7 (4.3) 37.0 (4.4) 0.55

Abbreviations: [IUGR—Intra uterine growth retardation: birth weight for gestational age <10th.

2 Values are Mean (Standard Deviation) unless otherwise indicated

b T-test for comparison of means and chi-square test for comparison of proportions percentile Williams
reference

doi:10.1371/journal.pone.0120065.t001

Mean maternal age at the time of recruitment was just over 26 years in both groups, and
maternal socioeconomic status, schooling and intelligence did not differ among groups
(Table 1). Mothers in the placebo group were taller than mothers in the DHA group (155.8 vs.
154.9 cm, p = 0.03). The prevalence of low birth weight and preterm birth did not differ
between groups, nor did infant feeding practices, the HOME score at 12 months of age, or oft-
spring weight and height at 18 months of age.

Intent to treat analysis showed no significant differences by treatment group for the MDI,
PDI or BRS (Table 2); the results did not change after controlling for maternal height and oft-
spring sex and age at measurement. We also found no significant differences in the proportion
of offspring with values indicative of delayed performance. The proportion of children with
scores <85 were 14.4 and 10.1% for MDI, 17.9 and 20.2% for PDI, and 0.6 and 0% were <26
for BRS in the DHA and placebo groups, respectively. The results did not differ when we
excluded data collected by one psychologist whose measurements varied systematically from
the others (data not shown).

Post-hoc analysis revealed a strong positive association between the HOME score at 12
months of age and PDI scores measured at 18 months of age among the offspring of women
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Table 2. Comparison of measures of infant development using the Bayley Scales of Infant Development Il (BSID Il) at age 18 mo among 730 chil-
dren born to women who participated in a trial of maternal supplementation with 400 mg/d docosahexaenoic acid during pregnancy, by treatment

group®.

Outcome variables Placebo (n = 365) DHA (n = 365) Unadjusted diff. (95% CL)° Adjusted diff. (95% CL)®
Mental Development Index 95.2 (9.3) 94.3 (10.7) -0.90(-2.35, 0.56) -1.00(-2.42, 0.42)
Psychomotor Development Index 93.3 (9.8) 93.0 (8.9) -0.26(-1.63, 1.10) -0.46(-1.80, 0.88)
Behavior Rating Scale Raw Score 111.5 (6.2) 111.5 (6.7) -0.01(-0.95, 0.94) -0.01(-0.95, 0.93)

@Values are Mean (SD) unless otherwise indicated.
Punadijusted difference (DHA-placebo).
¢ Difference (DHA-placebo) adjusted for maternal height, child sex, and child age at measurement.

doi:10.1371/journal.pone.0120065.1002

who received the placebo (slope (95% CI) = 0.49 (0.23, 0.77), whereas this association was
attenuated among those in the DHA group 0.05 (-0.19, 0.29); p = 0.03 for the interaction (Fig
2). The interaction between treatment and the HOME score was not statistically significant for
MDI (Fig 3; p = 0.3 for the interaction). There was no effect modification by the HOME score
for the BRS, nor was there evidence of effect modification by gravidity, gender or SES for PDI,

= — DHA
— - = Placebo
---- 05% confidence interval
-
------------ O
wn o T aecaa e
2 ol S T e o
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20 25 30 35 40 45
HOME Score at 12 mo of age

Fig 2. Relationship between HOME score and psychomotor development (PDI) at 18 mo of age, by intervention group.

doi:10.1371/journal.pone.0120065.9002
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T T T T
30 35 40 45

HOME Score at 12 mo of age

Fig 3. Relationship between HOME score and mental development (MDI) at 18 mo of age, by treatment group.

doi:10.1371/journal.pone.0120065.9003

MDI or BRS. The HOME score was significantly associated (p<0.01) with maternal SES and
intelligence scores (the correlation coefficients were 0.15 and 0.22, respectively), but the overall
findings and results of the post-hoc analysis were unaltered when we also adjusted for gesta-
tional age, maternal intelligence and SES and/or restricted the sample to singleton term infants
(data not shown).

