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Abstract
Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria in-

duces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflamma-

tion, diffuse alveolar damage, and severe respiratory insufficiency. We have previously

reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in

asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI

through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this

study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected

against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instilla-

tion of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the

LPSmediated increase in inflammatory cell infiltration, inflammatory cytokine production,

and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation

and improved lung mechanics. The protection in eNOS-/- mice was associated with an atten-

uated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found

that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration

at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to

a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented

the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive

species play an important role in the development of LPS-mediated lung injury.

Introduction
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are severe inflamma-
tory disorders affecting the lung. Both are characterized by non-cardiogenic pulmonary edema,
hypoxemia, neutrophil infiltration, and disrupted lung mechanics [1]. The causes of ALI are di-
verse and can be the result of direct lung injury from viral or bacterial pneumonia, acid aspira-
tion, and lung contusions or indirect injury as a consequence of sepsis, burns, pancreatitis,
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non-thoracic trauma, and multiple transfusions [2]. Lipopolysaccharide (LPS) is a component
of the outer cell wall of gram-negative bacteria and is released into the body as the bacteria rep-
licate or die [3]. LPS induces ALI in animal models by promoting pulmonary microvascular
permeability and recruiting activated neutrophils and macrophages to the lung, thereby caus-
ing damage to the alveolar-capillary membrane, which leads to the deterioration of gas ex-
change [4]. As lung protective ventilation strategies are the only therapeutic approach that
have been shown to consistently decrease mortality in ALI patients [5], there is a further need
to understand the mechanisms underlying the pathology of ALI and identify new targets that
can improve the outcomes of patients.

Oxidative stress has been shown to be increased in patients with ALI and is considered an im-
portant early contributor to the pathogenesis of lung injury. Our recently completed studies
have shown that oxidative stress can be induced in ALI as a result of high levels of the L-arginine
analogue, asymmetric dimethylarginine (ADMA) [6]. ADMA, an endogenous competitive in-
hibitor of the three nitric oxide (NO) synthase (NOS) isoforms, neuronal NOS (nNOS), endo-
thelial NOS (eNOS), and inducible NOS (iNOS), displaces L-arginine from the active site [7]. In
addition, ADMA can also induce the uncoupling of NOS by increasing the generation of super-
oxide [8] and peroxynitrite [9,10]. Peroxynitrite is a powerful nitrating agent that can affect the
structure and function of proteins through the formation of 3-nitrotyrosine modifications [11].
We have shown that reducing ADMA levels is effective in both preventing, and accelerating the
recovery from, LPS induced ALI [6]. In these studies, the increase in ADMA dependent NOS
uncoupling and peroxynitrite generation was due to a decrease in the enzymatic activity of
dimethylarginine dimethylaminohydrolase (DDAH) [6]. The two isoforms of DDAH, I and II,
metabolize ADMA into L-citrulline and dimethylamine and decrease the uncoupling of NOS
[12]. In addition, the increase in oxidative and nitrative stress in LPS induced ALI was linked to
the nitration mediated activation of RhoA [11]. RhoA is a small GTPase and is an important reg-
ulator of the endothelial cytoskeleton and barrier function [13]. The activation of RhoA through
the peroxynitrite mediated nitration at Tyr34 increased endothelial permeability, inflammation,
and lung injury after exposure to LPS [11]. As there are reports of all three NOS isoforms being
expressed in the lung [14], we utilized eNOS deficient mice to evaluate the specific role of LPS in-
duced eNOS uncoupling on RhoA activation and lung injury in ALI. Thus, in the present study,
we determined that eNOS derived peroxynitrite and protein nitration mediates the LPS induced
activation of RhoA, disruption of lung mechanics, and production of pro-inflammatory cyto-
kines. These data suggest that targeting eNOS uncoupling or RhoA activation may provide clini-
cal benefit to patients with ALI.

Materials and Methods
All animal breeding, housing, and protocols were approved by the Institutional Animal Care
and Use Committee in facilities accredited by the American Association for the Accreditation
of Laboratory Animal Care at Georgia Regents University (Augusta, GA).

Animals and Husbandry
Breeding pairs of eNOS-/- mice, strain B6.129P2-Nos3tm1Unc/J, stock # 002684, and wild-type
(WT) mice, strain C57BL/6J, stock # 000664, were obtained from Jackson Laboratory (Bar Har-
bor, ME, USA) and were used to establish breeding colonies. All the animals were maintained
at a room temperature of 23 ± 1°C and exposed to a 12 hour alternating light/dark cycle. The
animals were fed standard rodent chow (Teklad no. 2918; Harlan Laboratories, Indianapolis,
IN, USA) and given tap water ad libitum. The absence of eNOS expression was confirmed in
all eNOS-/- mice by immunoblot analysis.
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Lipopolysaccharide Induced Lung Injury Model
Adult male eNOS-/- mice and wild-type mice (7–8 weeks) were used in all experiments. The
mice were anesthetized with an intraperitoneal injection containing ketamine (100 mg/kg) and
xylazine-HCl (10 mg/kg). The area around the throat was shaved, and the animals were placed
on a heating pad. A neck midline incision was made, and the trachea was exposed. Mice then
received either an intratracheal injection of Escherichia coli 0127:B8 LPS (2 mg/kg, Sigma-
Aldrich, St. Louis, MO, USA) prepared in 0.9% saline or vehicle (0.9% saline), as previously de-
scribed [11]. Mice were euthanized 24 h after LPS treatment with an intraperitoneal injection
of ketamine (500 mg/kg) and xylazine-HCl (50 mg/kg), and the lungs were flushed with ice-
cold EDTA-1x PBS, excised, snap-frozen in liquid nitrogen, and stored at -80°C until used.

