
RESEARCH ARTICLE

Different Associations of CD45 Isoforms with
STAT3, PKC and ERK Regulate IL-6-Induced
Proliferation in Myeloma
Xu Zheng1*, Allison S. Li2, Huanyu Zheng3, Dongmei Zhao1, Dagang Guan1, Huawei Zou1

1 Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China,
2 Harvard University, Cambridge, MA, United States of America, 3 He University, Shenyang, Liaoning,
China

* zhengx@sj-hospital.org

Abstract
In response to interleukin 6 (IL-6) stimulation, both CD45RO and CD45RB, but not

CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation

and the downstream signals in CD45 isoforms-participated IL-6 signal are not well under-

stood. Using sucrose fractionation, we found that phosphorylated signal transducer and ac-

tivator of transcription (STAT)3 and STAT1 were mainly localized in lipid rafts in response to

IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in

the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase

(ERK), and phosphorylated ERK were localized in non-raft fractions regardless of the exis-

tence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and

STAT1 and nuclear translocation, but had little effect on (and only postponing) the phos-

phorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 path-

ways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the

phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher com-

pared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells

was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly en-

hanced STAT3, protein kinase C (PKC) and downstream NF-κB activation; however,

CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear

localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO

moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction,

while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft

fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indi-

cating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB

may actually work to enhance the rafts-related STAT3 and PKC/NF-κB pathways.
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Introduction
As a growth factor of multiple myeloma (MM) [1–3], interleukin-6 (IL-6) has been presumed
to play an essential role in the pathogenesis and proliferation of myeloma cells. Upon binding
the IL-6 receptor (IL-6R), IL-6 induces dimerization and subsequent phosphorylation of gp130
with the activation of the Janus kinase (JAK) [4]. Phosphorylated gp130 recruits the signal
transducer and activator of transcription (STAT)3, followed by the dimerization, phosphoryla-
tion and translocation of STAT3 to the nucleus [5]. In myeloma cells, IL-6 triggers cell prolifer-
ation via at least two intracellular signaling pathways, including JAK/STAT3[6] [7] [8], and the
ras-dependent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) cascade [8–10]. Furthermore, the physiological roles of src family kinase (SFK), Lyn, in
myeloma cells have also been examined. The Lyn-specific antisence and the phosphatase inhib-
itor together obstruct the IL-6-induced proliferation in CD45+ myeloma cells, but not in
CD45- myeloma cells [8]. Furthermore, Lyn and downstream protein kinase C (PKC) can be
activated by IL-6 only in CD45+ myeloma cells [11]. This data suggests that except for the acti-
vation of STAT and ERK, Lyn/PKC activation via CD45 molecules is also required for IL-
6-induced proliferation. Interestingly, down-regulation of Lyn activity does not influence
STAT3 and ERK activation in CD45+ myeloma cells [8], and the inhibition of ERK activity
using ERK inhibitor or siRNA has no effect on the phosphorylation of STAT3 in INA-6 myelo-
ma cells [12], suggesting that there are no cross talk among these three pathways. However, the
precise mechanisms underlying the different IL-6 signaling regulation remain
poorly understood.

Myeloma cells possess heterogeneous characteristics. This fact was proven by the discovery
that 1.) in response to IL-6 stimulation, immature but not mature myeloma cells proliferate
markedly [13]; 2.) CD45 is expressed in immature myeloma cells but not in mature cells
[14,15] and 3.) Only CD45+, but not CD45- myeloma cells, proliferate after IL-6 stimulation
[8,16,17]. Considerable evidence indicate that expression of CD45 is essential for the activation
of both T cells and B cells [18–20], highlighting the importance of CD45 in regulating immune
function not only on T cells and B cells but also on myeloma cells.

CD45 activity and regulation is mainly determined by its localization relative to its sub-
strates, such as SFK [20]. Lipid rafts are specified membrane microdomains in the plasma
membrane enriched in cholesterol and sphingolipids [21,22]. These microdomains usually
function as triggers to bring different signaling molecules into proximity with their substrates
and potentiate the downstream signaling [23]. Strong evidence for lipid rafts-dependent plat-
form of signaling complexes has come from studies on immunoreceptor signaling including
BCR, TCR and cytokines [24–26]. Some signaling molecules, such as IL-6R, gp130 and Lyn,
are localized in the raft fraction before and/or after cytokine stimulation [17,27], while other
molecules, such as CD45, depart from rafts after CD3 stimulation in T cells [28] or move into
raft fractions upon BCR engagement in B cells [29] and IL-6 stimulation in myeloma cells [17],
suggesting the important regulative role of lipid raft in signaling transduction.

The different isoforms of CD45 are generated by alternative splicing of three exons 4, 5, and
6 [18], and the different isoforms have been found to vary in their ability to modulate TCR sig-
naling and TCR recognition [30,31]. For example, compared to CD45RA, CD45RO is more
likely to associate with CD4, CD8 and be more efficient in promoting T cell activation [31–34].
In response to CD3 stimulation, PKC activity increases in CD45RO+ cells more so than in
CD45RA+ cells [35], which themselves have a different ability to proliferate and secrete IL-4
and IFNγ [36]. In myeloma cells, we have previously reported that following IL-6 stimulation,
both CD45RO and CD45RB, but not CD45RA, translocated to lipid rafts from outside of raft
compartments, where they formed a complex with Lyn and activated Lyn by
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dephosphorylating Lyn Tyr 507 at the carboxy terminal and phosphorylating Lyn Tyr 396
[17]. This process suggests a positive regulator of CD45RO/RB in IL-6 signaling. Such discrimi-
nate associations also suggest that extracellular domains of CD45 isoforms may differentially
promote association of the intracellular molecules with specific ability to regulate IL-6 signaling
in myeloma. Therefore, additional clarification of the functional difference of CD45 isoforms
in myeloma should be another key area of focus.

Here we demonstrate that CD45 isoforms partitioning into raft or nonraft microdomains
dictate whether CD45 isoforms function as a positive or negative regulator of IL-6 signal trans-
duction. We show that CD45RO/RB positively regulate STAT3 and PKC/ NF-κB signaling
after they move into rafts and recruit with STAT3 and PKC in the rafts compartment. These
events require the integrity of membrane rafts, indicating that these membrane microdomains
provide a platform for the initiation of CD45RO/RB-mediated IL-6 signaling. On the contrast,
CD45RA was recovered only in nonraft soluble fractions and formed a complex with ERK, in-
hibiting ERK activation only from the nonraft compartment following IL-6 stimulation. Thus,
this study provides important insights into CD45 isoforms’ signaling in multiple myeloma cells
and suggests a different immunomodulatory role for CD45 isoforms in regulating IL-
6-mediated proliferation.

Materials and Methods

Cell culture
Myeloma cell lines CD45+ U266 and CD45- U266 were separated using a cell sorter (Immuno-
tech Coulter, Hialeah, FL) [8]. CD45+ U266 and CD45+ ILKM2 were cultured in the presence
of IL-6 (2 ng/ml) and conducted IL-6 starvation for 12 hours before IL-6 stimulation. All of the
cell lines including CD45+ U266, CD45+ ILKM2, CD45- U266, CD45- NOP2, and stable trans-
fectant-expressed enhanced green fluorescent protein (EGFP) fusions were cultured in RPMI
1640 medium containing 10% fetal calf serum (FCS; M. A. Bioproducts, Walkersville, MD) [8].

