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Abstract

Background

Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate pre-

diction of the ion effects in RNA folding can have a far-reaching impact on our understand-

ing of RNA structure and function. Multivalent ions, especially Mg2+, are essential for RNA

tertiary structure formation. These ions can possibly become strongly correlated in the

close vicinity of RNA surface. Most of the currently available software packages, which

have widespread success in predicting ion effects in biomolecular systems, however, do

not explicitly account for the ion correlation effect. Therefore, it is important to develop a

software package/web server for the prediction of ion electrostatics in RNA folding by in-

cluding ion correlation effects.

Results

The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for

the total electrostatic free energy, the different free energy components, and the mean num-

ber and the most probable distributions of the bound ions. A novel feature of the TBI server

is its ability to account for ion correlation and ion distribution fluctuation effects.

Conclusions

By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online

tool for computing ion-mediated electrostatic properties for given RNA structures. The re-

sults can provide important data for in-depth analysis for ion effects in RNA folding including

the ion-dependence of folding stability, ion uptake in the folding process, and the interplay

between the different energetic components.
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Introduction
Because RNA backbone is highly negatively charged, the folding of RNA requires counterions
to neutralize the backbone charge and to reduce Coulomb repulsion. As a result, RNA folding
is sensitive to the ionic condition, such as ion type, size, valence and concentration [1–12]. The
interaction between counterions (metal ions) and RNA plays a critical role in RNA folding, in-
cluding the structure and the folding stability and folding kinetics [13–15]. Accurate evaluation
of the ion electrostatic effect is essential for the prediction of RNA folding.

One of the challenges in modeling the ion effects is how to treat the potentially important
ion correlation and fluctuation effects. Coulomb interaction is a long-range force. As a result,
the electric force acting on an ion is a function not only of the its own coordinates but also of
the simultaneous positions of the other ions. In an ionic solution, ions have a strong tendency
to accumulate in the close vicinity of (the negatively charged) RNA. The ions could reach high
local density which leads to ion correlation. One of the resultant effects from ion correlation is
the coupling between the ion binding events at the different sites. Such a coupling effect is
stronger for multivalent ions than monovalent ions due to their higher charges. Motivated by
the importance to treat ion correlation effects, especially for multivalent ions such as Mg2+

ions, which are essential for the stabilization of RNA tertiary structure, we developed the Tight-
ly Bound Ion (TBI) model [16–20]. To treat the correlation effect inevitably requires the con-
sideration of the ensemble of discrete many-ion distributions instead of a mean-field
distribution. Thus, the TBI model can also account for the fluctuations in ion distribution.

The TBI model is a theory for predicting ion-dependent RNA folding stability [16–20]. The
model was first reported in 2005 [16] and further developed in 2008 [17] with explicit inclusion
of the solvent polarization effect through the Generalized Born model. In 2012 [20], with an
energy landscape-guided approach for the sampling of ion distribution, the model undergoes a
significant improvement with a drastically enhanced computational efficiency. The enhanced
version of the TBI allows us to treat RNAs of sequences longer than 80 nucleotides. For exam-
ple, with enhanced version of the model, the computational time of a Tetraloop-receptor sys-
tem of 81 nucleotides is about 30–80 minutes for the different ionic conditions [21]. Tests of
the TBI predictions against the experimental data for ion binding properties and ion-depen-
dent folding stabilities (Table 1.) [17–19, 22] suggested that the TBI model may be reliable for
predicting ion effects in RNA folding.

Table 1. Comparison between the TBI and the Poisson-Boltzmann predictions and test against experimental data.

