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Abstract
It has been commonly assumed that the effect of erroneous transcription of DNA genes into

messenger RNAs on peptide sequence errors are masked by much more frequent errors of

mRNA translation to protein. We present a theoretical model of transcriptional accuracy. It

uses experimentally estimated standard free energies of double-stranded DNA and RNA/

DNA hybrids and predicts a DNA template dependent transcriptional accuracy variation

spanning several orders of magnitude. The model also identifies high-error as well a high-

accuracy transcription motifs. The source of the large accuracy span is the context depen-

dent variation of the stacking free energy of pairs of correct and incorrect base pairs in the

ever moving transcription bubble. Our model predictions have direct experimental support

from recent single molecule based identifications of transcriptional errors in the C. elegans

transcriptome. Our conclusions challenge the general view that amino acid substitution er-

rors in proteins are mainly caused by translational errors. It suggests instead that transcrip-

tional error hotspots are the dominating source of peptide sequence errors in some DNA

template contexts, while mRNA translation is the major cause of protein errors in

other contexts.

Introduction
Accurate transmission of sequence information in DNA to functional RNA molecules and pro-
teins is essential for life. Transmission mistakes due to nucleotide substitution errors in tran-
scription lead to dysfunctional RNA molecules and dysfunctional proteins. Gene transcription
and aminoacylation of tRNA, with error frequencies in the 10-5 to 10-4 range [1; 2], have tradi-
tionally been considered as more accurate than translation, with an average error frequency of
10-4 [1], but in vivo estimates of the frequency of specific amino acid substitution [3] or tran-
scription errors [2] have been scarce. It has in the past been difficult to distinguish authentic
transcriptional errors from abundant sequencing and reverse transcription errors. However, in
two recent studies an overall transcriptional error rate was estimated to 10-5 in Escherichia coli
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[2] and, using a single RNA molecule based experimental design, to 10-6 in Caenorhabditis ele-
gans [4], marking a major breakthrough in the study of transcriptional accuracy.

Recent biochemical data on selection of aminoacyl-tRNA by the mRNA programmed ribo-
some suggest large variation of translation errors in the living cell [3]. In contrast to the previ-
ous assumption that translation errors effectively mask the influence of aminoacylation and
transcription errors [5; 6], these novel observations suggest that translation errors may domi-
nate in some, but not all, contexts. This conclusion is reinforced by the large, DNA context de-
pendent accuracy variation about the mean predicted in the present work for nucleotide
selection by transcribing RNA polymerase.

Here we have used computational modeling to analyze how variation in the standard free
energy of the transcription bubble affects transcriptional errors in a DNA context dependent
manner. We take advantage of a pioneering study by Yager and von Hippel, which shows how
the free energy of the transcription bubble can be represented by the free energies of base pair
formation and melting during each nucleotide incorporation cycle [7]. Our model combines
the Yager and von Hippel theory with Eyring’s transition state approach to estimate rate con-
stants for transitions between the different states of the transcription bubble [8]. As input data
for the computational modeling of the template context dependent kinetics of incorporation of
cognate and non-cognate nucleotides, we use the extensive and accurate experimental datasets
that now exist on melting and formation free energies of DNA/DNA [9] and DNA/RNA [10]
base pairs. Following the principle of Occam’s razor, we assume that the RNA polymerase en-
hances the accuracy of nucleotide selection in a context independent manner, e.g. by providing
stereospecificity to cognate base pair recognition similar to the tRNA recognition by the trans-
lating ribosome [11]. Accordingly, our approach allows estimation of the DNA template de-
pendent accuracy variation, but not the absolute RNA polymerase dependent accuracy level.
Even in this simplified form, main features of our accuracy model have experimental support
from recent data on transcriptional errors in the transcriptome of C. elegans [4]. Although
sparse, this data set is particularly significant since it was created by a single molecule approach
for error identification which ensures unambiguous separation of authentic transcription er-
rors from artifacts due to other sources like reverse transcription or PCR.

Our results propose that the accuracy of initial nucleotide selection for phosphodiester
bond formation splits into a discrete spectrum, determined by the base stacking of cognate and
non-cognate base pairs against the previously incorporated base (Fig. 1). In contrast, the error
spectrum for removal of an already incorporated base by proofreading appears to be almost
continuous. This difference between the two selection spectra reflects the much larger kinetic
complexity of the proofreading in relation to the initial selection mechanism (Fig. 1). The
modeling further suggests that transcriptional errors involving the same nucleotide mis-
matches may vary by several orders of magnitude with the different sequence contexts of the
DNA template. Our approach also reveals the existence of a context dependent enhancement
of the accuracy of transcription of ribosomal RNA operons in E. coli, suggesting an evolution-
ary pressure on DNA template contexts for transcriptional error reduction. We predict the ex-
istence of hotspots for very high as well as very low errors, where the latter have inefficient
incorporation also of cognate nucleotides due to the universal trade-off between rate and accu-
racy in enzymatic reactions [6; 12; 13].

Results

The model
We describe RNA polymerase movement along the DNA template during transcript elonga-
tion as a random walk between states of different standard free energies [14], with the current
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distance to the site of transcript initiation defined by the length of the nascent transcript
(Fig. 1). The transcription bubble consists of 12 base pairs (bp) of unwound DNA and an 8 or
9 bp DNA/RNA hybrid that, together with the RNA polymerase, form the ternary elongation
complex (TEC) [15; 16]. For each template position, the TEC may either translocate forward,
to clear the catalytic site for binding of the next incoming nucleotide, or translocate backward,
allowing for transcript cleavage and proofreading [17; 18]. The TEC is thermodynamically
driven in the forward direction [19] by the ensuing chemical potential decrease due to RNA
chain elongation and pyrophosphate release. These reactions and the four states of the tran-
scription complex; pre-translocated (PRE), post-translocated (POST), back-translocated
(BACK) and nucleotide associated (POST�NTP) complex; are illustrated in Fig. 1A.

The standard free energy of the transcription bubble is represented by a sum of free energies
that changes through the transcription process by base pair formation and melting [7]. The re-
action rate constants are modeled with the help of Eyring’s transition state theory [8]. In line
with biochemical [20] and structural [21] data, backtracking is in our model confined to one
step (Fig. 1A), and therefore a dinucleotide is discarded in every proofreading event [22; 23].

The rate constants connecting any two states of the nucleotide addition cycle are calculated
by taking their standard free energy difference, as specified by the transcription bubble, into ac-
count. The standard free energy of any DNA/DNA [9] or DNA/RNA [10] double helix follows
from the experimentally estimated nearest-neighbor parameters for every pair of base pairs,
which predict the free energy change by the reaction (see Methods). The stability of each pair
of base pairs depends strongly on the base stacking between them, which results in a large se-
quence dependent variation in free energy. We derive the rate constants of each reaction in the
model by the introduction of a free energy barrier between initial and final reaction states, as in
earlier kinetic models for transcription [8; 24]. We note that the accuracy of substrate selection
is mainly determined by ratios of rate constants (see below), which reduces modeling ambigui-
ties due to unknown standard free energies of reaction barriers.