Flow cytometry
For primary cell analysis, bone marrow mononuclear cells isolated from myeloma patients
were obtained with informed consent approved by the Institute Review Board of Shengjing
Hospital at China Medical University. Cells were stained with fluorescein isothiocyanate
(FITC)-conjugated CD138 (MI 15) and PE-cy5-conjugated CD45 (HI 30). CD45+ CD138+ and
CD45- CD138+ primary cells were isolated by a cell sorter. To examine the CD45 isoforms’ ex-
pression, cell lines and primary cells were collected, stained with phycoerythrin (PE)-conjugat-
ed antibodies including human immunoglobulin G (IgG; 679.1 Mc7), CD45 RO (UCLH1),
CD45RB (MT4 [6B6] or CD45RA (2H4) (BD Biosciences Pharmingen, San Diego, CA) and
analyzed by a cell sorter.

DNA constructs and retrovirus-medicated gene transfer
STAT1 and STAT3 cDNA were generated by PCR from CD45+ U266 cells. After DNA se-
quencing confirmation, the STAT1 fragment was digested with Nhe I and BglII, and the
STAT3 fragment was digested with Nhe I and SalI. The STAT1 or STAT3 fragment was then
subcloned into pEGFP-N1 (Clontech, Palo Alto, CA) to yield STAT1 or STAT3-EGFP, respec-
tively. Both EGFP fusions were then excised with Nhe I and NotI, respectively, and cloned into
the retroviral vector pMXpuro (Clontech). Retrovirus-mediated gene transfer was performed
[37], and CD45RO, RB or RA PCR products were cloned into the pEGFP-N1 vector and retro-
viral pQCXIP vector (Clontech) to generate EGFP fusions as previously reported [17].
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Biological isolation of lipid rafts by sucrose density gradient
centrifugation
Preparation of lipid rafts was performed according to the method described previously [17].
Briefly, CD45+ U266 cells were either stimulated or non-stimulated with IL-6 (10 ng/ml). Cells
were washed twice with ice-cold PBS and lysed with 1 ml lysis buffer containing 0.5% Triton
X-100 on ice for 30 minutes. After homogenization, the lysates were combined with an equal
volume of 85% sucrose in lysis buffer for a final 42.5% solution. The preparation of discontinu-
ous density gradients was completed with 2.7 ml of 35% sucrose followed by a 1.6 ml layer of
5% sucrose in buffer. Samples were centrifuged in a Beckman TY 80Ti rotor at 55 000 rpm
(Beckman Coulter, Hialeah, FL). 12 fractions were collected from the top of the gradient and
subjected to Western blot-analysis.

Nuclear, cytoplasmic protein extraction, immunoblotting,
immunoprecipitation, and dot-blotting
Nuclear and cytoplasmic protein extracts were isolated as previously described [38]. For immu-
noblotting, the cells were lysed in lysis buffer [8,27] and the protein concentration in the lysates
was determined by a spectrophotometer. Equal amounts of the lysates were subjected to sodi-
um dodecyl sulfate (SDS) sample buffer and the immunoblotting was performed with primary
antibodies as indicated in the figures. Proteins were visualized by chemiluminescence after
treatment with secondary antibodies conjugated to horseradish peroxidase. The signal densities
of some phosphorylated proteins were normalized to that of the corresponding unphosphory-
lated proteins. For immunoprecipitation, the cell lysates were first pre-cleared by using protein
G agarose beads (Santa Crus Biotech, Santa Cruz, CA) for 2 hours on ice. The protein samples
were then incubated with 10 μg of specific antibody for 2 hours, followed by incubation over-
night with protein G beads at 4°C. The bead-antibody-protein complex was boiled with reduc-
ing buffer for 5 minutes before being transferred into gel lanes for SDS-PAGE. Antibodies were
obtained as follows: STAT1, STAT3, ERK1/2, IκB-α, phosphorylated STAT1 (P-STAT1, Tyr
701), phosphorylated STAT3 (P-STAT3, Tyr 705), phosphorylated ERK1/2 (P-ERK, Thr202/
Thr204), phosphorylated IκB-α (P-IκB, Ser32) and phosphorylated PKC (P-PKC, Ser660)
from Cell Signaling Technology. CD45 (35-Z6), SH2 containing tyrosine phosphatase (SHP-2)
(B-1), son of sevenless homolog 1 (SOS1) (C-23), CD71 (H-300), PKC-β, SP-1 (1C6), gp130
(C-20) and IL-6R (H-300) were purchased from Santa Cruz Biotech. Flotillin-2 was purchased
from BD Biosciences Pharmingen. Dot-blotting was used to identify the lipid rafts’ fractions.
Horseradish peroxidase-conjugated cholera toxin B (CTB; List Biology Laboratory, Campbell,
CA) was used to label endogenous GM1 ganglioside.

Proliferation assay
CD45+ U266 cells and CD45+ CD138+ primary cells were cultured in 96-well plates for 72
hours with or without IL-6 (10 ng/ml). PKC inhibitor Ro31-8220 (1 μM), or NF-κB inhibitor
BAY11-7082 (5 μM) was obtained from Sigma Chemical Co. and added 1 hour prior to IL-6
stimulation. 5-bromo-2’-deoxyuridine (BrdU) was used to examine the cell proliferation by in-
corporating BrdU into cellular DNA using a peroxidase-labeled anti-BrdU antibody.

Live fluorescence imaging
Stable transfectants of STAT1-EGFP and STAT3-EGFP were plated on a 35 mm poly-L-lysine-
coated glass-bottom culture dish (Matsunami glass, Tokyo, Japan). Fluorescence-expressing
living cells were maintained at 37°C and images were acquired with a laser confocal microscope
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(LAM 510; Carl Zeiss, Jena, Germany). In order to destroy membrane lipid rafts, a lipid rafts
inhibitor methy-β-cyclodextrin (MCD; sigma Aldrich, St Louis, MO) was used. Cells were pre-
treated with 10 mMMCD for 30 minutes at 37°C followed by IL-6 stimulation.

Statistical analysis
Data analysis was performed using one-way analysis of variance (ANOVA) and the post-hoc
multiple comparisons were performed by using the Tukey honestly significant difference
(HSD) test. Results are presented as a mean ± SD of at least three independent experiments,
and statistical significance was calculated as indicated.

Results

Lipid rafts are necessary for IL-6-induced STAT3 and STAT1
phosphorylation, but not essential for ERK
First, we examined whether IL-6 signaling molecules are distributed in lipid rafts of myeloma
cells. To prepare lipid rafts, CD45+ U266 cell lysates were subjected to a sucrose gradient ultra-
centrifuge and the gradient samples were fractionated into 12 fractions. As shown in Fig. 1A,
both STAT3 and STAT1 were detected in both the raft and soluble fractions regardless of the
presence of IL-6. IL-6 treatment induced the phosphorylation of both STAT3 and STAT1 and
movement of P-STAT3 and P-STAT1 into the rafts fractions. Surprisingly, SHP2, SOS1 and
ERK were not significantly distributed in the lipid raft fraction. Although IL-6 could induce ty-
rosine phosphorylation of ERK (P-ERK), P-ERK did not exist in the raft fraction. Raft marker
CTB, which binds GM1 gangliosides, was detected only in the raft fraction (around fraction
5–8), while CD71, a nonraft marker [17,29], was found in virtually every soluble fraction (frac-
tions 10–12). To determine the importance of P-STAT3 and P-STAT1 translocation to lipid
rafts in intracellular signaling events, the activation of these molecules was monitored in
CD45+ U266 cells depleted of cholesterol using MCD. IL-6 treatment resulted in time-
dependent STAT1 and STAT3 phosphorylation. Such a response was dramatically abrogated
in MCD treatment cells compared to untreated control cells (Fig. 1B). On the other hand,
MCD could not effectively block IL-6-medicated activation of ERK. It seems that MCD abro-
gates the early stage of the activation of ERK but not the late stage. Overall, this data suggests
that IL-6-mediated activation of STAT3 and STAT1, but not ERK, is specifically required for
the integrity of lipid rafts.