Discussion

In this large double-blind placebo-controlled RCT providing 400mg of daily DHA supplemen-
tation during the latter half of pregnancy, we found no overall differences in infant cognitive,
motor, or behavioral development, as measured by the BSID-II. Several cohort studies have
shown relationships between fish intake in pregnancy and infant outcomes [7,14,17], but the
results of RCT's examining n-3 fatty acid intake have been inconclusive due to heterogeneity of
settings and designs [26,27,30]. Tofail et al [22] evaluated the effects of prenatal fish oil supple-
ments in Bangladesh and found no significant differences in the BSID-II at 10 months of age.
However, the power to detect differences was limited as outcomes were available for only 249
out of the 400 women who were originally assigned to treatment. Similarly, Helland et al [18]
found no effect of prenatal supplementation with cod liver oil on cognitive development in a
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sample of 288 three-month-old children in Norway. In the much larger DOMInO trial in
South Australia, Makrides and colleagues [21] did not find any differences in the overall mean
scores on the Cognitive, Language, Motor or Behavior Rating Scale of the BSID-III between the
intervention and control groups at 18 months of age, but in contrast to boys, girls exposed to
DHA in utero had poorer mean adaptive behavior and language scores and were at increased
risk of delayed language development compared to those exposed to placebo. We did not
observe effect modification by gender in our study.

A major strength of this study was our ability to assess the effect of the quality of the home
environment, which is a strong determinant of child development. Caregiving competence,
parental responsivity, and the quality of the home learning environment are critical to a young
child’s development [46,48,49]. We observed a statistically significant interaction between the
quality of the infant’s home environment and treatment allocation on the PDI at 18 months,
suggesting that exposure to DHA in utero attenuated the expected relationship between the
quality of the home environment and PDI (but not significant with MDI). Our measures of
home environment were associated with SES and caregiver characteristics such as maternal
scores on the RPM, but the interaction remained significant even after adjusting for these char-
acteristics. Though preliminary and post-hoc in nature, our findings suggest that DHA may be
helpful for children living in home environments characterized by reduced caregiver interac-
tions and opportunities for early childhood stimulation. Future work should explicitly explore
the benefits of prenatal DHA supplementation for infants living in home environments that
lack the stimulating environment required to promote motor and mental development, which
rely on the ability of the infant to explore his/her environment [50,51].

Differences between our study and the previous literature may be due to dissimilarities in
the study population, intervention, and measurements. The DOMInO trial used the updated
version of the Bayley Scales of Infant Development (BSID-III), which included the language
subscale that is not in the Bayley II. Additionally, the intervention group in the DOMInO trial
received 800 mg of DHA and 100 mg of EPA daily, as compared to 400 mg of DHA alone in
this trial. Although previous studies have used higher doses, we chose a dose that was closer to
current recommendations and is considered feasible to be met by dietary interventions [8].

In our study, 181 infants (16.5%) were lost to follow-up. Loss to follow-up did not differ by
intervention group and our final sample size had sufficient power (>95%) to detect meaningful
differences of 3-5 points (~ 0.3 SD) in the primary outcomes of the PDI and MDI in intent-to-
treat analyses. Further, the trial was conducted in a population with very low dietary intakes of
n-3 fatty acids including preformed DHA (55 mg/d)[32] and the offspring exposed in utero to
DHA had higher cord blood levels compared to the placebo group [31]. Postnatal factors such
as infant feeding practices and home environment may have influenced the outcomes, but
these did not differ by intervention group.

Finally, infant cognition and development are difficult to measure, and global standardized
tests such as the BSID may not differentiate between subtle differences in infant cognitive abil-
ity [52]. The BSID is still widely used to evaluate the benefits of nutrition interventions in low
to middle income settings [53,54], and was able to detect subtle differences in subgroups in
post-hoc analysis. Without doubt, differences in intellectual functioning that are sensitive to
pathways influenced by n-3 fatty acids may be detected with more sensitive measures of neuro-
development such as neuroimaging techniques [55], or by measures of visual attention and
executive functioning [56]. However, the suitability of these approaches for large field-based
trials in resource poor settings needs further exploration. In addition, differences in cognitive
functioning between those receiving a nutritional intervention and a control group may emerge
later in life as reported by Helland et al. [19] and most recently by Colombo, et al. [57]. In
another example, in Guatemala, protein-energy food supplementation during pregnancy and
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early childhood resulted in improved intellectual functioning that emerged during adolescence
despite few measurable differences in offspring development during early childhood [42].

Conclusion

This study adds to the growing body of evidence suggesting that prenatal DHA supplementa-
tion does not have a significant overall positive effect on global measures of infant develop-
ment. Our post-hoc results however suggest that prenatal DHA supplementation may benefit
children living in a home environment characterized by a lack of parental responsivity and a
less stimulating environment. Studies that are designed to specifically examine the potential
benefit of DHA for certain subpopulations using more sensitive measures of neurodevelop-
ment are needed. The long term benefits of DHA supplementation for cognitive and behavioral
outcomes that may manifest only at later ages also needs further study.
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