The accuracy increasing effect of RNA polymerase is unknown. It is here accounted for by a
DNA context neutral enhancement of the specificity of cognate in relation to non-cognate base

Fig 1. Reaction schemes of transcript elongation. A) Reaction scheme for the four states of the nucleotide
addition cycle. B) Reaction scheme for the elongation states, determined by the transcript and the
compounded rate constants that connect them: the κ-parameters signify forward movement by
phosphodiester bond formation and the ς-parameters backtracking and dinucleotide cleavage of the nascent
transcript. Note that the compounded rate constants in Fig. 1B are defined by the detailed rate constants in
Fig. 1A, as described (see Methods for details).

doi:10.1371/journal.pone.0119588.g001

Large Accuracy Variation in RNA Synthesis

PLOS ONE | DOI:10.1371/journal.pone.0119588 March 23, 2015 3 / 21



pair selections, in line with the accuracy enhancing features of ribosomal RNA during mRNA
translation by tRNAs [11; 25](see also Discussion). For each type of nucleotide substitution
error and DNA context, the accuracy of transcription, A, is determined by an initial selection
parameter, I, and a proofreading selection parameter, F, as well as by the concentrations of the
free nucleoside triphosphates ATP, UTP, GTP and CTP [26].

Initial selection of nucleotides
Initial selection of incoming nucleotides takes place in the POST�NTP state, from which the
initially associated nucleotide either dissociates from the TEC or is phosphodiester bonded to
the nascent transcript with probability Pc for a cognate and probability Pnc for a non-cognate
nucleotide (Fig. 1). The initial selection parameter I is defined as the ratio of the kcat/Km values
for initial transcript elongation with a cognate and a non-cognate nucleotide [13; 26; 27]. With
equal association rate constants for cognate and non-cognate nucleotides, I is the ratio of Pc

and Pnc [19; 27]:

I ¼ ðkcat=KmÞc
ðkcat=KmÞnc

¼ kca
knca

Pc

Pnc
¼ Pc

Pnc
ð1Þ

Expressing Pc and Pnc in terms of the elementary rate constants of transcript elongation gives:

I ¼ Pc

Pnc
¼

kc
kcþq3

� �c

kc
kcþq3

� �nc ¼
1þ q3

kc

� �nc

1þ q3
kc

� �c ð2Þ

Proofreading selection of nucleotides
The physical chemical principles of proofreading were initially described by Hopfield [28] and
Ninio [29] and proofreading mechanisms were subsequently identified for aminoacylation of
tRNA [30] and translation of mRNA by tRNA [31; 32]. After initial substrate selection, the ac-
curacy of an enzymatic reaction can be amplified by a proofreading step in which non-cognate
substrates are discarded from the enzyme with high probability in a thermodynamically driven
dissociation step [19]. Transcriptional proofreading is here modeled as nascent RNA cleavage
in a backtracked TEC, followed by dissociation of a 5’ dinucleotide containing the last incorpo-
rated nucleotide (Fig. 1A). The accuracy enhancement (F) by proofreading is the ratio of the
probabilities for the correctly and the non-correctly incorporated nucleotides to escape proof-
reading dissociation and be secured by the next nucleotide incorporation. In terms of elemen-
tary rate constants of transcript elongation (Fig. 1), the proofreading parameter F is given by:

F ¼ Pc
F

Pnc
F

¼ 1þ B
k

� �nc
F

1þ B
k

� �c
F

; ðB=kÞc=ncF ¼ kc=nc1

k2

1þ q2
k3 �½NTPnþ1 � 1þ qc=nc

3

kc=ncc

� �

1þ q1
c=nc

qc

ð3Þ

The four substrate selective rate constants in Eq. 3 are marked with c/nc. Cognate (c) and non-
cognate (nc) rate constants may differ due to their different reaction activation barriers or dif-
ferences between their initial and final reaction states. For example, during backward transloca-
tion a last incorporated cognate nucleotide moves from a template matched (PRE) to a
template independent (BACK) state, while a non-cognate nucleotide moves from a template
unmatched (PRE) to the BACK state (Fig. 1). Hence, we expect that k1

c < k1
nc and that q1

c<

q1
nc. Likewise, incorporation of a next cognate nucleotide is favored when the last incorporated
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nucleotide in POST�NTP is cognate rather than non-cognate and, hence, q3
c/ kc

c< q3
nc/ kc

nc

(see Methods). The other four rate constants in Eq. 3 are neutral to the substrate identity. Note,
however, that these neutral rate constants may greatly affect the value of the parameter F by de-
termining the currently expressed fraction of its maximal value [13]. For instance, if q2/k3 is
very small and qc very large, the only accuracy contribution comes from k1

c/nc and if, in addi-
tion, k2 is very large then F� 1 and there is virtually no accuracy amplification in the
proofreading step.

The obligatory thermodynamic driving force, RT�logeγ, of the proofreading step [19] is here
provided by the factor γ by which two free nucleoside triphosphates are shifted above equilibri-
um, K, with their corresponding free nucleoside monophosphates and pyrophosphate (PPi).
The shift in equilibrium renders the reaction of phosphodiester bond formation practically ir-
reversible (γ>> 1):

½NTPi�½NTPi�1�½H2O�2
½NMPi�½NMPi�1�½PPi�2

¼ Kg ð4Þ

Although there is considerable experimental support for the existence of backtracking based
transcriptional proofreading [17; 18; 23; 31; 32], quantitative studies of transcriptional proof-
reading are still lacking.

Overall accuracy in selection of nucleotides
The overall accuracy A in the selection of the cognate nucleotide over a non-cognate nucleotide
at any DNA template position is the ratio of the cognate and non-cognate substrate concentra-
tions multiplied by the product of the initial and proofreading selection parameters. At equal
cognate and non-cognate substrate concentrations, the normalized overall accuracy per sub-
strate is given by:

A ¼ I � F ¼ Pc
IP

c
F

Pnc
I P

nc
F

ð5Þ

This relation (Eq. 5) holds for the competition between the cognate substrate and each one of
its three competitors at each template position along the DNA genes of the chromosome. Tak-
ing intracellular substrate concentrations (Sc, Snc1, Snc2, and Snc3) into account, the total accura-
cy Atot, defined as the per template site flow of product formation with a cognate substrate over
the flow of product formation by all non-cognate substrates, is given by:

Atot ¼
½Sc�Pc

IP
c
F

½Snc1�Pnc1
I Pnc1

F þ ½Snc2�Pnc2
I Pnc2

F þ ½Snc3�Pnc3
I Pnc3

F

ð6Þ

The probability of anymisincorporation at a given template position is:

E ¼ ðAtot þ 1Þ�1 ð7Þ
By summation of the error probabilities of all template positions of a sequence, the expected
number of errors per transcript is obtained, and division by the transcript length gives the
error frequency.

No complete set of mismatched DNA/RNA nearest-neighbor parameters has been pub-
lished. Therefore, we used the existing set of all A�A, C�C, G�G and T�U interactions [33] for all
types of mismatches. For example, at a position with a T in the leading strand DNA, the correct
RNA incorporation is a U, and the A in the complementary DNA strand can be mismatched
with A, G or C. However, lacking the full dataset, the mismatch energies of the G and C
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mismatches are approximated by the A�Amismatch interaction energy but with the G and C
nucleotide concentrations. Nucleotide concentrations used in calculations were 3560 μMATP,
325 μMCTP, 1660 μMGTP and 667 μMUTP [34].