Lipid rafts are necessary for IL-6-induced STAT3 and STAT1 nuclear
localization
It is well known that in response to stimulation by IL-6, tyrosine phosphorylated STATs under-
go dimerization and are translocated from cytoplasm to nucleus [39,40]. To evaluate STAT’s
nuclear trafficking in a live cell, stable transfectants of STAT1-EGFP and STAT3-EGFP in
CD45+ U266 cells were stimulated with IL-6. Then, specific tyrosine 701 for STAT1 and 705
for STAT3 phosphorylation were examined. Both EGFP-tagged and untagged STAT1 and
STAT3 exhibited robust tyrosine phosphorylation with IL-6 stimulation (Fig. 2A), suggesting
the potential biological function of STAT3-EGFP and STAT1-EGFP. To further confirm
whether IL-6-induced activation of STATs is dependent upon lipid rafts, we carried out real-
time microscopic imaging of the translocation of STATs to the nucleus. As shown in Fig. 2B,
stably expressed STAT3-EGFP in CD45+ U266 cells was localized in the cytoplasm and nucleus
even after IL-6 removal for 12 hours. STAT3-EGFP was found to be prominently nuclear soon
after the IL-6 stimulation. The peak nuclear fluorescence intensity was about 10 minutes.
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However, STAT1-EGFP was clearly mainly localized in the cytoplasm prior to treatment with
IL-6, which was different from STAT3-EGFP. The fluorescence intensity of the nucleus only
rapidly increased between 10 and 30 minutes and peaked at 30 minutes. Furthermore, when
STAT3 and STAT1-EGFP expressed cells were treated with MCD, a cholesterol sequestrating
agent, the IL-6-induced STAT1 and STAT3 nuclear translocation was blocked. Our previous
report already found that MCD could significantly inhibit IL-6-induced proliferation in CD45+

U266 cells [17]. Therefore, current data suggests that the integrity of lipid rafts is also required
for nuclear localization of STATs and may potentiate subsequent proliferation in multiple
myeloma cells.

Different regulation of CD45 on IL-6-induced protein phosphorylation
and nuclear translocation
We have demonstrated that CD45 RO, RB, but not RA move to lipid rafts and facilitate IL-
6-induced signaling [17]. This study was then aimed at understanding the mechanism behind
IL-6-induced proliferation regulated by different CD45 isoforms. First, we carefully evaluate
whether the phosphorylation level of IL-6-mediated signaling molecules differed between

Fig 1. IL-6-induced STAT3 and STAT1 phosphorylation is required for the integrity of lipid rafts. (A) CD45+ U266 cells were grown in IL-6 free medium
for 12 hours (IL-6 starvation). Cells were incubated with or without 10 ng/ml of IL-6 for 5 minutes. The cell lysates were subjected to sucrose density gradient
centrifugation, and endogenous proteins indicated beside figures from each sucrose fraction were analyzed by immunoblotting. CD71 was detected as a
nonraft marker. Lipid raft fractions were confirmed using CTX dot plots for each fraction. (B) CD45+ U266 cells were treated or untreated with MCD (10 mM)
for 30 minutes at 37°C. Cells were then stimulated with IL-6 at different time points. Whole-cell lysates were subjected to SDS/PAGE and separate plots with
antibodies are shown. The representative blots of three independent experiments are shown.

doi:10.1371/journal.pone.0119780.g001
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CD45+ and CD45- myeloma cells. As shown in Fig. 3A, IL-6 stimulation induced specific phos-
phorylation of STAT1, STAT3 and ERK. Surprisingly, the tyrosine phosphorylation level of
STAT3, but not STAT1, was greatly enhanced in CD45+ U266 cells, which are CD45RO+,
CD45RB+, CD45RA-, in comparison with the cells without expression of CD45. In contrast,
ERK phosphorylation was significantly reduced in CD45+ U266 cells. Because IL-6 elicits dis-
tinct responses and activates various signaling pathways in a cell-specific manner [8,37], we
evaluate our results in other cell types. Similar to CD45+ U266, ILKM2 myeloma cells were also
highly expressed by CD45RO, RB but not for CD45RA expression (Fig. 3B). Western blotting
data clearly showed that IL-6-induced STAT3 phosphorylation level was markedly higher in
CD45+ ILKM2 cells, while ERK phosphorylation level was significantly lower. To rule out the
cell line based phenomena, primary patient samples were also included and similar results
were obtained by comparing CD45+ CD138+ with CD45- CD138+ myeloma cells (Fig. 3C).

Fig 2. IL-6-induced S.TAT3 and STAT1 nuclear translocation is required for the integrity of lipid rafts.
(A) CD45+ U266 cells were transfected with untagged (mock) or STAT1-EGFP, STAT3-EGFP expression
plasmids, and either treated or untreated with IL-6 at different time points. Immunoblotting was performed as
above. (B) Subcellular distribution of STATs-EGFP fusion proteins. Nuclear translocation of both STAT3-
EGFP and STAT1-EGFP was evaluated by live cell imaging. Cells were pre-incubated with or without 10 mM
MCD for 30 minutes and then stimulated with 10 ng/ml of IL-6 and images were generated at different time
points. P-REP was used as a mock vector, which expresses EGFP. Data shown are representative of
three experiments.

doi:10.1371/journal.pone.0119780.g002
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Fig 3. Phosphorylation levels of STAT3 and ERK are different between CD45+ and CD45-myeloma cells.CD45- U266 cells and CD45+ U266 cells (A),
CD45- NOP2 cells and CD45+ ILKM2 cells (B), and CD45- CD138+ and CD45+ CD138+ primary cells (C) were stained for CD45RO, RB and RA antibodies
and analyzed by flow cytometry. The percentage expression relative to its isotype control is shown in the histogram. Cells were also stimulated with IL-6 for
the indicated time. Western blotting was performed by using specific antibodies and the representative blots of three independent experiments are shown.

doi:10.1371/journal.pone.0119780.g003
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This data suggests that CD45 (CD45RO, CD45RB) may upregulate IL-6-induced STAT3 tyro-
sine phosphorylation while downregulating ERK tyrosine phosphorylation.

We further investigate whether nuclear localization of STAT3 is different between CD45+

and CD45- myeloma cells. Here, using stable transfectants of STAT3-EGFP, we found that IL-
6 stimulation induced a markedly quicker and stronger nuclear translocation in CD45+ U266
cells compared to that of CD45- U266 cells (Fig. 4A). However, no significant difference was
found in STAT1-EGFP nuclear localization between CD45+ and CD45- U266 cells (data not
shown). We further confirmed this finding using the biochemical method. With this purpose,
cytoplasmic and nuclear extraction from both CD45- and CD45+ U266 cells were prepared. As
shown in Fig. 4B, IL-6 stimulation induced significant phosphorylation of STAT3 both in
CD45- and CD45+ U266 cells. Importantly, as a consequence of IL-6 stimulation, a significant
proportion of phosphorylated STAT3 was translocated into the nuclear compartment isolated
from CD45+ cells, which was mirrored by a decrease in the cytoplasm compartment. The phos-
phorylation level of STAT3 induced by IL-6 markedly increased in nuclear extract isolated
from CD45+ U266 compared to extract isolated form CD45- U266 cells. Simultaneously, the
phosphorylation level of STAT3 clearly decreased in the cytoplasmic extract purified from
CD45+ U266 cells. This data indicates that CD45 (CD45RO, CD45RB) may facilitate IL-
6-induced nuclear translocation.