RNA or DNA Comparison of parameters Reference The average error for BP The average error for TBI

Three DNA helices Folding free energy Fig. 2d [22] 1.2 kcal/mol 0.1 kcal/mol

Two DNA helices Melting temperature Fig. 5 [23] 5.4°C 1.0°C

Two RNA helices Ion binding Fraction Fig. 2a [23] 0.11 0.06

24bp B-DNA helix Ion binding Fraction Fig. 2a [24] 0.08 0.01

40bp A-RNA helix Ion binding Fraction Fig. 2c [24] 0.15 0.04

40bp B-DNA helix Ion binding Fraction Fig. 2e [24] 0.12 0.03

BWYV pseudoknot RNA Ion binding Fraction Fig. 3a [24] 0.05 0.03

58-nt rRNA Ion binding Fraction Fig. 3c [24] 0.10 0.03

Yeast tRNAPhe Ion binding Fraction Fig. 3e [24] 0.06 0.03

doi:10.1371/journal.pone.0119705.t001
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Methods

The Tightly Bound Ion (TBI) model
We classify the ions into two types according to their Coulomb correlation strengths: The tight-
ly bound ions (of strong correlation) and the diffusive ions (of weak correlation). The region (a
thin layer around the RNA surface) where the tightly bound ions are distributed is called the
tightly bound region. For an N-nt RNA, the tightly bound region can be divided into N cells,
each around a phosphate. For the tightly bound ions, we sample the discrete modes of ion dis-
tribution. Here a mode is defined by the number of bound ions in the cells. Through enumera-
tion of the discrete ion binding modes and evaluation of the multi-ion electrostatic energy for
each mode, the TBI model accounts for the correlation between the bound ions and the fluctu-
ation of ion distributions [16–19, 23, 24].

For a given ion binding modeM, ions are allowed to move inside the respective cells. By
sampling the coordinates of the tightly bound ions within their respective cells (dRi below), we
calculate the partition function ZM of the system:

ZM ¼ ZðidÞ NZ

V

� �Nb
Z YNb

i¼1

dRi

 !
e�DGM=kBT ; ð1Þ

where Z(id) is the partition function for the uniform ion solution (without the RNA), NZ is the

total number of z-valent counterions and V is the volume of the solution, Nb and
R
PNb

i¼1dRi are
the number and the volume integral for the tightly bound ions, respectively, and ΔGM is the
free energy of the system for modeM.

Electrostatic free energy for each mode
The electrostatic energy for the charges inside the tightly bound region is computed as the sum
of the self-energy ΔUself, the polarization energy ΔUpol, and the Coulomb energy ΔUele:
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where ∑p, ∑i, ∑mn are the summations over the phosphates, tightly bound ions, and both, re-
spectively, and qp, qi, qm qn are the respective charges. rmn is the distance betweenm and n, Bx
is the Born radius of x, B0

i is the radius of the hydrated ion, and �in (* 12) and �w (* 78 at
room temperature) are the dielectric constants of RNA and water, respectively. �w is given by

�wðTÞ ¼ 87:740� ð0:4008ÞT þ ð9:398� 10�4ÞT2 � ð1:41� 10�6ÞT3; ð3Þ

where T is the temperature in Celsius.
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The free energy of the diffusive ions is calculated as the sum of the enthalpic ΔUd and entro-
pic −TΔSd terms:

DUd ¼ 1

2

Z X
a

caðrÞzaq CðrÞ þC0ðrÞ½ �d3r

DSd ¼�kB

Z X
a

caðrÞ ln
caðrÞ
c0a

� caðrÞ þ c0a

� �
d3r ð4Þ

where cα is the concentration of ion species α, c0a is the bulk concentration,C(r) andC0(r) are
the electrostatic potentials with and without the diffusive ions, respectively. The electric poten-
tials are determined from the Poisson-Boltzmann equation with the presence of the tightly
bound ions.

For a given modeM, the ensemble average over the positions of the tightly bound ions, de-
noted as h. . .i, gives the electrostatic free energy components: ΔGM = hΔUself + ΔUpol + ΔUele +
ΔUd − TΔSdi.

Free energy components
Averaging over all the tightly bound ion distribution modes gives the electrostatic free energy
of the system:

DGtot ¼ �kBT ln
X
M

ðZM=Z
ðidÞÞ: ð5Þ

The probability of modeM is PM = e−(ΔGM−ΔG
tot

)/k
B
T.