Modeling the accuracy of ribosomal RNA transcription
The ribosomal RNA operon C (rrnC) from E. coli, around 5,550 base pairs in length, was used
to exemplify the DNA context effect on transcriptional accuracy. The results are presented as
histograms showing the occurrence of positions with each level of accuracy (Fig. 2). The

Fig 2. Histograms of initial selection, proofreading and total accuracy in rrnC, grouped after the
cognate substrate. A) Initial selection. With only one type of mismatch per template (A�A, C�C, G�G or U�T),
the scope of each bar represents the initial selection IX of the correct nucleotide X against Y over the incorrect
nucleotide Y against Y. The distribution is discrete, with 16 distinct levels of accuracy, although some
mismatches are so similar in selection they appear in the same bar. B) Proofreading selection. The scope of
each bar represents the proofreading FX of the correct nucleotide X against Y over the incorrect nucleotide Y
against Y. The distribution is near-continuous and slightly truncated at 1. C) Total accuracy, as defined in
Eq. 6. The scope of each bar represents the total accuracy AX of the correct nucleotide X against Y over the
incorrect nucleotide Y against Y. The maximum of Atot is a factor 5,500,000 larger than the minimum.

doi:10.1371/journal.pone.0119588.g002
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parameter choices are explained in the supporting information, and the conclusions from the
results are shown to be robust with regard to parameter assumptions (see Methods).

To account for the accuracy enhancing effect of the polymerase itself, we assumed that
phosphodiester bond formation in the initial selection and the incorporation following a misin-
corporation is 100 times slower for a non-cognate than for a cognate nucleotide, in line with
previous suggestions [35] (see also Methods). The polymerase contribution to transcriptional
accuracy is expected to vary with the type of mismatch, but the context dependent accuracy
variation reported here, we deem to be a robust property of transcription (see Discussion).

Modeling initial selection of nucleotides
The initial selection parameter I is discretely distributed (Fig. 2A), since its variation depends
only on the identity of the complemented nucleotide and its nearest neighbor. Indeed, with
fixed nucleotide concentrations the total initial selection per position, comparing the probabili-
ty of the cognate incorporation to the probability of any of the three types of misincorpora-
tions, can take only 42 = 16 values. With the present dataset on mismatch energies, initial
selection varies by a factor 22 between its smallest and largest values.

Modeling proofreading selection of nucleotides
In contrast to the initial selection parameter I, the proofreading selection parameter F has a
near-continuous distribution. The reason is that it depends on a large number of nucleotides in
the sequence of the transcription bubble. As seen in Eq. 3, F is determined by the reaction rate
ratio (B/κ)c/nc, that contains the eight discriminating rate constants k1

c/nc, kc
c/nc, q1

c/nc and q3
c/nc,

and their effect on F is tuned by the four non-discriminating rate constants k2, k3, q2 and qc. The
context dependent variation of these twelve rate constants depends in turn on 11 of the 16 base
pairs of the transcription bubbles involved in one round of proofreading (Fig. 2B), leading to 411

different values of the proofreading selection. In our model, the five base pairs in the middle of
the 16-nucleotide sequence do not affect the accuracy variation, since they and their nearest
neighbors do not open or close during proofreading, only shift position. However, recent results
from Bochkareva et al. [20] indicate that also these five base pairs affect the transcription rate, al-
beit for reasons that have remained unclear.

The proofreading part of the accuracy of the rrnC operon spans more than 5 orders of mag-
nitude, with a factor of 430,000 between highest and the lowest values. Again, the model de-
scribes the sequence dependent part of proofreading with a small polymerase effect, meaning
that the actual proofreading selection with catalytic and steric effects of the polymerase is likely
to be higher, but the relative variation would be similar. In Fig. 2B, the span of the G�G proof-
reading is truncated at the minimum accuracy of 1, but with further amplified proofreading ac-
curacy, the whole proofreading span would be even larger.

Modeling total accuracy of nucleotide selection
The Atot variation range, as a fraction of the maximum and the minimum, is for the rrnC oper-
on 5,500,000, reflecting the context dependent contributions of initial selection, proofreading
selection, and nucleotide concentrations (Eq. 6). The spectrum of Atot resembles a log-normal
distribution due to the near normally distributed standard free energies in the exponent of the
Eyring equation. Convenient measures of the expected Atot value,<Atot>, and its standard de-
viation σAtot, are therefore the exponent of the average value of loge(Atot) and the exponent of
the standard deviation of loge(Atot), respectively. By these measures we obtain for the rrnC op-
eron<Atot> = 2.0�105 and σAtot = 19.9. While the<Atot> value is sensitive to the magnitude of
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the RNA polymerase specific accuracy enhancement, σAtot and the total span of the Atot varia-
tion are not (see Methods).

We compared a moving average of the GC-content of the rrnC operon to a moving average
of the logarithm of the total accuracy, both with a window size of 200 (Fig. 3). It is seen that the
total accuracy correlates positively with the GC-content, and also that some of the sequence de-
pendent accuracy variation cannot be explained by GC-variation only. Indeed, both accuracy
and GC-content are smaller in non-coding regions of the operon (upstream of the 16S and 23S
genes). Furthermore, our model predicts the accuracy of transcription of the antisense strand
of the rrnC operon, with the same GC-content as the sense strand, to have an about three-fold
lower<Atot> value than the sense strand. From these findings we suggest that the transcrip-
tional accuracy is significantly higher for template sequences encoding functional RNA than
for those encoding non-functional RNA. By inference this could also mean that transcription
of open reading frames is more accurate than transcription of non-coding RNA.

To identify the high and low accuracy motifs predicted by our model, a dataset of all the 411

possible transcription bubble variants was constructed. The theoretical range of transcriptional
accuracy from this set is about 73,000,000, calculated as the ratio of the maximum value of
2.5�109 and the minimum value of 35. The sequences representing these extreme values are the
hyper-accurate TATAGGNNNNNAGTCA and the error-prone GCGTTTNNNNNGCATT
sequences. The top ten accuracy and error-prone motifs are presented in Table 1.

Fig 3. GC-content, total accuracy and transcriptional accuracy of antisense strand.Moving average over the rrnC operon with a window size of 200.
The black curve represents the GC-content, to be compared to the right-hand side y-axis. The curves in magenta and cyan represent the logarithm of the
accuracy of the rrnC transcript and its antisense strand, respectively. All curves drop at the linker regions before the 16S and 23S genes. The accuracy
variation of both accuracy curves roughly follows the GC-content, but there is also additional variation. The accuracy of the antisense strand is lower by a
factor 2.78, calculated as the exponent of the ratio of averages of the logarithm-transformed accuracy.

doi:10.1371/journal.pone.0119588.g003
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From the sequences of these high and low accuracy motifs we propose, firstly, that when
there are weak interactions between the DNA strands at the upstream end of the transcription
bubble (to the left in the bubbles in Fig. 4) and strong interactions at the downstream end,
backward translocation is facilitated and forward translocation obstructed. This leads to high
accuracy amplification by proofreading (F) and high total transcriptional accuracy (A). Sec-
ondly, when the RNA/DNA interactions that re-form at the exit end of the hybrid upon back-
tracking (the left-hand end in Fig. 4) are strong, and the RNA/DNA interactions at the active
site end are weak, backtracking is facilitated and forward translocation obstructed, again sup-
porting accuracy amplification by proofreading. In conclusion, high stability in the 5’ end and
low stability in the 3’ end of the coding template DNA, and low stability in the 5’ end and high
stability in the 3’ end of the transcript give a high accuracy, and vice versa.