Raft-targeted CD45RO/RB enhances STAT3 activation and STAT3/
CD45RO complex formation
The effect of CD45RO/RB overexpression on IL-6-induced STAT3 phosphorylation was ana-
lyzed to address the question of whether the enhancement of STAT3 phosphorylation is rele-
vant to CD45RO/RB. CD45RO-EGFP, CD45RB-EGFP or CD45RA-EGFP was transfected into
CD45- U266 cells to produce CD45RO+, CD45RB+ or CD45RA+ U266 cells, respectively.
Overexpression of CD45RO or CD45RB significantly enhanced IL-6-induced STAT3 phos-
phorylation (Fig. 5A). In contrast, CD45RA did not affect IL-6-induced STAT3 phosphoryla-
tion. We next examined whether CD45RO associates with STAT3 in lipid rafts in response to
IL-6 stimulation. Using primary CD45+ CD138+ cells, we first demonstrated that CD45 forms
a complex with the IL-6R and gp130. Interestingly, IL-6 also triggered CD45 to form a complex
with STAT3, but not STAT1 and ERK (Fig. 6A). Anti-CD45 antibody immunoprecipitation
followed by immunoblotting confirmed that CD45RO moved into raft fractions in response to
IL-6 stimulation. Importantly, CD45RO moved into raft fractions and coprecipitated with
STAT3 but not in soluble fraction (Fig. 6B). This data indicates that when stimulated with IL-
6, CD45RO translocates to the lipid raft, forms a complex with IL-6R complex and STAT3,
and further potentiates IL-6-induced STAT3 activation.

Nonraft-targeted CD45RA forms a complex with ERK and antagonizes
IL-6-induced ERK phosphorylation
We next determined the reason why the ERK phosphorylation level was lower in CD45+ mye-
loma cells in comparison to CD45- myeloma cells (Fig. 3). As described above, CD45RB+ or
CD45RA+ U266 stable transfectants were prepared. Overexpression of CD45RB or CD45RA
substantially inhibited IL-6-induced ERK phosphorylation at multiple time points (Fig. 5B).
Conversely, ERK phosphorylation was not affected by CD45RO overexpression. Interestingly,
we succeeded in detecting ERK coprecipitation with CD45RA in soluble fraction, but not in
raft fraction in response to IL-6 stimulation (Fig. 6B). These results imply that CD45RA may
associate with ERK and function as a phosphatase to dephosphorylate ERK outside of
lipid rafts.
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CD45RO/RB, but not RA, activates PKC and NF-κB which is necessary
for IL-6-induced proliferation
NF-κB induces cell proliferation by regulating the expression of cyclin D and E [41,42]. In
B cells, upon antigen ligation, PLC-γ2 is activated, followed by the activation of PKC-β and
IKK α/β. Nuclear translocation of active NF-κB contributes to the phosphorylation of IκB [43].
We have found that the PLC-γ2 complex with Lyn and PKC can only be activated in CD45+

U266 cells [11]. In this study, exogenously expressed CD45 RO or RB was cloned into CD45-

U266 cells to assess their involvement in IL-6-induced PKC, NF-κB activation. As shown in
Fig. 5C and 5D, overexpression of CD45RO and CD45RB significantly enhanced the phos-
phorylation of PKC and NF-κB while the phosphorylation levels of PKC and NF-κB in

Fig 4. CD45 expression enhances the nuclear localization of STAT3. (A) CD45- U266 and CD45+ U266 cells transfected with STAT3-EGFP were
analyzed by confocal microscopy for EGFP fusion protein. After stimulation with 10 ng/ml of IL-6, the distributions of STAT3-EGFP fusion protein in nuclear,
cytoplasm, or cytoplasm plus nuclear were quantified by counting 100 cells at different time points. The mean percentages from three independent
experiments were calculated. (B) Cytoplasm and nuclear extracts were isolated from CD45- U266 cells and CD45+ U266 cells, respectively, and analyzed by
western blotting with antibodies against phosphorylated STAT3 or STAT3. Cytoplasmic marker β-action and nuclear marker SP1 were used to indicate the
purity of our extraction procedure. Data shown are representative of three experiments.

doi:10.1371/journal.pone.0119780.g004

CD45 Isoforms Differentially Regulate STAT3, PKC and ERK

PLOSONE | DOI:10.1371/journal.pone.0119780 March 17, 2015 10 / 18



CD45RA+ U266 cells resembled the mock control U266 cells. The lipid rafts translocation of
phosphorylated PKC in response to IL-6 stimulation has been demonstrated using a discontin-
uous sucrose gradient and the requirement of lipid rafts intact in IL-6-induced PKC activation
was also confirmed by using raft inhibitor (data not shown). Importantly, IL-6 induced the
complex formation of CD45RO with PKC especially in the raft fraction but not in the soluble
fraction (Fig. 6B). Thus, this data indicates that CD45RO forms a complex with PKC in raft
compartments which may facilitate increased phosphorylation of PKC.

We further used reagents that specifically inhibit PKC and IκB to evaluate whether PKC,
NF-κB activation were involved in IL-6-induced proliferation. As shown in Fig. 7, treatment of
CD45+ U266 cells (Fig. 7A) or CD45+ CD138+ cells (Fig. 7B) with PKC inhibitor abrogated IL-
6-induced PKC and IκB phosphorylation, while the NF-κB inhibitor only affected IκB phos-
phorylation instead of PKC phosphorylation. Furthermore, both inhibitors triggered similar
effects on IL-6-induced proliferation confirmed by both the myeloma cell line and primary
cells. These results suggest that the activation of PKC and its downstream molecule NF-κB are
especially required for IL-6-induced proliferation.

Fig 5. Effects of Exogenously expressed CD45RO, RB, or RA-EGFP on phosphorylation of STAT3, MAPK, PKC and IκB. CD45- U266 cells were
transfected with untagged (mock) or CD45RO-EGFP, CD45RB-EGFP or CD45RA-EGFP expression plasmids, and either treated or untreated with IL-6 (10
ng/ml) at different time points. The representative blots are from three independent experiments and separate blotting using antibodies to P-STAT3, STAT3
(A), P-ERK, ERK (B), P-PKC, PKC (C) and P-IκB, IκB (D) are shown. The densities of protein bands were determined by densitometry and the data represent
a change from the control mock density. * p< 0.05 vs mock control in the presence of IL-6; ** p< 0.01 vs mock control in the presence of IL-6 by a one-way
ANOVA with HSD test.

doi:10.1371/journal.pone.0119780.g005
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Discussion
Although CD45 plays an important role in regulating the IL-6-induced proliferation, the ques-
tion of the downstream signaling difference of CD45 isoforms in myeloma cells remains poorly
documented. This study provides evidence that IL-6-induced STATs (but not ERK) phosphor-
ylation and nuclear translocation are required for the integrity of lipid rafts. Importantly, stim-
ulation of myeloma cells with IL-6 increased the proportion of CD45RO in the raft fractions,
where CD45RO formed a complex with IL-6R, gp130, STAT3 and PKC, that could potentiate
the activation of STAT3, PKC and downstream NF-κB. However, CD45RA remained outside
of the rafts compartment, formed a complex with ERK, and inhibited the IL-6-induced
ERK phosphorylation.