The weighted sum over all the modes gives the free energy components:

• Coulomb free energy ΔEele = ∑MhΔUeleiPM
• Polarization free energy ΔGpol = ∑MhΔUpoliPM
• Self-polarization free energy ΔGself = ∑MhΔUselfiPM
• Entropic free energy ΔGs = ΔGtot − (ΔEele + ΔGpol + ΔGself)

Here the entropic free energy ΔGs includes the entropy of the diffusive ions and the (combina-
torial) entropy of the tightly bound ions.

Binding fraction
The TBI model [23, 24] gives the mean binding fraction of Na+ and Mg2+ ions on each nucleo-
tide i:

f ðiÞ
Mg2þ ¼ �f ðiÞb þ 1

N

Z
cMg2þðrÞ � c0Mg2þ

h i
d3r ð6Þ

fNaþ ¼ 1

N

Z
cNaþðrÞ � c0Naþ
� �

d3r ð7Þ

where N is the number of the nucleotides in RNA and �f ðiÞb is the average binding fraction of the
tightly bound Mg2+ ions on nucleotide i:

�f ðiÞb ¼
X
M

N ðiÞ
b PM ð8Þ
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where N ðiÞ
b is the number of the bound ions on the ith nucleotide in ion binding modeM. We

note the different expressions above for Mg2+ and Na+ ions. This is because the monovalent
ions (Na+) are usually weakly correlated and do not exist in the form of tightly bound ions.

Results

Input
The TBI server predicts the electrostatic thermodynamic properties for a given RNA structure.
The server has a simple input interface (see Fig. 1). The input parameters include the tempera-
ture, the monovalent/divalent ion concentrations, and the RNA structure. The current version
of the TBI server allows only Na+ and Mg2+ ions. The server accepts the standard PDB format
for the input RNA 3D structure. The user can paste the PDB file into the text window for the
input structure. To conveniently identify the submitted jobs, user has the option to define the
job names. The user also has the option to retrieve the calculated results either through email
(provided by the user) or from a webpage.

For example, to calculate the electrostatic free energy for T2 pseudoknot (PDB code: 2TPK
[25], an RNA pseudoknot), we input the parameters as shown in Fig. 1a and the 3D structure
of the RNA by pasting the text data of the 2TPK PDB file. We can choose to receive the calcu-
lated results through email with the job name and job ID (automatically generated by web serv-
er) shown in the subject line (see Fig. 1b)

Fig 1. The user interface of the TBI server. (a) the job submission page, (b) the notification page, and (c) the result email.

doi:10.1371/journal.pone.0119705.g001
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Output
The results from the TBI server are presented in three output files, one text file and two figure
files (see Fig. 1c). The text file (with filename extension “.dat”) (shown in Fig. 2) shows the so-
lution condition (input parameters) and the numerical results of the predicted fractional
bound ions and the free energies.

In the output data file, the first column is the index number of the nucleotides, and the third
and the fifth column are the average ion binding fraction for each nucleotide (Equations 6 & 7)
and the most probable binding mode (the modeM of the lowest free energy ΔGM) [16], respec-
tively. For example, the number “1” in the fifth column means that the corresponding nucleo-
tide has one tightly bound Mg2+ ion in the most probable ion binding mode, while the number
“0”means there is no tightly bound Mg2+ bound to the nucleotide in the most probable mode.
The ion binding properties are shown diagrammatically in the two output figure files, which
give the mean (see Fig. 3) and the most probable ion binding modes, respectively (see Fig. 4).

The data file also gives the total electrostatic free energy ΔGtot and the free components: the
self-polarization energy ΔGself, the polarization energy ΔGpol, the Coulomb energy ΔEele, and
the entropic free energy ΔGs. The units of the (free) energies are kBT.