Experimental validation of the accuracy model
Transcriptome errors were recently assessed for the round worm C. elegans by Gout et al. [4].
The transcription errors were estimated by a single molecule approach effectively removing in-
terference from reverse transcription and PCR errors. The fragmented transcriptome was re-
verse transcribed three times, and each cDNA sequenced. From 0.5% (180,000) of the original

Table 1. The top ten of error-prone and high-accuracy motifs.

Low accuracy motifs High accuracy motifs

Motif Accuracy Motif Accuracy

GCGTTTNNNNNGCATT 34.6669 TATAGGNNNNNAGTCA 2.5473�109
CGCTTTNNNNNGCATT 34.6703 ATAAGGNNNNNAGTCA 2.4079�109
GCGTTTNNNNNGCATG 34.6853 ATATGGNNNNNAGTCA 2.3814�109
CCGTTTNNNNNGCATT 34.6854 AATAGGNNNNNAGTCA 2.3703�109
GGCTTTNNNNNGCATT 34.6862 TTAAGGNNNNNAGTCA 2.3668�109
CGCTTTNNNNNGCATG 34.6901 TTATGGNNNNNAGTCA 2.3114�109
GCGTTTNNNNNGCAAG 34.6921 TATAGGNNNNNAGTCC 2.2379�109
CGCTTTNNNNNGCAAG 34.6974 CTAAGGNNNNNAGTCA 2.2343�109
GCGTTTNNNNNGCAAT 34.6993 ATTAGGNNNNNAGTCA 2.2231�109
GCGCTTNNNNNGCATT 34.7017 GATAGGNNNNNAGTCA 2.1790�109

The ten most error-prone motifs and the ten motifs with the highest accuracy of all possible 11-base pair transcription bubbles (5’ to 3’ DNA). Five bases in

the middle of the transcript are arbitrary, as explained in Fig. 4. The underlined nucleotide is the position subject to fidelity control.

doi:10.1371/journal.pone.0119588.t001

Fig 4. The transcription bubble in three states. The active site position is circled, RNA is in yellow with the last incorporated nucleotide in orange, and the
borders of the affected DNA base pairs are in magenta. With a transcription bubble size of 12 bp, 16 bp of DNA are melted or adjacent to a melted base pair
during one elongation step. However, 5 bp (shaded) only shift position during these translocations, and are never part of any changes in binding status,
resulting in 11 bp affecting the accuracy.

doi:10.1371/journal.pone.0119588.g004
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number of fragments, they obtained two or more cDNAs of sufficient quality per individual
RNA fragment. In these, they found 83 authentic transcription errors as validated by their pres-
ence in more than one cDNA from the same individual transcript fragment.

The sequence of the transcription bubble around each of these error positions was extracted
from the C. elegans reference genome (Ensembl release 66, as used in [4]), together with tran-
scription bubble sequences around 479 random positions in 20 arbitrarily chosen reference
transcripts (intron positions excluded) (S1 Table). We then used our transcription model to
compare its predicted errors for the “error dataset” (blue staples in Fig. 5) and the “reference
dataset” (black staples in Fig. 5). It is seen that the accuracy spectrum from the error dataset is
shifted to the left and thus has lower accuracy and higher errors compared to the normal distri-
bution fitted to the reference data. Indeed, the<Atot> value for the error dataset is about four
times smaller than that for the reference dataset. A one-sided Student’s t-test applied to the ap-
proximately normal log(Atot) spectra in Fig. 5 shows that the probability that they have the
same probability distribution (p-value) is 2.0�10-5. From this encouraging result we suggest
that our accuracy model correctly reproduces major aspects of the accuracy tuning effects of
the DNA template motifs in the ever moving accuracy bubble (see Discussion). A more detailed
comparison of error sets with reference datasets will require extended knowledge of putative bi-
ases in the error detection procedures used by Gout et al. [4].

Fig 5. Predicted accuracy in the transcription error (blue) and reference (black) datasets. The transcription error dataset consists of the transcription
errors found by Gout et al. [4], and the 479 reference positions were chosen randomly from transcripts in theC. elegans reference genome database
(Ensemble release 66). The accuracy, calculated using the same parameters as in E. coli, is presented as a histogram of relative frequencies in the two
datasets. The blue and black lines are normal distributions fitted to the histograms of the datasets, emphasizing that the errors furthest to the right represent
extreme error positions, and that many of the error sequences are more error prone than an average motifs. The two distributions are significantly different
(p = 2.03�10-5).
doi:10.1371/journal.pone.0119588.g005
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Discussion
We have modeled the expected variation in transcriptional accuracy due to the context depen-
dent variation of the standard free energy of the transcription bubble during the movement of
the RNA polymerase. The modeling approach is illustrated by the prediction of the accuracy
variation during transcription of the ribosomal RNA operon C (rrnC) in E. coli. The origin of
the free energy variation is the changing composition of pairs of DNA/DNA or DNA/RNA
base pairs in the transcription bubble. Initial selection of nucleotides before phosphodiester
bond formation displays a discrete accuracy spectrum (Fig. 2A), while the proofreading accura-
cy spectrum is near continuous (Fig. 2B), making the overall accuracy spectrum remarkably
broad (Fig. 2C). The total accuracy, both in rrnC and in the dataset containing all 411 possible
accuracy determining motifs, resembles a log-normal distribution due to a near normal distri-
bution of the rate determining standard free energies in the transcription bubble and nascent
transcript. Thus the logarithm of the maximal and minimal accuracies have approximately the
same distance from the expected value, while the accuracy distribution is very skewed to the
right on a linear scale (Fig. 2C). The proofreading accuracy of a sequence motif is inversely cor-
related to transcription rate, since high accuracy requires a slowly transcribed sequence that is
prone to pausing and backtracking.

These results suggest that, due to DNA context, transcription errors may vary between very
high and very low levels. Accordingly, our data challenge the common views that transcription
errors always are in a low range between 10-5 and 10-4 [1] or lower [4], and that mRNA transla-
tion errors always dominate over transcription errors regarding amino acid substitution mis-
takes in intracellular proteins. Instead, transcription errors are expected to dominate over
translation errors in some contexts, where transcriptional errors would have a much higher bi-
ological impact than previously imagined. In addition, the right-skewed accuracy distribution
suggests frequently occurring high error sites in transcripts. The existence of transcriptional
error rates that supersede the translational error rates is thus a robust conclusion from the ex-
perimental average error frequency of transcription together with the error variation predicted
by the present modeling. Yet, the precise extent of dominating transcriptional errors will de-
pend on the largely unknown variation of translational errors [3] and the so far unknown RNA
polymerase contribution to transcriptional accuracy. The strong template dependent accuracy
variation we have identified could be yet another driving force for the choice of nucleotides in
functional RNA molecules and significantly affect synonymous codon usage in mRNAs [36].