Lipid rafts have been regarded as a signaling platform on the cell membrane where different
signal pathways can be initiated [21,44]. IL-6 signaling molecules, such as IL-6R, gp130 and
Lyn, have been detected in the raft fractions before and after IL-6 stimulation [17]. Here, our
sucrose gradient centrifugation analysis revealed that IL-6-mediated activation of STAT3 and
STAT1 occurs in the lipid rafts fraction, whereas IL-6-mediated activation of ERK can only
take place in nonlipid raft regions. The importance of lipid rafts in IL-6-induced STATs activa-
tion was also confirmed by using a lipid raft inhibitor, as both STAT3 and STAT1 phosphory-
lation was impaired by the cholesterol-depleting drug MCD. It is apparent that cholesterol is
essential for IL-6-induced STATs activation because MCD also disrupts the nuclear transloca-
tion of STATs. The pivotal role of cholesterol in IL-6-induced STATs activation and myeloma
cells proliferation [17] suggests that administration of cholesterol-depleting drugs could be a
potential therapeutic strategy against IL-6-induced myeloma cell proliferation. Our previous

Fig 6. CD45RO forms a complex with STAT3, PKC in lipid rafts, while CD45RA forms a complex with
ERK in soluble fraction. (A) CD45+ CD138+ primary myeloma cells were stimulated with IL-6 (10 ng/ml) for
the indicated time, immunoprecipitated (IP) with anti-CD45 antibody, and put through western blotting by
using specific antibodies. (B) CD45- U266 cells transfected with untagged (mock), CD45RO-EGFP,
CD45RB-EGFP or CD45RA-EGFP expression plasmids were incubated with or without 10 ng/ml of IL-6 for 5
minutes. Lysates were prepared and separated by sucrose fractionation. Raft fraction (5–8) and soluble
fraction (10–12) were mixed, respectively, and immunoprecipitated with anti-CD45 antibody followed by
western blotting. Raft-targeted protein flotilin-2, CTB and raft-untargeted protein CD71 were performed for
quality control.

doi:10.1371/journal.pone.0119780.g006
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data already demonstrated that recruitment of the IL-6R complex to lipid rafts and CD45 acti-
vates Lyn by inducing a Lyn membrane confirmation change [17]. It is also reported that SFK,
which is enriched in lipid rafts, mediates integrin-induced tyrosine phosphorylation by provid-
ing a docking site for adapter proteins Grb2 and Shc [45]. This may be similarly applied to re-
ceptor tyrosine kinases that require their residency in lipid rafts and docking site occupation to
activate STAT3 and STAT1. Lipid rafts have been identified to be a novel and effective thera-
peutic target in cancer [46]. Specially, phospholipid ether edelfosine accumulates in myeloma
cell membrane rafts and promotes apoptosis of cancer cells through co-clustering of Fas/CD95
death receptor and lipid rafts [47]. STAT3 has also been considered to be a target for the induc-
tion of apoptosis in tumor cells [48] and Gossypol, a cotton plants extraction, has been found
to induce apoptosis in myeloma cells by inhibiting phosphorylation of JAK and STAT3 [49].
Therefore, our data suggests that a combination of rafts target drug with JAK/STAT3 inhibitor
seems to be a very promising approach for myeloma therapeutic intervention.

Our findings establish a relationship between CD45 isoforms’microdomain locations and
the regulation of IL-6-mediated myeloma cell activation. Here, we show that IL-6-induced
STAT3 tyrosine phosphorylation is significantly enhanced in CD45+ myeloma cells in compar-
ison with CD45- myeloma cells. Consistent with the enhanced phosphorylation of STAT3 is
the observation that STAT3 nuclear translocation is quicker and more efficient in CD45+

Fig 7. PKC and downstream NF-κB are required for IL-6-induced proliferation in CD45+ myeloma cells.
CD45+ U266 cells (A) or CD45+ CD138+ primary cells (B) were incubated with or without PKC inhibitor Ro31-
8220 (1 μM), or NF-κB inhibitor BAY11-7082 (5 μM) for 1 hour and stimulated with IL-6 (10 ng/ml). PKC
phosphorylation level was measured after 10 minutes of stimulation with IL-6, and the IκB phosphorylation
level was analyzed after 60 minutes stimulation. Western blotting was performed by using specific antibodies.
The representative blots of three independent experiments are shown. BrdU incorporation was used to detect
the DNA synthesis by IL-6 after 72 hours. DMSO is used as a control. Data are shown as mean ± SD of
triplicate cultures and are from one experiment representative of three performed. ** p< 0.01 vs DMSO
control in the absence of IL-6; ## p< 0.01 vs DMSO control in the presence of IL-6 by a one-way ANOVA
with HSD test.

doi:10.1371/journal.pone.0119780.g007
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STAT3—EGFP transfectants cells. Phosphorylation and nuclear localization of STAT1 in re-
sponse to IL-6 is comparable in CD45+ and CD45- myeloma cells, indicating that CD45 does
not regulate STAT1 phosphorylation. An interesting finding is that CD45RO/RB, but not
CD45RA, enhances the phosphorylation of STAT3-induced by IL-6, followed by the formation
of the CD45RO:STAT3 complex in raft fractions, but not in nonraft ones. It is not clear why
this difference was observed. However, the specific raft movement of CD45RO/RB but not
CD45RA [17], as well as the rafts location of phosphorylated STAT3, is consistent with this
finding. Our data showing that CD45RO forms a complex with STAT3 is supported by evi-
dence that CD45 associates with JAK and directly regulates tyrosine phosphorylation of
STAT3 and STAT5 in interferon-α (IFN-α)-induced signaling in COS cells [50]. The increased
STAT3 phosphorylation in CD45RO/RB overexpression cells further indicates that CD45 iso-
forms’ expression patterns affect IL-6-induced myeloma cell proliferation possibly through in-
teractions with different CD45 isoforms, because CD45RO has been indicated to
homodimerize more efficiently [51] and more readily with the immunological synapse [52]
than with other highly molecular weight isoforms. These studies suggest a rapid, ligand-
dependent interaction of CD45 with IL-6R complex and the physical association of CD45RO/
RB with STAT3 may be potent ways of increasing the ability of IL-6-induced myeloma cells to
proliferate. It should be noted that our results are consistent with a previous report in which
CD45 is positive regulator for IFN-α-induced JAK-STAT signaling in Jurkat cells [53]. Our
data now demonstrates that it is raft-associated CD45-RO/RB, but not raft-excluded CD45RA,
that functions as a positive regulator of STAT3, but not STAT1, and processive IL-6 signaling
transduction. Compared to CD45- myeloma cells, CD45+ myeloma cells with an activated
JAK/STAT3 pathway are particularly sensitive to JAK2 inhibitor [54] which inhibits IL-6-in-
duced JAK and STAT3 phosphorylation. On the other hand, CD45RO, but not CD45RA and
pan CD45 antibody, significantly inhibits proliferation and STAT3 phosphorylation triggered
by IL-2 and IL-4 in human lymphoblasts, indicating the functional differences between CD45
isoforms [55]. Our findings are of clinical interest because they predict multiple target drugs
for myeloma, such as raft target drug, JAK/STAT inhibitor and CD45RO antibody, and thus
may be more efficacious and less vulnerable to acquire resistance.