Generation of a Nitration-specific RhoA Polyclonal Antibody
A nitro-Tyr34 RhoA specific antibody was raised against a synthetic peptide antigen
LLIVFSKDQFPEVY(-NO2)VPTVFE, where Y-NO2 represents 3-nitrotyrosine, as previously
described [15]. The peptide was used to immunize rabbits. Tyrosine nitration-reactive rabbit
antiserum was first purified by affinity chromatography. Further purification was carried out
using immunodepletion using non-nitrated peptide LLIVFSKDQFPEVYVPTVFE resin chro-
matography, after which the resulting eluate was tested for antibody specificity by immuno-
blotting and immunoprecipitation followed by mass spectrometry.

Immunoblot Analysis
Peripheral lung tissue was lysed in RIPA buffer (150 mMNaCl, 1.0% IGEPAL1 CA-630, 0.5%
sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0; Sigma-Aldrich) containing protease
inhibitor cocktail (Sigma-Aldrich). Homogenates were then centrifuged at 20,000 g at 4°C for
20 min, the tissue supernatant was collected, and protein concentrations determined using the
BCA Protein Assay (Thermo Fisher Scientific, Rockford, IL, USA). Tissue extracts (25 μg) or
recombinant RhoA protein (30 μg) were resolved using 4–20% Tris-SDS-Hepes polyacryl-
amide gel electrophoresis, transferred to Immuno-Blot PVDF membranes (Bio-Rad Laborato-
ries, Hercules, CA, USA), and then blocked with 5% nonfat dry milk in Tris-buffered saline
containing 0.1% Tween (TBST) or 2% fish gelatin in TBST with 0.05% Tween for nitro-Tyr34

RhoA. The membranes were probed with antibodies against eNOS (1:1000 dilution, BD Biosci-
ences, San Jose, CA, USA), iNOS (1:500 dilution, BD Biosciences), nNOS (1:500 dilution, cus-
tom), DDAH I (1:500 dilution, custom), DDAH II (1:500 dilution, custom), RhoA (1:500
dilution, Santa Cruz Biotechnology, Santa Cruz, CA, USA), and nitro-Tyr34 RhoA (1:1000 dilu-
tion in TBST with 0.05% Tween, custom). Mouse brain extract was used as a positive control
for nNOS levels. Protein levels were normalized by re-probing with anti-β-actin (1:1000 dilu-
tion, Sigma-Aldrich). Reactive bands were visualized using chemiluminescence (SuperSignal
West Femto substrate kit; Thermo Fisher Scientific) on a Kodak 440CF image station (New
Haven, CT, USA). The band intensity was quantified using Kodak 1D image processing soft-
ware, as described previously [6].

Analysis of RhoA Activity
RhoA activity was measured using the Rhotekin Rho-binding domain pulldown assay from
EMDMillipore (Billerica, MA, USA), as described previously [11]. Briefly, 30 mg of lung tissue
was homogenized in Mg2+ Lysis Buffer (MLB), centrifuged at 20,000 g at 4°C for 20 min, the tis-
sue supernatant was collected, and protein concentrations determined. The tissue extracts
(500 μg) were then analyzed for the presence of active RhoA by precipitating GTP-bound RhoA
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using the Rhotekin Rho Binding Domain bound to glutathione-agarose beads. The levels of ac-
tive RhoA pulled down by the assay were measured by immunoblot analysis, as described above.

Measurement of Protein Nitration
The level of total nitrated protein was determined via a dot blot procedure, as described previ-
ously [16]. Briefly, lysates (30 μg) were applied to a nitrocellulose membrane pre-soaked with
Tris-buffered saline (TBS). After the protein samples were completely transferred, the mem-
brane was blocked in 5% nonfat dry milk in TBST for 1 h, washed with TBST, and incubated
with mouse anti-3-nitrotyrosine (1:100 dilution, EMDMillipore) antibody overnight. Finally,
the membrane was incubated with goat anti-mouse IgG for 2 h at room temperature. The reac-
tive dots were visualized using chemiluminescence on a Kodak 440CF image station, as de-
scribed above. The band intensity was quantified using Kodak 1D image processing software.
Loading was normalized by re-probing with an anti-β-actin antibody.

Measurement of Peroxynitrite Levels
The formation of peroxynitrite (ONOO-) was determined by the ONOO- dependent oxidation
of dihydrorhodamine (DHR) 123 to rhodamine 123, in the presence of PEG-catalase as de-
scribed previously [17]. Briefly, mouse lung tissue was pulverized using a mortar and pestle; 10
mg was placed in a microfuge tube, 100 μl of 1x PBS was added, and the tissue was vortexed 3x
for 10 sec. The lysate was incubated with PEG-catalase (100 U) for 30 min and was then added
to a 96 well black plate in the presence of 10 μmol/L DHR123 in 1x PBS for 1 h. The fluores-
cence of rhodamine 123 was measured at excitation 485 nm and emission 545 nm using a
Fluoroskan Ascent Fluorometer.