Robustness of results
The validity of our model for transcriptional error variation rests upon a set of simplifying as-
sumptions. We have derived the context dependent variation in transcription errors from near-
est-neighbor parameters measured in solution, in the absence of RNA polymerase.
Assumptions here are that the base stacking between pairs of correct and incorrect base pairs
in solution are similar to those in the catalytic site of the RNA polymerase (see Methods).

Although the RNA polymerase is likely to significantly amplify the accuracy of transcription
in a mismatch dependent manner, we suggest that it is the energy variation from the DNA con-
text around the active site that constitutes the largest part of the sequence dependent accuracy
variation. Presently, our model depends on an incomplete mismatch nearest-neighbor parame-
ter dataset. The missing part of the complete set has been measured, but the results have re-
mained unavailable [33]. Accordingly, each template base identity is now tested against only
one type of non-cognate nucleotide, instead of three. It may be that use of a complete dataset
would not substantially alter the range of the accuracy variation, since the interaction energies
of the incorrect base pairs would still be compared to the same cognate base pair energies and
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the effect of the non-discriminating reactions on the proofreading selection would remain un-
altered. After all, the mismatch is only one out of the 11 base pairs affecting the accuracy varia-
tion. All the same, if the missing data set is made available it is likely to improve significantly
our model predictions.

The reactions are treated as if the stability of transition states intermediates are predictable
and without sequence-specific effects, which allows us to choose constant transition state barri-
ers. If this were not true, it would deflate our predictions about sequence motifs, but the main
result based on the variation in sequence energy between different transcription bubbles would
persist as long as the polymerase has not evolved to attenuate this variation.

Experimental outlook
The most direct and reliable validation of the present predictions of large context dependent
variation of transcriptional errors requires transcriptional error measurements in different
template contexts of similar quality as the newly developed system for studies of mRNA trans-
lation errors on the ribosome [3]. Recent developments in this field by Imashimizu et al. [2],
applied to transcription errors in E. coli, bring great promise for future investigations. Howev-
er, these detections of transcription errors might still be partially obscured by sequencing and/
or reverse transcription errors, and we have therefore chosen not to use their dataset for model
validation [2].

On the other hand, while the method developed by Gout et al. [4] was not used to investi-
gate the error frequency for each position of the C. elegans transcriptome, it was reliable for de-
tection of true transcriptional errors and therefore proved useful to us for comparison and
validation of our model. The model could accurately predict an ensemble of higher error prob-
ability motifs in the experimental dataset of transcription errors, but also predicted a dispro-
portionate fraction of transcription errors in high-accuracy positions. Apart from these two
studies [2; 4], there are no experimental measurements of the context dependent accuracy vari-
ation under in vivo conditions to use for model validation, but the recent development brings
hope for the future.

The model would also benefit from more information about nucleotide-specific variations
of interactions with the polymerase. The contribution of the polymerase itself to the selectivity
of base incorporation was here assumed to be neutral, providing the same discrimination factor
of 100 to all types of mismatches. It will be of great interest to investigate how the transcrip-
tional machinery copes with high error as well as high accuracy hotspots, since accuracy en-
hancement in both initial selection and proofreading is at the cost of greatly reduced
transcription efficiency by the rate-accuracy trade-off [3; 13]. An interesting question is there-
fore if RNA polymerases have evolved to discriminate strongly against the errors that are most
likely to occur, or against the high-accuracy positions that may induce pauses. Another testable
prediction of our model is that the proofreading parameter F will decrease with increasing
NTP concentration, as seen in Eq. 3, since elevated NTP levels drive the POST complex in
Fig. 1A towards the POST�NTP complex and phosphodiester bond formation, thereby pre-
venting translocation to the PRE-state, backtracking and nucleotide release.

Evolutionary adaptations
The logic behind the accuracy variation in sequence motifs suggests that adaptations to in-
crease the transcriptional accuracy are complex. That is, an error-prone motif might be part of
a hyper-accurate motif a few translocations later, since the same base pairs that made an earlier
transcription bubble accurate will make a later bubble inaccurate when the base pairs have
shifted to its other end. This makes it difficult to design globally super-accurate DNA
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sequences and also to predict evolutionary adaptation in sequence data. It is however likely
that some motifs are counter-selected locally, at positions where accuracy or speed is critical.
The predicted higher accuracy in the coding sequence of the rrnC operon (Fig. 3), compared
both to linker regions and the antisense strand, suggests an adaption of the coding strand se-
quence to increase the accuracy of transcription and the quality of the transcription product,
but can also be a side-effect of the selection of bases in the coding sequence for other functions.
In conclusion, our results predict very large and DNA context dependent variation of tran-
scriptional errors. This suggests that transcriptional errors may dominate over other sources of
amino acid substitution errors in the proteome in some, but not other contexts. It also raises
questions about how the quality of large functional RNA molecules like ribosomal RNA is
maintained by the transcription machinery.

Methods
All calculations were performed in MATLAB 7.9.0 (The MathWorks, MA, USA). The rrnC
DNA sequence was downloaded from EcoCyc [37], between positions 3,939,539 and
3,945,090. The operon was chosen because the transcription of rRNA is well studied and not af-
fected by trailing ribosomes.

The transcription bubble
The model describes profound effects of the template context dependent free energies of pairs
of base pairs in the transcription bubble on the kinetics of transcript elongation. The nearest-
neighbor parameters for double stranded DNA [9] and RNA/DNA hybrid [10] are estimated
from the melting energies of the sequences in solution, and include the stacking effect for all
combinations of adjacent base pairs.

Each state in the transcription model is represented by an elongation complex that consists
of an RNA polymerase, a transcription bubble in the double-stranded DNA and a nascent
RNA transcript. The total free energy of the elongation complex, the state energy, is the sum of
the energy costs of breaking up the DNA double helix to form the transcription bubble,
DG0

DNA=DNA, the remediating formation of RNA/DNA hybrid, DG0
RNA=DNA, and of the interactions

between the polymerase and the nucleotide sequences, DG0
pol[7].

DG0
state ¼ DG0

DNA=DNA þ DG0
RNA=DNA þ DG0

pol ð8Þ

The nearest-neighbor model predicts the melting energy of a sequence by summation of the
nearest-neighbor parameters for the constituent base pairs, with one parameter for every pair
of two adjacent base pairs [9]. The nearest-neighbor parameter represents the melting energy
of the two base pairs including their mutual base stacking effect. Each non-terminal base pair
in the sequence contributes to its total melting energy through two nearest-neighbor parame-
ters, being part of two pairs of base pairs.