We propose that lipid rafts are involved in early ERK activation, because abolition of lipid
rafts with MCD results in the attenuation of the early ERK waves of activation. The small
amount of ERK upstream molecule, SHP2, in the raft fraction can also explain this phenome-
non. In contrast, the late activation remains constant in cells pretreated with MCD, suggesting
that the late signaling response of ERK leading to phosphorylation is indicative of another orig-
inating source that is not in lipid raft domains. Because the CD45RA:ERK complex formation
is induced by IL-6 in nonraft compartments, we favor a model in which CD45RA dephosphor-
ylation of nonraft ERK is facilitated by different isoforms of Ras activation. An interesting re-
port elucidates different raft compartments and requirements for K-ras and H-ras isoforms, in
which the K-ras isoform is known to most efficiently induce Raf-1 (and thus ERK), selectively
localizing to nonraft microdomains. Alternatively, the H-ras isoform initially localizes to lipid
rafts and then relocates to nonrafts upon GTP binding [56]. It is therefore possible that
CD45RA is involved in K-ras-mediated ERK activation outside of lipid rafts. An alternative ex-
planation pertains to potential synergistic cooperation of CD45RA with other membrane β-ga-
lactoside-binding lectins, such as galectin-1. Because galectin-1 prefers to bind highly
glycosylated CD45RA [20], but not CD45RO, this results in the inhibition of ERK activation
[37]. A previous study implicates the interaction of galectin-1 and fibronectin, inhibition of
ERK phosphorylation, induction of P21, P27, inhibition of CdK2 activity and ultimately
growth inhibition also support this suggestion [57,58]. Finally, it remains to be determined
whether nonraft-localized CD45RA inhibits ERK activation due to CD45 activity on other
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nonraft-localized ERK regulators that we have yet to examine. Together with our findings dem-
onstrating increased CD45RA:ERK association in myeloma cells, these results raise the possi-
bility that CD45RA localized outside of lipid rafts attenuates K-ras-triggered ERK activation by
facilitating CD45RA:galectin-1:fibronectin interaction and thus induction of P21, P27 and sub-
sequent inhibition of CdK2 activity and myeloma cells growth inhibition.

Our findings also elucidate a previously unrecognized mechanism by which CD45 isoforms
differentially regulate IL-6 signaling in myeloma cells. The expression of raft-targeted
CD45RO/RB enhances STAT3 activation, while raft-excluded CD45RA attenuate ERK activa-
tion. These findings prompted us to consider alternative mechanisms of STAT3 activation that
might be facilitated by raft-targeted CD45RO/RB. We considered the possibility that raft-
targeted CD45RO/RB induces the activation of PKC/NF-κB pathways directly, obviating an
absolute requirement for Lyn phosphorylation for PKC activation. Indeed, IL-6-induced de-
phosphorylation at position Tyr507 and phosphorylation at position Tyr396 occurs simulta-
neously with the translocation of CD45 RO to lipid rafts [17]. Our previous report also shows
that inhibition of Lyn activity significantly blocks the proliferation-induced by IL-6 in CD45+

myeloma cells, but does not affect either STAT3 or ERK activation [8]. Specially, other groups
demonstrate the inhibition of ERK without interference with phosphorylation of STAT3 [12],
as well as the inhibition of arsenic trioxide on IL-6-induced STAT3 but not ERK activation in
myeloma cells [59]. Our findings that overexpression of CD45RO enhances CD45RO:PKC
complex formation, phosphorylation of PKC and NF-κB, as well as the proliferation inhibition
by both PKC and NF-κB inhibitors, suggest the functional and biological significance of
CD45RO in IL-6-inducd independent Lyn/PKC/NF-κB activation.

Fig 8. Model of CD45 isoforms-mediated IL-6 signaling in multiple myeloma cells. Engagement of IL-6R
with IL-6 leads to complex formation of IL-6R, gp130, Lyn as well as CD45RO/RB in raft microdomains. In
response to IL-6 stimulation, CD45RO/RBmoves into lipid rafts to induce dephosphorylation of the negative
regulatory of Tyr507, phosphorylation of Tyr396, and subsequent conformation change and Lyn activation
[17]. We confirmed our hypothesis that lipid rafts-targeted CD45RO/RB facilitates IL-6-induced STAT3 and
Lyn/PKC/NF-κB activation in rafts microdomains, while raft-excluded CD45RA remains outside of lipid rafts
after IL-6 stimulation and negatively regulates ERK-activation.

doi:10.1371/journal.pone.0119780.g008
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In conclusion, we propose a model of CD45 isoforms-mediated IL-6-induced myeloma cells
signaling (Fig. 8). The data presented here extends the finding from our previous research that
demonstrates the important regulative role of CD45 isoforms in IL-6-induced myeloma cells
proliferation [17]. Using our previous report in conjunction with our current findings, we pro-
pose that membrane rafts provide a platform for CD45RO/RB recruitment to STAT3, Lyn and
PKC, which functions as a positive regulator to enhance IL-6-induced STAT3, NF-kB signal-
ing. However, CD45RA, which stays in the non-rafts fraction regardless of the IL-6 stimulation,
likely acts as a phosphatase to inhibit ERK activation following engagement of IL-
6 stimulation.

Author Contributions
Conceived and designed the experiments: XZ ASL. Performed the experiments: XZ ASL H.
Zheng DZ DG H. Zou. Analyzed the data: XZ ASL H. Zheng DZ DG H. Zou. Contributed re-
agents/materials/analysis tools: XZ ASL H. Zheng DZ DG H. Zou. Wrote the paper: XZ ASL.

References
1. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, et al. Autocrine generation and requirement

of BSF-2/IL-6 for humanmultiple myelomas. Nature 1988; 332: 83–85. PMID: 3258060

2. Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L, et al. Paracrine rather than autocrine
regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526. PMID:
2783861

3. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clini-
cal applications. Blood 2004; 104: 607–618. PMID: 15090448

4. Grotzinger J, Kernebeck T, Kallen KJ, Rose-John S. IL-6 type cytokine receptor complexes: hexamer,
tetramer or both? Biol Chem 1999; 380: 803–813. PMID: 10494829

5. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, et al. Signaling by the cyto-
kine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994; 19: 222–227. PMID: 8048164

6. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transfor-
mation process. Blood 1998; 91: 3–21. PMID: 9414264

7. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savini R, et al. Constitutive activa-
tion of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;
10: 105–115. PMID: 10023775

8. Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O, et al. Requirements of src family kinase
activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 2002; 99:
2172–2178. PMID: 11877294

9. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, et al. IL-6 triggers cell growth
via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159: 2212–2221.
PMID: 9278309

10. Rowley M, Van Ness B. Activation of N-ras and K-ras induced by interleukin-6 in a myeloma cell line:
implications for disease progression and therapeutic response. Oncogene 2002; 21: 8769–8775.
PMID: 12483530

11. Liu S, Ishikawa H, Tsuyama N, Li FJ, Abroun S, Otsuyama KI, et al. Increased susceptibility toapoptosis
in CD45(+) myeloma cells accompanied by the increased expression of VDAC1. Oncogene 2006; 25:
419–429. PMID: 16247487

12. Chatterjee M, Stuhmer T, Herrmann P, Bommert K, Dorken B, Bargou RC. Combined disruption of both
the MEK/ERK and the IL-6R/STAT3 pathways is required to induce apoptosis of multiple myeloma
cells in the presence of bone marrow stromal cells. Blood 2004; 104: 3712–3721. PMID: 15297310

13. Fujii R, Ishikawa H, Mahmoud MS, Asaoku H, Kawano MM. MPC-1-CD49e- immature myeloma cells
include CD45+ subpopulations that can proliferate in response to IL-6 in humanmyelomas. Br J Hae-
matol 1999; 105: 131–140. PMID: 10233376

14. Hata H, Matsuzaki H, Sonoki T, Takemoto S, Kuribayashi N, Nagasaki A, et al. Establishment of a
CD45-positive immature plasma cell line from an aggressive multiple myeloma with high serum lactate
dehydrogenase. Leukemia 1994; 8: 1768–1773. PMID: 7934174

15. Schneider U, van Lessen A, Huhn D, Serke S. Two subsets of peripheral blood plasma cells defined by
differential expression of CD45 antigen. Br J Haematol 1994; 97: 56–64.