Determination of NOS-Derived Superoxide
NOS-derived superoxide in mouse lung tissue was estimated using electronic paramagnetic
resonance (EPR) and the spin-trap compound 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetra-
methylpyrrolidine HCl (CMH, Axxora LLC, Farmingdale, NY, USA), as previously described
[6]. Samples were pre-incubated in the presence or absence of 100 μM ethylisothiourea (ETU,
Sigma-Aldrich) for 30 min followed by incubation with CMH. All samples were analyzed for
protein content using the BCA protein assay. The difference in the superoxide levels between
each duplicate sample incubated in the presence or absence of ETU was used to determine
NOS-dependant superoxide generation and was reported as nmols/min/mg protein.

Measurement of NOx levels
Mouse lung tissue lysates were treated with cold ethanol for 1 h at -20°C and then centrifuged
at 20,000 g to remove proteins that can interfere with NO measurements, as we have previously
described [18]. The potassium iodide-acetic acid reagent was prepared fresh by dissolving 0.05
g of potassium iodide in 7 ml of acetic acid. The KI/AcOH mixture was added into a septum-
sealed purge vessel and bubbled with nitrogen gas. The gas stream was connected via a trap
containing 1 N NaOH to a Sievers 280i Nitric Oxide Analyzer (GE Analytical, Boulder, CO,
USA). The samples were injected with a syringe through a silicone-Teflon septum. The results
were analyzed by measuring the area under the curve of the chemiluminescence signal using
the Liquid software (GE). The resultant NOx value represents total nitric oxide and nitrite in
pmols per mg protein.
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Determination of ADMA Levels
ADMA levels in lung tissue homogenates were analyzed by high-performance liquid chroma-
tography (HPLC), as previously published [6]. The crude fraction was isolated using a solid
phase extraction column and subsequently, ADMA was separated using pre-column derivatiza-
tion with ortho-phthaldialdehyde (OPA) reagent (4.5 mg/mL in borate buffer, pH 8.5, contain-
ing 3.3 μl/mL β-mercaptoethanol) prior to injection. HPLC was performed using a Shimadzu
UFLC system with a Nucleosil phenyl reverse phase column (4.6 × 250 mm; Supelco, Bellefonte,
PA, USA), equipped with an RF-10AXL fluorescence detector (Shimadzu USAManufacturing
Corporation). ADMA levels were quantified by fluorescence detection at 450 nm (emission)
and 340 nm (excitation). Mobile phase A was composed of 95% potassium phosphate (50 mM,
pH 6.6), 5% methanol and mobile phase B was composed of 100%methanol. ADMA was sepa-
rated using a pre-gradient wash of 25% mobile phase B (flow rate 0.8 mL/min), followed by a
linear increase in mobile phase B concentration from 20% to 25% over 7 min followed by a con-
stant flow at 25% for 10 min and another linear increase from 25% to 27%mobile phase B over
5 min followed by constant flow at 27% mobile phase B for another 7 min. Retention time for
ADMAwas approximately 28 min. ADMA concentrations were calculated using standards and
an internal homoarginine standard. The detection limit of the assay was 0.1 μmol/L.

DDAH Activity
Total DDAH activity was determined using a radioactive assay to measure the conversion of
L-[3H]-NMMA to [3H]-L-citrulline, as described previously [6]. Briefly, 20 mg of peripheral
lung tissue in 125 μl of ice cold 0.1 M sodium phosphate buffer (SPB, pH 6.5) were sonicated
and centrifuged at 10,000 g for 10 min at 4°C. The supernatant was collected and analyzed in
duplicate (50 μl), while the remainder was used for protein concentration determination. To
the supernatant, a reaction mixture was added containing 0.1 M SPB and 0.1 μCi/ml of
L-[3H]-NMMA (specific activity: 1.48–2.96 TBq/mmol) (PerkinElmer, Santa Clara, CA, USA)
in a final volume of 100 μl and incubated for 1 h at 37°C. The reaction was terminated by plac-
ing the tubes on ice for 5 min and diluting the reaction with 2 ml of ice cold SPB. The samples
were then passed through 1 ml of activated Dowex AG50W-8X cation exchange resin (Sigma-
Aldrich) to remove un-metabolized L-[3H]-NMMA followed by a rinse with 1 ml SPB. The
eluted fractions were mixed with 10 ml of scintillation fluid (ScintiVerse BD Cocktail, Fisher
Scientific, Pittsburgh, PA, USA) and quantified using a liquid scintillation counter. A reaction
mixture containing L-[3H]-NMMA in the absence of enzyme was added to the Dowex column
to determine background counts. DDAH activity is defined as the amount of L-[3H]-NMMA
degraded per hour per mg protein.

Isolation of Bronchoalveolar Lavage Fluid
Bronchoalveolar lavage fluid (BALF) was obtained by instilling and withdrawing 1 ml 1x PBS
via a tracheal cannula, as described previously [6]. The cells in the BALF were pelleted at 2500 g
for 10 min, and the supernatant was removed for cytokine analysis and analyzed for protein
content using the BCA protein assay. The cell pellet was re-suspended in water for 15 sec to lyse
the red blood cells, and then the salt concentration was normalized by the addition of 20x PBS.
The total cell count of the remaining leukocytes was determined using a hemocytometer.