The free energy of transcription bubble formation at each position in the transcribed gene is
hence the sum of the nearest-neighbor parameters of the 13 pairs of base pairs formed from 12
denaturated base pairs [9]. In the ends of the bubble, we use half of the value of the parameter
for the half-denaturated nucleotide pair with the last opened and first intact base pairs (Fig. 4).

The formation energy of the base pairing in the RNA/DNA transcript is predicted in a simi-
lar fashion, using nearest-neighbor parameters for RNA/DNA base pairs [10]. The length of
the hybrid is 8 or 9 base pairs, giving 7 or 8 pairs of base pairs with corresponding nearest-
neighbor parameters (Fig. 4). For pairs of hybrid base pairs with a nucleotide mismatch, mis-
match nearest-neighbor parameters are used instead [33].
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The accuracy calculations, however, are based on the difference in free energies between ad-
jacent states of the elongation complex. Since adjacent states have partly overlapping transcript
bubbles, parts of the nucleotide sequence energies will cancel out in the comparison, so that
not all of the nearest-neighbor parameters in the transcription bubble appear in the resulting
accuracy estimates.

The extension of the melting energy data to the nucleic acid sequences of the transcription
bubble inside the RNA polymerase involves some assumptions. First, to predict the energies of
hydrogen bonds between bases using free solution parameters, we make the assumption that
these energies are an inherent property of the double-stranded sequences that is preserved
even within the polymerase. Since this is the energy of the hydrogen bond upon entry to the
polymerase, the polymerasemust at some point apply this energy to break the bond, even
though it is possible that weakening of bonds through an applied force occurs at a different re-
action step than the final break.

Second, we also assume conservation of base stacking effects in the reactions of transcript
elongation. These stacking effects are unique to double-stranded sequences, which to a large
extent keep their structure.

Third, the effects of the polymerase are part of all reaction rates through the transition state
barriers of the reactions, through catalysis of phosphodiester bond formation and cleavage,
and naturally by DNA sliding in the translocation reactions. However, any sequence specific ef-
fects of the polymerase are neglected, so that in comparison between two different state ener-
gies the polymerase effects cancel out, and only the transition state barriers and base pair
composition differences remain (Eq. 8). The transition state barriers in the model are assumed
to be uniform for all substrates. The rationale is that the polymerase interacts only with the
backbone of the sequences, since the nucleobases face each other, and effects that are not se-
quence-specific will cancel out in comparison between transcription bubbles.

This is likely an over-simplification. Experimental evidence suggests, for instance, that the po-
lymerase might interact with the hybrid sequence [20], and also that different nucleotides are
added at different rates, irrespective of nucleotide concentration [38; 39], only to mention a cou-
ple of examples of possible polymerase-sequence interactions. The second example indicates that
the stereochemistry in the transition states could be different for different base pairs. However, as
we lack sufficient and reliable information of this kind of effects to include in the model, we in-
stead make the simplifying assumption that the effects are negligible to the accuracy and cancel
out in comparison between cognate and non-cognate substrates. In any case, the sequence-
dependent accuracy variation that we do predict would persist even with additional sources of
variation, if they do not specifically counteract sequence stability effects. One neglected factor
that could have such additional sequence-specific effects is secondary structures of the transcript.

Reaction rate constants
The reaction rate constants within elongation steps are denoted ki and qi (Fig. 1A). According
to the Eyring equation, each constant k or q can generically be written as the product of a pre-
factor constant kpre and the exponential of the difference in standard free energy (ΔG) between
the transition state, marked ‡, and the initial state:

reaction rate constant ¼ kpree
�ðDGz�DG0Þ=RT ð9Þ

Here, R is the gas constant (8.314510 J�K-1�mol-1), T the absolute temperature (310 K) and kpre
is set to 109 s-1, in line with earlier studies [40]. In addition to depending on the transition state
barriers, the rate of a reaction from an initial state to a final state also depends on the difference
in free energy between them. The logic is that the rate constant from the state with highest free
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energy is always given only by the reaction barrier, and the rate constant from the state with
lowest free energy by the barrier plus the free energy difference (ΔΔG) between final and initial
states, as illustrated in S1 Fig. In the nucleotide addition cycle (Fig. 1A), five cognate rate con-
stants, k1, k2, q1, q2 and q3, depend on the standard free energy difference between initial and
final reaction states, as well as kc in the non-cognate case. The accuracy variation predicted by
our model emerges from the template context dependent variation in ΔΔG for cognate and
non-cognate substrates, while transition state barriers and kpre are assumed to be template con-
text independent unless otherwise stated.

As mentioned above, only some of the reactions discriminate against errors: rate constants
kc and q3 confer the intrinsic selectivity of initial selection (Eq. 2) and rate constants kc, q3, q1
and k1 confer the intrinsic selectivity of proofreading selection (Eq. 3). The effect of the non-
cognate substrate compared to the cognate substrate is a reduction in bubble stability, or an in-
crease in the free energy of the TEC (S2 Fig.). Most misincorporations will nevertheless stabi-
lize the complex, compared to an empty active site as in state POST, but in a few cases the
misincorporation weakly destabilizes the complex [33]. The destabilizing energy difference is
included in the phosphodiester bond formation energy barrier, with the consequence that
phosphodiester bond formation discriminates with a sequence dependent component in these
cases. This is in addition to the polymerase effect, implemented as a larger energy barrier for
phosphodiester formation for non-cognate than for cognate substrates, which confers a context
independent factor of 100 in advantage to the cognate reaction. All rate constants except kc, q3,
q1 and k1 are the same for cognate and non-cognate nucleotides, and rate constants qc and k3
do not vary with template context.

All model input parameters, including the transition state barriers, are summarized in
Table 2. The transition state barriers are tuned so that the total transit time through the rrnC
operon matches the experimental measure of approximately 1 minute [41] and that proofread-
ing contributes significantly to the accuracy of nucleotide selection, in accordance with experi-
mental observations [23].

In detail, all reaction rate constants in the nucleotide addition cycle (Fig. 1A) were calculated
as follows:

k3 is the second-order reaction rate constant for binding of nucleotide i to the polymerase,
and is thus multiplied by the nucleotide concentration, [NTPi], of the incoming nucleotide.

Table 2. Parameters in the calculations.