CD45 Isoforms Differentially Regulate STAT3, PKC and ERK

PLOSONE | DOI:10.1371/journal.pone.0119780 March 17, 2015 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/3258060
http://www.ncbi.nlm.nih.gov/pubmed/2783861
http://www.ncbi.nlm.nih.gov/pubmed/15090448
http://www.ncbi.nlm.nih.gov/pubmed/10494829
http://www.ncbi.nlm.nih.gov/pubmed/8048164
http://www.ncbi.nlm.nih.gov/pubmed/9414264
http://www.ncbi.nlm.nih.gov/pubmed/10023775
http://www.ncbi.nlm.nih.gov/pubmed/11877294
http://www.ncbi.nlm.nih.gov/pubmed/9278309
http://www.ncbi.nlm.nih.gov/pubmed/12483530
http://www.ncbi.nlm.nih.gov/pubmed/16247487
http://www.ncbi.nlm.nih.gov/pubmed/15297310
http://www.ncbi.nlm.nih.gov/pubmed/10233376
http://www.ncbi.nlm.nih.gov/pubmed/7934174


16. Mahmoud MS, Ishikawa H, Fujii R, KawanoMM. Induction of CD45 expression and proliferation in
U-266 myeloma cell line by interleukin-6. Blood 1998; 92: 3887–3897. PMID: 9808582

17. Li FJ, Tsuyama N, Ishikawa H, Obata M, Abroun S, Liu S, et al. A rapid translocation of CD45RO but
not CD45RA to lipid rafts in IL-6-induced proliferation in myeloma. Blood 2005; 105: 3295–3302. PMID:
15626731

18. Trowbridge IS, Thomas ML. CD45: an emerging role as a protein tyrosine phosphatase required for
lymphocyte activation and development. Annu Rev Immunol 1994; 12: 85–116. PMID: 8011300

19. Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ. CD45: new jobs for an old acquain-
tance. Nat Immunol 2001; 2: 389–396. PMID: 11323691

20. Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu
Rev Immunol 2003; 21: 107–137. PMID: 12414720

21. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–39. PMID:
11413487

22. Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell 2001; 106:403–411.
PMID: 11525727

23. Munro S. Lipid rafts: elusive or illusive? Cell 2003; 115: 377–388. PMID: 14622593

24. Weintraub BC, Jun JE, Bishop AC, Shokat KM, Thomas ML, Goodnow CC. Entry of B cell receptor into
signaling domains is inhibited in tolerant B cells. J Exp Med 2000; 191: 1443–1448. PMID: 10770810

25. Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signaling via the T cell antigen re-
ceptor. J Cell Biol 1999; 147: 447–461. PMID: 10525547

26. Sehgal PB, Guo GG, Shah M, Kumar V, Patel K. Cytokine signaling: STATS in plasmamembrane
rafts. J Biol Chem 2002; 277: 12067–12074. PMID: 11815625

27. Mitani Y, Takaoka A, Kim SH, Kato Y, Yokochi T, Tanaka N, et al. Cross talk of the interferon-alpha/
beta signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 2001; 6: 631–640.
PMID: 11473581

28. Edmonds SD, Ostergaard HL. Dynamic association of CD45 with detergent-insoluble microdomains in
T lymphocytes. J Immunol 2002; 169: 5036–5042. PMID: 12391219

29. Gupta N, DeFranco AL. Visualizing lipid raft dynamics and early signaling events during antigen recep-
tor-mediated B-lymphocyte activation. Mol Biol Cell 2003; 14: 432–444. PMID: 12589045

30. Conlon K, Osborne J, Morimoto C, Ortaldo JR, Young HA. Comparison of lymphokine secretion and
mRNA expression in the CD45RA+ and CD45RO+ subsets of human peripheral blood CD4+ and CD8
+ lymphocytes. Eur J Immunol 1995; 25: 644–648. PMID: 7705392

31. Novak TJ, Farber D, Leitenberg D, Hong SC, Johnson P, Bottomly K. Isoforms of the transmembrane
tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1994; 1: 109–119. PMID:
7889403

32. Dianzani U, Redoglia V, Malavasi F, Bragardo M, Pileri A, Janeway CA Jr, et al. Isoform-specific asso-
ciations of CD45 with accessory molecules in human T lymphocytes. Eur J Immunol 1992; 22: 365–
371. PMID: 1531636

33. Torimoto Y, Dang NH, Streuli M, Rothstein DM, Saito H, Schlossman SF, et al. Activation of T cells
through a T cell-specific epitope of CD45. Cell Immunol 1992; 145: 111–129. PMID: 1384991

34. Dornan S, Sebestyen Z, Gamble J, Nagy P, Bodnar A, Alldridge L, et al. Differential association of
CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in
T cell antigen receptor signal transduction. J Biol Chem 2002; 277: 1912–1918. PMID: 11694532

35. Robinson AT, Miller N, Alexander DR. CD3 antigen-mediated calcium signals and protein kinase C acti-
vation are higher in CD45R0+ than in CD45RA+ human T lymphocyte subsets. Eur J Immunol 1993;
23: 61–68. PMID: 8419189

36. Ferrer JM, Plaza A, Kreisler M, Diaz-Espada F. Differential interleukin secretion by in vitro activated
human CD45RA and CD45ROCD4+ T cell subsets. Cell Immunol 1992; 141: 10–20. PMID: 1532537

37. Abroun S, Otsuyama K, Shamsasenjan K, Islam A, Amin J, Iqbal MS, et al. Galectin-1 supports the sur-
vival of CD45RA(-) primary myeloma cells in vitro. Br J Haematol 2008; 142: 754–765. doi: 10.1111/j.
1365-2141.2008.07252.x PMID: 18537967

38. Santos SC, Miguel C, Domingues I, Calado A, Zhu Z, Wu Y, et al. VEGF and VEGFR-2 (KDR) internali-
zation is required for endothelial recovery during wound healing. Exp Cell Res 2007; 313: 1561–1574.
PMID: 17382929

39. Darnell JE Jr. STATs and gene regulation. Science 1997; 277: 1630–1635. PMID: 9287210

40. Kretzschmar AK, Dinger MC, Henze C, Brocke-Heidrich K, Horn F. Analysis of Stat3 (signal transducer
and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells.
Biochem J 2004; 377: 289–297. PMID: 12974672