Immunohistochemical Analysis of the Mouse Lung
Lungs were instilled with 10% formalin under 15 cm H2O pressure and immersed in the same
solution before tissue processing into paraffin-embedded blocks; 4 μm sections were then cut
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and stained with hematoxylin and eosin (H & E). Histopathological assessment was conducted
by two researchers who were masked to the treatment group. H & E stained sections were
scored for the presence of leukocytes in the alveolar space, leukocytes in the interstitial space,
the existence of hyaline membranes, proteinaceous debris filling the airspaces, and alveolar
septal thickening, as described previously [6]. Four sections per mouse were evaluated to arrive
at an average score for each animal.

Myeloperoxidase Staining
Sections (5 μm) were cut from paraffin blocks and mounted on treated slides (Superfrost plus;
Fisher Scientific). Slides were air dried overnight, placed in a 60°C oven for 30 min, deparaffi-
nized in xylene, and run through graded alcohol to distilled water. Endogenous peroxidases
were quenched with 0.3% H2O2 for 5 min followed by two rinses with distilled water. Slides
were pretreated with target retrieval solution, citrate pH 6 (Dako Corporation, Carpinteria,
CA, USA), rinsed in distilled water, incubated in Power Block (Biogenex Laboratories Inc, Fre-
mont, CA, USA), rinsed in distilled water, placed in 1x PBS for 5 min then incubated with anti-
myeloperoxidase (MPO) antibody (1:2000 dilution, Abcam, Cambridge, MA, USA) for 30 min
at room temperature. The slides were rinsed twice in 1x PBS then incubated with a secondary
peroxidase-labeled polymer conjugated to goat anti-rabbit IgG (Envision +, Dako Corp.) for
30 min, and then finally rinsed again in 1x PBS. Bound antibody was detected with diamino-
benzidine (DAB+ substrate kit, Dako Corp.). Hematoxylin was used for counter-stain. MPO-
stained slides were then evaluated by scoring for the presence of neutrophils within the alveolar
and interstitial spaces, as described previously [6].

Myeloperoxidase Activity
MPO activity in snap frozen mouse lung tissue was determined using a MPO Assay Kit (BioVi-
sion, Inc, Milpitas, California, USA), according to the manufacturer’s instructions, as described
previously [6]. Briefly, the MPO in the samples catalyzes the production of NaClO from H2O2

and NaCl. Subsequently, the NaClO will react with exogenously added aminophenyl fluoresce-
in to generate fluorescein, which is detected using a fluorometer using excitation at 485 nm
and emission at 525 nm. The relative fluorescent units of each sample are converted into pmol
of fluorescein using a standard curve. The results are reported as pmol fluorescein generated
per min per mg of protein extract.

BALF Cytokine Measurement
A panel of 32 cytokines [Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70),
IL-13, IL-15, IL-17, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IP-10, KC, LIF, LIX,
M-CSF, MCP-1, MIG, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, VEGF] was assessed in du-
plicate in 25 μl of BALF from mice using a cytokine magnetic bead assay (MILLIPLEX MAP
Mouse Cytokine/Chemokine Magnetic Bead Panel—Premixed 32 Plex—Immunology Multi-
plex Assay, EMDMillipore). The cytokine concentrations were measured using a MAGPIX in-
strument (EMDMillipore), as described previously [11].

Assessment of Respiratory Mechanics
Twenty-four hours after LPS exposure, the mice were anesthetized with an intraperitoneal injec-
tion of ketamine (100 mg/kg) and xylazine-HCl (10 mg/kg), and the animals were placed on a
heating pad. Heart rate and transcutaneous oxygen saturation were monitored via a small ani-
mal pulse oximeter (MouseOx Plus, STARR Life Sciences Corporation, Oakmont, PA, USA) by
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placing the non-invasive sensor on the neck, as previously described [6]. Subsequently, a neck
midline incision was made to expose the trachea to facilitate endotracheal intubation with a
20-gauge 1-in.-long catheter. The animals were then connected to a FlexiVent ventilator (Scireq,
Montreal, Quebec, Canada), and ventilation was initiated at 10 ml/kg tidal volume, 150/min re-
spiratory rate, and 2.5 cm H2O positive end expiratory pressure (PEEP). The mice were allowed
to stabilize for 5 min before measurements commenced. After two total lung capacity (TLC)
maneuvers were performed (where lungs were inflated to 30 cm H2O), a sequence of perturba-
tions was introduced that included a sinusoidal 1-Hz oscillation (Snapshot). The single com-
partment model was fit to these data using multiple linear regressions in order to calculate the
dynamic elastance and compliance of the respiratory system. Dynamic pressure-volume maneu-
vers were also performed by stepwise increasing the airway pressure to 30 cm H2O and then re-
versing the process. After the measurement of respiratory function, the mice were disconnected
from the ventilator and sacrificed by thoracotomy, as previously described [11].