Parameter Description Value Measured or tuned Reference

[ATP], [CTP], [GTP], [UTP] In vivo concentrations See reference Measured [34]

10 DNA/DNA Nearest-neighbor parameters See reference Measured [10]

16 RNA/DNA Nearest-neighbor parameters See reference Measured [10]

32 Mismatch Nearest-neighbor parameters See reference Measured [33]

kpre Pre-factor 109 s-1 From reference [40]

kpre-a Pre-factor of association 6.4�1011 M-1s-1 Tuned

ΔGa Reaction energy barrier of association and dissociation 10�RT Jmol-1 Tuned

ΔGc Reaction energy barrier of phosphodiester bond formation 13�RT Jmol-1 Measured + tuned [42]

ΔGtranslocation Reaction energy barrier of translocation 11�RT Jmol-1 Tuned

ΔGcut Reaction energy barrier of transcript cleavage 18�RT Jmol-1 Measured + tuned [43]

ΔGforward bias Added stability to post-translocated states 2.5�RT Jmol-1 Tuned

Polymerase effect Mismatch discrimination by the polymerase 100 Tuned

Summary of all input information used in the calculations. R is the gas constant, 8.314510 J�K-1�mol-1, and T is the temperature 310 K.

doi:10.1371/journal.pone.0119588.t002
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The pre-factor of association, kpre-a, is given by kpre/<[NTP]> = 6.4�1011 M-1s-1, where
<[NTP]> is the averaged nucleotide concentration. The rate constant k3 is formulated in ac-
cordance with the Eyring formalism as a second order pre-factor multiplied by an exponential,
kpre-a�exp(-ΔGa/RT). The free energy reaction barrier of nucleotide association, ΔGa, is set to
10�RT J�mol-1, so that k3 becomes 2.9�107 M-1s-1. Note that in proofreading selection (Eq. 3),
k3 is multiplied by the concentration of the next incorporated cognate nucleotide.

q3 is the rate constant for nucleotide dissociation from the polymerase: q3 = kpre�exp
(-(ΔΔGNTP + ΔGa)/RT) s

-1. The free energy reaction barrier used is ΔGa, the same as for ka, but
there is also the difference in free energy between the POST state with free nucleotide and the
state POST�NTP, ΔΔGNTP. When positive, ΔΔGNTP is the stabilizing energy of the extra bound
nucleotide by one additional nearest-neighbor parameter. When ΔΔGNTP is negative, it is set to
zero and the destabilizing effect of the incoming nucleotide instead becomes part of the catalyt-
ic rate constant kc for phosphodiester bond formation (Fig. 1, see also next paragraph). Wheth-
er the intrinsic selectivity of the enzyme with respect to cognate and non-cognate nucleotides
resides in the dissociation or forward rate constant makes no difference for accuracy calcula-
tions, since they depend on the ratio q3/kc (Eq. 2).

kc is the rate constant for phosphodiester bond formation. For cognate reactions, kc = kpre�exp
(-ΔGc/RT) = 2.3�103 s-1, with ΔGc = 13�RT. We assume that the cognate nucleotide is perfectly
positioned for phosphodiester bond formation in the state POST�NTP, with base-to-base inter-
actions already formed, which is why the rate is slightly higher than the in vitro experimental
rate of 1200 s-1 [42]. For non-cognate reactions, kc = (1/100)�kpre�exp(-ΔGc/RT) = 2.3�101 s-1
when ΔΔGNTP> 0 and kc = kpre�(1/100)�exp(-(-ΔΔGNTP + ΔGc)/RT) when ΔΔGNTP< 0.

k1 is the rate constant for backward translocation from the state PRE to the state BACK and
is given by kpre�exp(-(ΔΔGBACK-PRE + ΔGtranslocation)/RT) s

-1 when ΔΔGBACK-PRE> 0 (PRE is
more stable than BACK) and by kpre�exp(-ΔGtranslocation/RT) s

-1 when ΔΔGBACK-PRE< 0 (BACK
is more stable than PRE). This means that k1 will differ for cognate and non-cognate elongation
complexes only when BACK has a higher free energy than the cognate state PRE. The transloca-
tion reaction barrier ΔGtranslocation is set to 11�RT J�mol-1, in line with experimental data [14; 24].
Like all translocation events, k1 comprises several changes in the double-stranded nucleic acids
in the elongation complex: the double-stranded DNA opens one base pair in the direction that
the polymerase travels and anneals one base pair in the other end, while the last incorporated
base in the RNA transcript is shifted out of the active site into the backtrack binding pocket [21],
breaking the hydrogen bonds to the opposite template base, and at the same time, one base pair
at the other end of the RNA/DNA hybrid is re-annealed upon re-entry into the hybrid channel.
These four sequence changes, opening or annealing one base pair in each end of the DNA/DNA
and the RNA/DNA double helixes, make k1 depend on the base identity of no less than nine
base pairs (the affected base pairs and their nearest neighbors).

q1 is the rate constant of the forward translocation from BACK to PRE, the reverse of k1,
and is given by kpre�exp(-(ΔΔGPRE-BACK + ΔGtranslocation)/RT) s

-1 when ΔΔGPRE-BACK > 0 and
by kpre�exp(-ΔGtranslocation/RT) s

-1 when ΔΔGPRE-BACK < 0. q1 will hence differ for cognate and
non-cognate cases when BACK has a lower free energy than the non-cognate state PRE, which
is typically the case since the non-cognate PRE state RNA/DNA hybrid contains one misincor-
poration while the BACK hybrid is correct.

qc is the rate constant of the factor-assisted hydrolysis of the phosphodiester bond just up-
stream of the active elongation site and is given by kpre�exp(-ΔGcut/RT) = 15 s-1, where ΔGcut is
set to 18�RT J�mol-1. Experimental data on the GreA-assisted hydrolysis reaction (qc) have
been obtained under conditions different from those of the other parameters, but indicate that
the chosen reaction rate is reasonable [43]. There is limited information suggesting a sequence
dependent variation of qc [23; 44], which has here been neglected.
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k2 is the rate constant of forward translocation from PRE to POST, and is similar to the
other translocation rate constants described above. It is given by kpre�exp(-(ΔΔGPOST-PRE +
ΔGtranslocation)/RT) s

-1 when ΔΔGPOST-PRE > 0 and kpre�exp(-ΔGtranslocation/RT) s
-1 when

ΔΔGPOST-PRE< 0. The difference from the reaction between states PRE and BACK is that the
RNA/DNA hybrid in POST is only 8 base pairs long, preparing the active site for nucleotide as-
sociation, so there are three instead of four sequence changes. None of these changes concern
the last incorporated nucleotide, and k2 is hence indifferent to mismatches.

Another consequence of the shorter hybrid sequence is that the POST state is generally con-
siderably less stable than the state PRE due to the longer hybrid sequence. Still, the net move-
ment of the polymerase must be in the forward direction and the translocation fast enough to
match the experimental transit time over the operon [41]. To solve this, we have used a forward
bias, ΔGforward bias, that stabilizes the two forward-translocated states by 2.5�RT J�mol-1, mean-
ing that, in equilibrium, the polymerase favors POST over PRE. This stabilization together
with the irreversibility of the phosphodiester bond formation (Eq. 4) ensures the net forward
motion of sufficient speed. ΔGforward bias is included in the free energy differences between
states PRE and POST, ΔΔGPOST-PRE and ΔΔGPRE-POST.

q2 is the rate constant of backward translocation from POST to PRE, the reverse of k2, and is
given by kpre�exp(-(ΔΔGPRE-POST + ΔGtranslocation)/RT) s

-1 when ΔΔGPRE-POST >0 and kpre�exp
(-ΔGtranslocation/RT) s

-1 when ΔΔGPRE-POST < 0.

Mean-time calculations
The above reaction rates describe the rates between the “internal” substeps of protein elonga-
tion. All internal reaction steps have the same total transcript length, and together constitute
one elongation step. The rates κ and B between elongation steps, i.e., the rates at which the tran-
script grows or is shortened, demand another method.