CD45 Isoforms Differentially Regulate STAT3, PKC and ERK

PLOSONE | DOI:10.1371/journal.pone.0119780 March 17, 2015 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/9808582
http://www.ncbi.nlm.nih.gov/pubmed/15626731
http://www.ncbi.nlm.nih.gov/pubmed/8011300
http://www.ncbi.nlm.nih.gov/pubmed/11323691
http://www.ncbi.nlm.nih.gov/pubmed/12414720
http://www.ncbi.nlm.nih.gov/pubmed/11413487
http://www.ncbi.nlm.nih.gov/pubmed/11525727
http://www.ncbi.nlm.nih.gov/pubmed/14622593
http://www.ncbi.nlm.nih.gov/pubmed/10770810
http://www.ncbi.nlm.nih.gov/pubmed/10525547
http://www.ncbi.nlm.nih.gov/pubmed/11815625
http://www.ncbi.nlm.nih.gov/pubmed/11473581
http://www.ncbi.nlm.nih.gov/pubmed/12391219
http://www.ncbi.nlm.nih.gov/pubmed/12589045
http://www.ncbi.nlm.nih.gov/pubmed/7705392
http://www.ncbi.nlm.nih.gov/pubmed/7889403
http://www.ncbi.nlm.nih.gov/pubmed/1531636
http://www.ncbi.nlm.nih.gov/pubmed/1384991
http://www.ncbi.nlm.nih.gov/pubmed/11694532
http://www.ncbi.nlm.nih.gov/pubmed/8419189
http://www.ncbi.nlm.nih.gov/pubmed/1532537
http://dx.doi.org/10.1111/j.1365-2141.2008.07252.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07252.x
http://www.ncbi.nlm.nih.gov/pubmed/18537967
http://www.ncbi.nlm.nih.gov/pubmed/17382929
http://www.ncbi.nlm.nih.gov/pubmed/9287210
http://www.ncbi.nlm.nih.gov/pubmed/12974672


41. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappaB controls cell growth and
differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 1999; 19: 5785–5799. PMID:
10409765

42. Hsia CY, Cheng S, Owyang AM, Dowdy SF, Liou HC. c-Rel regulation of the cell cycle in primary
mouse B lymphocytes. Int Immunol 2002; 14: 905–916. PMID: 12147627

43. Kucharczak J, Simmons MJ, Fan Y, Gelinas C. To be, or not to be: NF-kappaB is the answer—role of
Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2003; 22: 8961–8982. PMID: 14663476

44. Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 2008;
1785: 182–206. doi: 10.1016/j.bbcan.2007.11.002 PMID: 18166162

45. Galliher AJ, SchiemannWP. Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates
TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res
2007; 67: 3752–3758. PMID: 17440088

46. Hryniewicz-Jankowska A, Augoff K, Biernatowska A, Podkalicka J, Sikorski AF. Membrane rafts as a
novel target in cancer therapy. Biochim Biophys Acta 2014; 1845: 155–165. doi: 10.1016/j.bbcan.2014.
01.006 PMID: 24480320

47. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Cam-
panero MA, et al. Lipid raft-targeted therapy in multiple myeloma. Oncogene 2010; 29: 3748–3757. doi:
10.1038/onc.2010.131 PMID: 20418917

48. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling path-
way in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 2014; 1845:136–154. doi:
10.1016/j.bbcan.2013.12.005 PMID: 24388873

49. Sadahira K, Sagawa M, Nakazato T, Uchida H, Ikeda Y, Okamoto S, et al. Gossypol induces apoptosis
in multiple myeloma cells by inhibition of interleukin-6 signaling and Bcl-2/Mcl-1 pathway. Int J Oncol
2014; 45: 2278–2286. doi: 10.3892/ijo.2014.2652 PMID: 25231749

50. Irie-Sasaki J, Sasaki T, MatsumotoW, Opavsky A, Cheng M, Welstead G, et al. CD45 is a JAK phos-
phatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349–354. PMID:
11201744

51. Nam HJ, Poy F, Saito H, Frederick CA. Structural basis for the function and regulation of the receptor
protein tyrosine phosphatase CD45. J Exp Med 2005; 201: 441–452. PMID: 15684325

52. Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM, et al. Staging and resetting T cell acti-
vation in SMACs. Nat Immunol 2002; 3: 911–917. PMID: 12244310

53. Petricoin EF 3rd, Ito S, Williams BL, Audet S, Stancato LF, Gamero A, et al. Antiproliferative action of in-
terferon-alpha requires components of T-cell-receptor signalling. Nature 1997; 390: 629–632. PMID:
9403695

54. Ramakrishnan V, Kimlinger T, Haug J, TimmM, Wellik L, Halling T, et al. TG101209, a novel JAK2 in-
hibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for
CD45+ myeloma cells. Am J Hematol 2010; 85: 675–686. doi: 10.1002/ajh.21785 PMID: 20652971

55. Blank N, Kriegel M, Hieronymus T, Geiler T, Winkler S, Kalden JR, et al. CD45 tyrosine phosphatase
controls common gamma-chain cytokine-mediated STAT and extracellular signal-related kinase phos-
phorylation in activated human lymphoblasts: inhibition of proliferation without induction of apoptosis.
J Immunol 2001; 166: 6034–6040. PMID: 11342620

56. Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF. GTP-dependent segregation of H-ras
from lipid rafts is required for biological activity. Nat Cell Biol 2001; 3: 368–375. PMID: 11283610

57. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase sig-
naling. Annu Rev Cell Dev Biol 2003; 19: 173–206. PMID: 14570568

58. Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, Andre S, et al. Galectin-1 inter-
acts with the {alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of p21
and p27. J Biol Chem 2005; 280: 37266–37277. PMID: 16105842

59. Hayashi T, Hideshima T, AkiyamaM, Richardson P, Schlossman RL, Chauhan D, et al. Arsenic trioxide
inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer
Ther 2002; 1: 851–860. PMID: 12492118

CD45 Isoforms Differentially Regulate STAT3, PKC and ERK

PLOSONE | DOI:10.1371/journal.pone.0119780 March 17, 2015 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/10409765
http://www.ncbi.nlm.nih.gov/pubmed/12147627
http://www.ncbi.nlm.nih.gov/pubmed/14663476
http://dx.doi.org/10.1016/j.bbcan.2007.11.002
http://www.ncbi.nlm.nih.gov/pubmed/18166162
http://www.ncbi.nlm.nih.gov/pubmed/17440088
http://dx.doi.org/10.1016/j.bbcan.2014.01.006
http://dx.doi.org/10.1016/j.bbcan.2014.01.006
http://www.ncbi.nlm.nih.gov/pubmed/24480320
http://dx.doi.org/10.1038/onc.2010.131
http://www.ncbi.nlm.nih.gov/pubmed/20418917
http://dx.doi.org/10.1016/j.bbcan.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24388873
http://dx.doi.org/10.3892/ijo.2014.2652
http://www.ncbi.nlm.nih.gov/pubmed/25231749
http://www.ncbi.nlm.nih.gov/pubmed/11201744
http://www.ncbi.nlm.nih.gov/pubmed/15684325
http://www.ncbi.nlm.nih.gov/pubmed/12244310
http://www.ncbi.nlm.nih.gov/pubmed/9403695
http://dx.doi.org/10.1002/ajh.21785
http://www.ncbi.nlm.nih.gov/pubmed/20652971
http://www.ncbi.nlm.nih.gov/pubmed/11342620
http://www.ncbi.nlm.nih.gov/pubmed/11283610
http://www.ncbi.nlm.nih.gov/pubmed/14570568
http://www.ncbi.nlm.nih.gov/pubmed/16105842
http://www.ncbi.nlm.nih.gov/pubmed/12492118