Statistical Analysis
Statistical analysis was performed using GraphPad Prism version 4.01 for Windows (Graph-
Pad Software, San Diego, CA, USA). The mean ± SEM was calculated in all experiments, and
statistical significance was determined by analysis of variance (for � 3 groups). For the analy-
sis of variance, Newman-Kuels post-hoc testing was employed. A value of p< 0.05 was
considered significant.

Results
Wild-type and eNOS-/- mice received either saline (vehicle) or LPS (2 mg/kg) for 24 h. We first
confirmed the lack of eNOS protein in the lungs of eNOS-/- mice (Fig. 1 A) and determined
that eNOS protein levels did not change in wild-type mice exposed to LPS (Fig. 1A). Analysis
of the BALF indicated that LPS induced cellular infiltration into the lungs after 24 h in both
wild-type and eNOS-/- mice (Fig. 1B). However, there was significantly less infiltration in the
LPS treated eNOS-/- mice (Fig. 1B). Further analysis of the BALF revealed that LPS increased
protein extravasation into the airspaces of the wild-type mice but not in the eNOS-/- mice
(Fig. 1C). The BALF was also analyzed for the presence of 32 cytokines/chemokines. Our re-
sults demonstrate that LPS significantly increased the levels of 24 cytokines and chemokines in
wild-type mice (Table 1). In eNOS-/- mice, LPS increased a total of 16 cytokines, and in com-
parison, the LPS mediated increase in 12 cytokines was significantly lower in the eNOS-/- mice
than in the wild-type mice (Table 1). Using MPO activity, we found that LPS induced neutro-
phil infiltration in the lungs of wild-type mice but not in the lungs of eNOS-/- mice (Fig. 1D).
Lung sections stained with MPO and hematoxylin and eosin indicated that eNOS-/- mice were
protected against LPS induced histopathological changes characterized by edematous thicken-
ing of the alveolar septa, hyaline membrane formation, the infiltration of leukocytes and the
presence of red blood cells in the alveolar and interstitial spaces, and debris accumulation in
the alveoli (Fig. 1E). A semiquantitative histopathological scoring system [19] was also used to
assess the severity of the lung injury by evaluating the extent of intra-alveolar neutrophil per-
meation, alveolar septal thickening, fibrin accumulation filling the airspaces, and the presence
of hyaline membranes. Lung morphology was similar in both wild-type and eNOS-/- vehicle
treated mice; however, upon LPS stimulation, the increase in the lung injury score in the
eNOS-/- mice was significantly less than in the wild-type mice (Fig. 1F). An analysis of lung me-
chanics revealed that LPS exposure caused a downward displacement of the pressure-volume
curve in wild-type mice; however, in eNOS-/- mice, LPS did not affect lung mechanics
(Fig. 2A). In wild-type mice exposed to LPS, lung compliance was decreased (Fig. 2B), lung
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elastance was increased (Fig. 2C), and oxygen saturation was reduced (Fig. 2D). In contrast,
LPS instillation did not alter lung compliance (Fig. 2B), lung elastance (Fig. 2C), or oxygen sat-
uration (Fig. 2D) in eNOS-/- mice.

To determine the mechanism by which eNOS-/- mice were protected from LPS induced lung
injury, we examined the levels of the other NOS isoforms and NOS derived oxidative and nitra-
tive stress in the lungs of LPS exposed wild-type and eNOS-/- mice. We could not detect nNOS
in the lungs of either wild-type or eNOS-/- mice (Fig. 3A). In addition, the basal levels of iNOS

Fig 1. Endothelial NOS-/- mice are protected from LPSmediated lung injury.Wild-type and eNOS-/- mice received either saline (vehicle) or LPS (2 mg/kg
body weight) intratracheally. After 24 h, the mice were anesthetized, and the lungs and bronchoalveolar lavage fluid (BALF) were collected. Protein extracts
prepared from lung tissue homogenates were subjected to immunoblot analysis and probed with an anti-eNOS antibody. Densitometric analysis indicated
that eNOS protein levels did not change in wild-type mice exposed to LPS and confirmed the absence of eNOS expression in eNOS-/- mice (A). Total cell
count in the BALF was elevated after LPS exposure in both wild-type and eNOS-/- mice; although, this response was significantly decreased in the BALF of
eNOS-/- mice (B). Both the total protein levels in the BALF (C) and MPO activity (D) were increased in LPS treated wild-type mice but not in the BALF of LPS
exposed eNOS-/- mice. Lung sections were examined for signs of inflammation after hematoxylin and eosin staining (E), neutrophil infiltration after MPO
staining (E), (representative micrographs are shown), and scored for lung injury (F). The inflammatory response induced by LPS in wild-type animals was
reduced in eNOS-/- mice, as indicated by significantly less lung MPO staining (E) and a lower lung injury score (F). Values are mean ± SEM, n = 6–10. Not
detected (n.d.) *p<0.05 vs. Wild-type+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g001
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were similar in both wild-type and eNOS-/- mice; however, upon LPS stimulation, the increase
in iNOS in the lungs of eNOS-/- mice was significantly less than in the wild-type mice (Fig. 3B).
Our results also show that the LPS mediated increases in NO levels (Fig. 4A), NOS-derived su-
peroxide (Fig. 4B), peroxynitrite formation (Fig. 4C), and protein nitration (Fig. 4D) were signif-
icantly lower in the lungs of eNOS-/- mice. Previously, we have shown that the LPS induced
changes in mouse lung mechanics were associated with RhoA activation due to its nitration at
residue Tyr34 [11]. We also showed that by preventing RhoA nitration and activation we could