The reaction rate constants between elongation steps are obtained from the numeric inte-
gration of the master equation describing our model. One elongation event, passing through
the internal states presented in Fig. 1, is described mathematically by the time derivative of the
probability of being in each of the elongation states. When integrated, they express the mean
time τ the polymerase will spend in each state (Eq. 10). The boundary conditions are given by
our defining of the PRE state as the state which marks the limits of the distinctive elongation
steps (Fig. 1), the start of transcription at the promoter site (from which the polymerase cannot
backtrack) and the end at the termination site:

dPPRE

dt
¼ �ðk2 þ k1Þ � PPRE þ q1 � PBACK þ q2 � PPOST )

�1 ¼ �ðk2 þ k1Þ � tPRE þ q1 � tBACK þ q2 � tPOST
dPPOST

dt
¼ �ðq2 þ k3Þ � PPOST þ k2 � PPRE þ q3 � PPOST�NTP )

0 ¼ �ðq2 þ k3Þ � tPOST þ k2 � tPRE þ q3 � tPOST�NTP
dPBACK

dt
¼ �ðq1 þ qcÞ � PBACK þ k1 � PPRE )

0 ¼ �ðq1 þ qcÞ � tBACK þ k1 � tPRE
dPPOST�NTP

dt
¼ �ðq3 þ kcÞ � PPOST�NTP þ k3 � PPOST )

0 ¼ �ðq3 þ kcÞ � tPOST�NTP þ k3 � tPOST

ð10Þ

The elongation rates κ and B, at which the TEC moves forward and backward in a series of
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elongation events, are provided by the rates kc and qc at which the forward and backward reac-
tions occur given that the TEC inhabit the appropriate state. This probability of inhabitation is
expressed as the fraction of the mean time spent in the associated state (POST�NTP for κ and
BACK for B) and the total mean time of this elongation step; that is, the sum of the mean times
of all the states:

k ¼ kc
tPOST�NTP

tBACK þ tPRE þ tPOST þ tPOST�NTP
; B ¼ qc

tBACK
tBACK þ tPRE þ tPOST þ tPOST�NTP

ð11Þ

Solving Eq. 10 and 11 bestows us with the mean times in terms of the reaction rates, which are
dictated by the differences in free energy between states and the related energy barriers as
described above.

Accuracy calculations
Using the above methods, the reaction rates can be calculated, and from that the normalized
accuracy according to Eq. 2, 3 and 5. The key result of the large accuracy variation is quite ro-
bust to changes in parameters, even at other transcription rates, as demonstrated in S3 Fig.

The primary action of the so far outlined proofreading mechanism begins with a correctly
or incorrectly incorporated base in the pre-translocated state. Testing the base by proofreading
occurs at least once per transcript elongation cycle. However, following nucleotide cleavage,
the nucleotide that is now the last nucleotide in the post-cleavage transcript undergoes another
round of proofreading that starts in the post-translocated, instead of in the pre-translocated,
state (Fig. 1). This and other secondary proofreading effects of transcript cleavage generally
confer but a small accuracy enhancing effect. They strongly depend on parameter choice, nu-
cleotide concentration and an extension of the proofreading motif to the next two transcription
bubbles, and are therefore not discussed here.

In the presented results, a polymerase effect has been added to the catalyzed reaction rate kc
to remedy some of the simplifying assumptions about the polymerase stated above. While we
do not know about the variation in kc between different cognate (or non-cognate) nucleotides,
we need to add a factor that discriminates between cognate and non-cognate nucleotides in
order to achieve a reasonable accuracy distribution. Without this polymerase effect, the accura-
cy distribution is down-shifted to values far below experimental estimates and the distribution
gets truncated at 1. To investigate the accuracy distribution as it appears in the experimental
range, we introduce the polymerase effect.

The structural interpretation of the polymerase effect in the catalyzed reaction is that the
template-paired cognate substrate is in a better position for the phosphodiester bond formation
than the non-cognate substrate. The base stacking is assumed to stay the same through the
transition state. Besides shifting the entire accuracy distribution, the polymerase effect does not
affect the sequence dependent variation. The results of the above mentioned simplifying as-
sumptions about the sequence—polymerase interactions are difficult to predict. Yet, we can
conclude that any effect that depend on only a couple of bases—for instance, any sequence spe-
cific effects in the transition state of phosphodiester bond formation—would have a limited ef-
fect on the wide range of outcomes in the distribution of the total accuracy, since such local
effects could have only 16 possible outcomes. Future additions of this kind of effects would
hence not affect the comparison between two bubbles very much, depending on only two out
of at least eleven nucleotides, but could still give better predictions of the accuracy for a
given motif.
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Supporting Information
S1 Fig. Example from the energy landscape, including reaction rates. Note that the relation
between the states might just as well have been the opposite.
(TIF)

S2 Fig. Energy landscape of a proofreading cycle, comparing a correct (green) or mis-
matched (red) last incorporation. Each ground and transition state is labeled with the free en-
ergy of formation; ground states with state names, and transition states (marked ‡) with the
names of associated reaction rates in subscript. Discrimination against the mismatch occurs
when the non-cognate TEC makes a higher climb to reach the transition state when going for-
ward, or lower when going backward, than the cognate TEC. In this example, cognate PRE is
more stable than BACK due to the context sequence, but BACK, where the misincorporation is
unpaired from the template, is more stable than non-cognate PRE. Therefore, both transloca-
tions between PRE and BACK, with reaction rates k1 and q1, are discriminating since they
make it easier for the non-cognate complex to go backward and more difficult to go forward.
The translocations to and from POST depend only on the sequence context, which affects the
propensity to backtrack for both complexes and hence the accuracy, but is not discriminating
since it is the same for both cognate and non-cognate complexes. The last discriminating reac-
tion is the nucleotide dissociation at rate q3, where the incoming nucleotide that binds to a mis-
match stabilizes the non-cognate complex less, facilitating the backward nucleotide
dissociation. In this example, the new incorporation stabilizes the state non-cognate
POST�NTP, so the phosphodiester bond formation is not discriminating apart from the poly-
merase effect, which is excluded here to show only sequence dependent energy differences.
(TIF)

S3 Fig. Accuracy distributions in the rrnC operon for a few different parameter sets. This is
a demonstration of the robustness of the results; some variables have biologically unreasonable
values. The parameter sets originate from the preferred parameters, but with changes to one or
two barriers by 5RT, to give a�150-fold difference to reaction rates. The parameter sets are: 1.
the preferred parameters, as described in Methods; transit time 57 s. 2. kc increased; transit
time 26 s. 3. kc reduced; transit time 5.5�107 s. 4. qc reduced; transit time 34 s. 5. kc and qc re-
duced; transit time 3.8�103 s. 6. Translocation rates and association rate increased; transit time
25 s. Note that accuracy distributions 5 and 6 are identical, demonstrating that the balance be-
tween parameters determines the accuracy (but not transcription speed).
(TIF)

S1 Table. The reference dataset with genome positions. The accuracy motif around each po-
sition starts 13 nucleotides in 5’ direction and ends 3 nucleotides in 3’ direction from the nucle-
otide in regard, on the coding strand for the transcript.
(PDF)
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