Examples of usage
Example 1: Basic calculations with the TBI server. Here, we show the basic usage of the

TBI server through a simply example (shown in Fig. 5). The first step is to input the parameters
and the RNA structure data (PDB code: 2TPK [25]) (see Fig. 5-step1). We then provide the job
name and a valid email address if we choose to receive the results via email notification. We
can simply leave the email address blank if we choose to retrieve the results from a webpage. In
this example, we use “T2_test” for the job name. We then click “Calculate” to submit the job.
The calculated results will be send to user provided email address (see Fig. 5 step2) or shown
on the webpage for download when the calculations are finished. The three output files are
“T2_test.�.dat”, “T2_test.�.eps” and “T2_test.�.site.eps” for this example. The “T2_test.�.dat”
file contains all the free energy and ion binding properties data, which can be used to predict
ion-dependent folding stabilities (see Examples 2 and 3 below). The two figures show the pro-
file of the average binding fractions for all the nucleotides (see Fig. 3 or Fig. 5-step 3a) and the
most probability binding sites (see Fig. 4 or Fig. 5-step 3b). Fig. 5-step 4 shows the most proba-
ble Mg2+ ion binding mode for the T2 RNA pseudoknot. It is important to note that the most
probable binding mode does not necessarily correspond to the specific ion binding sites ob-
served in the structure determination experiment. This is because the current TBI model does
not account for effects that may be important for specific ion binding such as ion dehydration
and ion chelated interactions with specific chemical groups.

Example 2: Mg2+-induced folding stability of T2 pseudoknot. To understand the ion-
dependent folding stability of the T2 pseudoknot (see Example 1), we compute the ion-depen-
dence of the free energy difference between the folded (pseudoknot) state and the intermediate
(hairpin) state [19, 26, 27]. For the purpose of free energy calculation, previous studies sug-
gested a computationally efficient method by using an effective 24-nt helix to represent the
hairpin conformational ensemble [19, 26, 27]. We input the two structures (the effective helix
and the pseudoknot; see Figs. 6ab) into the TBI server and compute the free energies at the dif-
ferent Mg2+ ion concentrations.

According to the thermodynamic cycle of RNA folding and [Mg2+] ion binding [26–29], we
calculate the Mg2+-induced folding stability ΔΔGMg2+ from the following equation:

DDGMg2þ ¼ DGF
Mg2þ � DGI

Mg2þ ¼ ½DGðF �Mg2þÞ � DGF
o � � ½DGðI �Mg2þÞ � DGI

o�; ð9Þ
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Fig 2. An example for the result text file. The file includes two parts: the solution condition and the
calculated results.

doi:10.1371/journal.pone.0119705.g002
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where, DGF
Mg2þ and DGI

Mg2þ are the Mg2+-caused electrostatic free energy differences for the

folded and the intermediate states [18, 26, 27], respectively, ΔG(F �Mg2+) and DGF
o are the

electrostatic free energies of the folded state with and without Mg2+ ions, respectively;
ΔG(I �Mg2+) and DGI

o are the electrostatic free energies of the unfolded state with and without
Mg2+ ions, respectively. The electrostatic free energies ΔG(F �Mg2+) and DGF

o for the folded
state and ΔG(I �Mg2+) and DGI

o for the intermediate state can be calculated from the TBI serv-
er. To estimate ΔG(I �Mg2+) and DGI

o, we use a 24-nt helix [18, 26, 27]: for the electrostatic free
energy calculation:

DGðIÞ ¼ DGhelix �
NI

Nhelix

¼ DGhelix �
36

24
ð10Þ

Fig 3. The average binding fraction. The average binding fraction on each nucleotide of the T2 RNA
pseudoknot in 10mMMg2+ and 100 mMNa+ at T = 37°C.

doi:10.1371/journal.pone.0119705.g003

Fig 4. Themost probable binding mode for the tightly bound ions. The lowest energy ion binding mode
for the T2 RNA pseudoknot at [Mg2+] = 10mM, [Na+] = 100mM, T = 37°C. The most probable binding sites
(nucleotides) are denoted with the orange color in the inset.

doi:10.1371/journal.pone.0119705.g004
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Here NI (36) and Nhelix (24) are the number of nucleotides of the T2 pseudoknot and the 24-nt
helix, respectively. The calculated results are shown in the Table 2 and the curve of Mg2+-in-
duced folding stability is shown in Fig. 6c.

Example 3: Estimation of Mg2+ ion uptake. The uptake of ions is the increase in the
number of bound ions in a process such as RNA structural change [30, 31]. The TBI server
gives the average binding fraction of monovalent and divalent ions for a given RNA structure.