Fig 2. Endothelial NOS-/- mice are protected from the LPS induced disruption of lungmechanics. Analysis of dynamic pressure-volume relationships
in the mouse lung indicated that LPS caused a displacement of the pressure-volume curve to lower lung volumes in wild-type mice but not in eNOS-/- mice
(A). These data show that, for a given amount of pressure, LPS exposed wild-type mice experienced a lower tidal volume (A). The data represent pressure-
volume loops for four groups with two curves: one for inhalation and one for exhalation events. Endothelial NOS-/- mice exposed to LPS also had higher total
respiratory compliance (B), lower total respiratory elastance (C), and increased oxygen saturation (D) compared to LPS exposed wild-type mice. Values are
mean ± SEM, n = 6–10. *p<0.05 vs. Wild-type+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g002

Role of eNOS in ALI

PLOS ONE | DOI:10.1371/journal.pone.0119918 March 18, 2015 10 / 20



normalize lung function in LPS treated mice [11]. Twenty-four hours post-intratracheal LPS
injection, we found that, although the protein levels of RhoA were unchanged (Fig. 5A), LPS
induced the activation of RhoA in the lungs of wild-type mice but not in the lungs of eNOS-/-

mice (Fig. 5B). We then developed an antibody specific to nitro-Y34 RhoA to directly evaluate
RhoA nitration at Tyr34 in mouse lung tissue. To confirm its specificity to nitrated RhoA at
Tyr34, we subjected recombinant human RhoA protein, treated with and without the peroxyni-
trite donor, 5- amino- 3- (4- morpholinyl)- 1, 2, 3- oxadiazolium chloride (SIN-1), to immuno-
blot analysis and found that the antibody detected higher levels of nitro-Y34 RhoA in SIN-1
treated recombinant RhoA (Fig. 5C). Immunoblot analysis also demonstrated that, while LPS
instillation increased RhoA Tyr34 nitration levels in wild-type mouse lungs, the nitration of
RhoA at Tyr34 in the lungs of eNOS-/- mice was not increased by LPS exposure (Fig. 5D).

In a recent study, we correlated LPS induced peroxynitrite generation with increased
ADMAmediated NOS uncoupling secondary to a loss of DDAH activity [6,20]. In the lungs of

Fig 3. Characterization of NOS isoforms in the lungs of LPS exposedmice. Lung protein extracts were subjected to immunoblot analysis using specific
antisera raised against neuronal nitric oxide synthase (nNOS) or inducible nitric oxide synthase (iNOS). Neuronal NOS was not detected in the lungs of either
wild-type or eNOS-/- mice (A). The protein levels of iNOS were significantly higher in the lungs of wild-type and eNOS-/- mice treated with LPS; however, the
LPS induced increase in iNOS levels in the lungs of eNOS-/- mice was significantly less than in the wild-type mice (B). Values are mean ± SEM, n = 6–9.
*p<0.05 vs. Wild-type+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g003
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wild-type mice exposed to LPS, we found that, although DDAH I (Fig. 6A) and DDAH II
(Fig. 6B) protein levels were not altered, total DDAH activity was decreased (Fig. 6C), and
ADMA levels were increased (Fig. 6D). Similarly, in the lungs of eNOS-/- mice, LPS exposure
did not change DDAH I (Fig. 6A) or DDAH II (Fig. 6B) protein levels; however, DDAH activi-
ty was not attenuated (Fig. 6C), and ADMA levels were not increased (Fig. 6D). Furthermore,
DDAH activity in eNOS-/- mice was significantly higher than in the lungs of wild-type mice
both in the presence and absence of LPS (Fig. 6C).

Fig 4. LPS dependent increases in oxidative and nitrative stress are attenuated in endothelial NOS deficient mice. The LPSmediated increase in
nitric oxide (NOx) (A) and NOS-derived superoxide radical generation (B) was significantly lower in eNOS-/- mice compared to wild-type mice. Analyses of the
levels of nitrative stress, estimated using both the peroxynitrite dependent oxidation of dihydrorhodamine (DHR) 123 to rhodamine 123 (C) and 3-
nitrotyrosine (3-NT) levels using dot blot analysis (D), indicate that the LPS induced increase in peroxynitrite (C) and 3-NT (D) levels in the lungs of wild-type
mice was absent in LPS treated eNOS-/- mice. Values are mean ± SEM, n = 6–10. *p<0.05 vs. Wild-type+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g004
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Discussion
The literature investigating the involvement of individual NOS isoforms in ALI is complex
with many contradictory studies. For example, although iNOS is generally considered to be the
major contributor to the pathogenesis of ALI [21–29], there are opposing studies suggesting
that iNOS has no effect [30,31] or is beneficial [32–34] in ALI. In addition, iNOS, as well as

Fig 5. Endothelial NOS deficiency prevents LPSmediated RhoA activation and nitration at Y34 in the mouse lung. Immunoblot analysis of lung tissue
extracts indicated no differences in RhoA protein levels in either wild-type or eNOS-/- mice in the absence or presence of LPS (A). However, LPS induced a
significant increase in RhoA activity in the lungs of wild-type mice but not in eNOS-/- mice (B). Recombinant RhoA protein (30 μg) incubated in the presence
or absence of SIN-1 (25 mM, 1 h at 37°C) was immunoblotted with an antibody raised against nitro-Y34 RhoA and then normalized with total RhoA antibody.
The nitro-Y34 RhoA antibody preferentially bound to nitrated RhoA (C). RhoA Y34 nitration levels in lung extracts were significantly elevated in LPS exposed
wild-type mice; however, LPS did not alter RhoA Y34 nitration in the lungs of eNOS-/- mice (D). Values are mean ± SEM, n = 6–10. *p<0.05 vs. Wild-type
+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g005
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nNOS, has been shown to contribute to the oxidative and nitrative stress and cytokine release
in sepsis induced ALI [35]. Studies have shown that the early blockade of nNOS [36] and the
late inhibition of iNOS [36,37] can reduce oxidative and nitrative stress and improve outcomes
in ALI [38,39]. Interestingly, our data suggest that nNOS does not play a direct role in LPS-me-
diated lung injury, as its expression was not detected in either wild-type or eNOS-/- lung tissue,

Fig 6. Endothelial NOS deficiency preserves DDAH activity and attenuates the LPS induced increase in ADMA in the mouse lung. Immunoblot
analysis demonstrated that LPS did not change DDAH I (A) or DDAH II (B) protein levels in the lungs of either wild-type or eNOS-/- mice. DDAH activity,
estimated by the conversion of L-[3H]-NMMA to [3H]-L-citrulline, was significantly decreased by LPS exposure in the lungs of wild-type mice (C); however,
DDAH activity was not attenuated in the lungs of LPS treated eNOS-/- mice (C). In addition, eNOS-/- mice exhibited increased lung DDAH activity compared to
wild-type mice (C). LPS exposure increased ADMA levels in wild-type mouse lungs but not in the lungs of eNOS-/- mice (D). Values are mean ± SEM, n =
6–10. *p<0.05 vs. Wild-type+Vehicle, †P<0.05 vs. Wild-type+LPS.

doi:10.1371/journal.pone.0119918.g006
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which is consistent with the findings of others [40]. The role of eNOS in the development of
ALI is also controversial. Our study supports a central role for eNOS in the pathogenesis of
LPS induced lung injury. Our data suggest that LPS induces eNOS uncoupling, and the subse-
quent increase in oxidative and nitrative stress activates RhoA resulting in endothelial barrier
dysfunction and lung injury. However, a previous study found that intratracheal LPS increased
lung edema, MPO activity, and the levels of pro-inflammatory cytokines, such as MIP-2, KC,
MCP-1, MCP-3, to a similar extent in the BALF of wild-type and eNOS-/- mice, suggesting
eNOS does not play a role in the pathogenesis of ALI [32]. We similarly found that the LPS in-
duced increases in KC and MCP-1 in the BALF were not different between wild-type and
eNOS-/- mice. However, we found that MPO activity and MIP-2 levels in the BALF were lower
in LPS treated eNOS-/- mice. The reason for these differences is unclear. In addition, studies
have shown that male eNOS-/- mice have elevated systemic blood pressure [41], and it is there-
fore possible that eNOS-/- mice would be less susceptible to LPS dependent shock. Indeed, it
has been shown that eNOS-/- mice are resistant to LPS induced hypotension due to a reduction
in iNOS protein levels [42]. Our results coincide with this study and suggest that the effects of
iNOS may ultimately be attributed to eNOS, as our data show that eNOS-/- mice have reduced
lung iNOS expression upon exposure to LPS. This may be explained by the fact that the induc-
tion of iNOS by LPS is dependent upon the activation of NF-κB by eNOS derived NO [43,44].
However, it should be noted that eNOS deficiency may alter lung development and therefore
may impact the interpretation of our results. For instance, according to previous studies, male
eNOS-/- mice are pulmonary hypertensive at baseline [45–47], and LPS exposure may further
increase pulmonary vascular resistance and pulmonary arterial pressure. In addition, it has
also been reported that neonatal lung airway development is impaired in eNOS-/- mice, result-
ing in respiratory distress and high mortality [48]. In contrast, other studies contradict these
findings and indicate that mortality is unchanged [41] and that lung development is normal in
fetal, newborn [49], and adult [46,50] eNOS-/- mice [41], Although, eNOS-/- mice may be more
susceptible to hypoxia [45,47,49,50].