Fig 5. An example for the usage of the TBI server. The server computes the ion binding properties and the electrostatic free energies for T2 RNA (PDB
code 2TPK [25]) in a solution with 10 mMMg2+, 100 mMNa+, and T = 37°C.

doi:10.1371/journal.pone.0119705.g005
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The average uptake Mg2+ ions for the folding process can be estimated from the difference in
binding fraction between the folded and the unfolded RNA [21, 30, 31]. Using T2 pseudoknot
as an example, we estimate the Mg2+ uptake for the folding from the hairpin intermediate to
the final pseudoknot state.

Since the ion binding distribution can be sensitive to the RNA structure, we need to generate
explicitly the ensemble of discrete hairpin conformations [32–35]. This can be achieved by
using a separate method such as molecular dynamics or Monte Carlo simulational method or a
coarse-grained conformational sampling method. To the purpose of illustrate the electrostatic
calculations, we use the lowest free energy T2 hairpin structure as an example. The structure is
based on a conformational ensemble generated by molecular dynamics simulation [34, 35].
Using the TBI server, for the different Mg2+ ion concentrations, we can compute the Mg2+ ion
binding fractions (fMg2+) for the T2 pseudoknot and the hairpin, respectively. We then predict
the Mg2+ ion uptake in the folding process from the hairpin to the pseudoknot. As shown in
Fig. 7, with a fixed 0.1M Na+ and increasing [Mg2+] from 0 M to 5 mM, the Mg2+ ion uptake
increases from 0 to 0.035 per nucleotide. Table 3 and Fig. 7 show the TBI-calculated binding
fractions and the Mg2+ ion uptake curve as a function of [Mg2+].

Conclusion
Accurate prediction of ion-mediated forces in the stabilization of RNA structure is critical to
understanding RNA structure and function. Multivalent ions, especially Mg2+ ions, are crucial

Fig 6. The Mg2+-induced folding stabilityΔΔGMg2+ for the T2 pseudoknot. (a) and (b) show the 3D structures of T2 pseudoknot (the folded state) and the
24-nt A-form helix, respectively; (c) shows the Mg2+-induced folding stability.

doi:10.1371/journal.pone.0119705.g006

Table 2. The table shows the calculated electrostatic free energies of the T2 pseudoknot (the folded state,ΔGF), the 24-nt helix (ΔGhelix) and the in-
termediate state (ΔGI) under various [Mg2+].

[Mg2+] (in mol) 0 0.00005 0.0001 0.0005 0.001 0.005 0.01

ΔGF (in kcal/mol) 59.52 59.47 59.45 58.41 57.27 51.64 47.28

ΔGhelix (in kcal/mol) 30.30 30.29 30.28 30.18 30.04 28.51 26.55

ΔGI (in kcal/mol) 45.45 45.43 45.42 45.26 45.05 42.77 39.82

doi:10.1371/journal.pone.0119705.t002
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for RNA tertiary structure folding. For the multivalent ions, ion correlation and fluctuation
may play a important role in RNA folding. This demands a web server that can treat ion corre-
lation and fluctuation effects in RNA folding. TBI is such a server. For a user provided RNA
structure and ionic condition, the server computes ion binding properties, electrostatic free en-
ergies and various components. The TBI server provides results can be used to predict the ion-
dependence of folding stability and ion uptake/release in the folding process. In the future de-
velopment, we plan (a) to expand the server to treat other types of ions beyond the Mg2+ and
Na+ ions, (b) to use a more detailed charge distribution (such as partial charge) to model RNA
charges, and (c) to include ion dehydration effects for ion binding.
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different [Mg2+] conditions.
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fF 0 0.002 0.005 0.040 0.072 0.211 0.286

fI 0 0.002 0.005 0.030 0.056 0.177 0.252
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Fig 7. The binding fraction and the uptake of Mg2+ ions as a function of [Mg2+]. (a) and (b) show the 3D structures of the T2 pseudoknot (the folded
state) and T2 hairpin (the intermediate state), respectively; (c) shows the binding fraction curves for the T2 pseudoknot (black) and the hairpin (red). (d)
shows the Mg2+ uptake as a function of [Mg2+].
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