It is also important to distinguish between the roles of NOS derived NO and NOS derived
superoxide. Prior studies have been contradictory, demonstrating that NO is both beneficial
[51–55] and harmful [56–58] in ALI. This ongoing controversy regarding the effects of NO in
ALI may be attributed to the relative lack of studies assessing the specific contributions of each
of the NOS isoforms, as many studies have been performed using general NOS inhibitors,
which not only inhibit the activity of all the NOS isoforms but also other enzymes [59–62]. In
addition, L-NAME not only inhibits NO generation from NOS but also superoxide production
[63–65], while L-NMMA inhibits NO [66] but increases superoxide generation from NOS [8].
In support of this possibility it has been shown that a specific iNOS inhibitor was protective
against TNF-α exposure while L-NMMA enhanced the vascular hyper-permeability response
[67]. Therefore, it is important to identify the roles of each NOS isoform and to distinguish the
effects of NOS derived NO and superoxide. In addition to our present study, we have previous-
ly demonstrated that LPS exposure increases NOS uncoupling and NOS derived superoxide
both in vitro and in vivo [6,20]. Like the present study, the increase in NOS uncoupling was at-
tributed to elevated ADMA levels secondary to a decrease in DDAH activity [6,20]. Interesting-
ly, we found an increase in lung DDAH activity in eNOS-/- mice, which was preserved during
exposure to LPS. A previous study found that DDAH is S-nitrosylated at Cys249 and is revers-
ibly inhibited by NO derived from NO donors and the cytokine induced expression of iNOS
[68]. Therefore, a reduction in DDAH S-nitrosylation may explain the increase in DDAH ac-
tivity and decrease in ADMA levels in LPS treated eNOS-/- mice, as both iNOS expression and
NO levels are attenuated. In addition, in murine lung epithelial cells, LPS and cytokine stimula-
tion elevated the levels of ADMA which inhibited NOS and induced NOS uncoupling [10].
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While the prior studies did not identify which NOS isoform is uncoupled, in our study, we
found that LPS induced an increase in NOS derived superoxide in wild-type, but not in
eNOS-/-, mice. However, as ADMA can uncouple all NOS isoforms [8,9], it is still unclear
whether the reduction in NOS uncoupling in eNOS-/- mice was due to the absence of eNOS or
a combination of reduced iNOS protein levels, enhanced DDAH activity, and less ADMA.
However, together these studies suggest that eNOS derived superoxide and peroxynitrite can
contribute to lung injury in ALI.

An important mediator of NOS derived reactive species induced lung dysfunction is the
small GTPase, RhoA. Recently, we have shown that the activation of RhoA through the peroxy-
nitrite-mediated nitration at Tyr34 increases endothelial permeability and lung injury after ex-
posure to LPS [11]. RhoA activation, via the stimulation of Rho kinase (ROCK), induces the
formation of actin stress fibers and the destabilization of endothelial junctions by increasing
myosin contractility [69]. In pulmonary endothelial cells, ADMA has been shown to increase
stress fiber formation and RhoA/ROCK activation through the inhibition of NO and the subse-
quent attenuation of the PKGmediated Ser188 phosphorylation of RhoA [70] independent of
ROS generation [71]. These data are partially consistent with our data, as LPS treated wild-type
mice have both increases in ADMA and RhoA activation. However, eNOS-/- mice exposed to
LPS have reductions in both ADMA and NO, and RhoA activity is markedly decreased, sug-
gesting that decreased Ser188 phosphorylation does not fully explain the mechanism of RhoA
activation. RhoA/ROCK signaling can also activate NF-κB and promote inflammation in re-
sponse to LPS [72] and TNF-α [73] through the canonical mechanism that involves the phos-
phorylation and degradation of IκBα and the translocation of NF-κB to the nucleus. Therefore,
it is possible that the lower levels of several pro-inflammatory cytokines in the BALF of LPS ex-
posed eNOS-/- mice may be due to reduced lung RhoA activity. Indeed, we have previously
shown that preventing RhoA nitration and reducing its activity in the lungs of LPS exposed
mice reduces the levels of several cytokines in the BALF [11]. Similarly, the over-expression of
DDAH II in the mouse lung prevents LPS mediated NOS uncoupling, peroxynitrite generation,
and the increase in BALF inflammatory cytokines [6]. Interestingly, of the 12 cytokines that are
lower in the eNOS-/- mice exposed to LPS, only 5 cytokines are similarly decreased by DDAH
II over-expression. As both LPS treated DDAH II over-expressing mice and eNOS-/- mice have
increased DDAH activity, low levels of ADMA, and decreased NOS uncoupling, these 5 cyto-
kines: IL-6, IP-10, MIP-1β, MIP-2, and VEGF, are potentially reduced as a result of decreased
NOS uncoupling and peroxynitrite generation. As we have previously shown that the nitration
of IκBα at Tyr181 dissociates IκBα from NF-κB, and subsequently, NF-κB becomes activated
[74], the decrease in oxidative and nitrative stress in LPS treated eNOS-/- and DDAH II over-
expressing mice may prevent the nitration of IκBα, the activation of NF-κB, reducing the ex-
pression of these inflammatory cytokines. However it is unclear why the other seven cytokines
reduced in the LPS treated eNOS-/- mice are not reduced in the LPS exposed DDAH II over-ex-
pressing mice and this will need further examination.

In conclusion, our data demonstrate that the oxidative and nitrative stress associated with
LPS induced ALI is dependent on the presence of eNOS. Furthermore, eNOS-/- mice are pro-
tected against LPS induced inflammation, lung injury, and disruption of lung mechanics. Thus,
we speculate that strategies aimed at attenuating NOS uncoupling may have clinical utility.
While antioxidants and other similar therapies aimed at lowering global oxidative stress have
shown little efficacy in human trials, we have previously shown the benefits of using a targeted,
shielding RhoA peptide in a mouse model of LPS induced ALI [11]. Further studies are war-
ranted to determine whether preventing NOS uncoupling and RhoA nitration will provide
benefit to patients with ALI.
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