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Abstract
Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nu-

clear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identifica-

tion and to investigate phylogenetic relationships of seven Anophelesmorphospecies of the

Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades

for An. punctimaculas.s., An. calderoni, An.malefactor s.l., An. neomaculipalpus, An. apici-
macula s.l., An.mattogrossensis and An. peryassui. This study provides the first molecular

confirmation of An.malefactorfrom Colombia and discovered conflicting patterns of diver-

gence for the molecular markers among specimens from northeast and northern Colombia

suggesting the presence of two previously unrecognized Molecular Operational Taxonomic

Units (MOTUs). Furthermore, two highly differentiated An. apicimaculaMOTUs previously

found in Panama were detected. Overall, the combined molecular dataset facilitated the de-

tection of known and new Colombian evolutionary lineages, and constitutes the baseline for

future research on their bionomics, ecology and potential role as malaria vectors.

Introduction
Malaria elimination remains a goal in Colombia where 64,309 malaria cases were reported in
2012 [1]. After Brazil, Colombia consistently has the highest number of annual malaria cases in
Latin America [2], and underreporting is common [3]. Vector control remains one of the most
effective measures to prevent malaria transmission [4,5] and for this, accurate Anopheles spe-
cies identification is an essential part of targeted control strategies [5]. However, in Colombia
several species in the subgenus Anopheles, including some potential malaria vectors, are
relatively understudied.

The Anopheles subgenus comprises 187 valid species of which 56 are reported in the New
World; 24 of these species are in the Neotropical Arribalzagia Series [6]. All species included in
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this Series have a unique characteristic wing spot pattern that includes a dark spot at the end of
the subcostal vein [7]. Of 47 anopheline species recorded in Colombia [8–10], 14 belong to the
Anopheles subgenus, of which 12 are in the Arribalzagia Series [11]. Of these, Anopheles puncti-
macula Dyar & Knab and Anopheles neomaculipalpus Curry have been considered secondary
malaria vectors [12,13]. Anopheles calderoniWilkerson, recently detected in Colombia and
Ecuador [14], is a suspected malaria vector [15], based on its anthropophilic behavior in the
Colombian Pacific region [16]. Anopheles mattogrossensis and Anopheles peryassui were both
previously found infected with Plasmodium vivax and P. falciparum in Brazil [17], but have
not been incriminated in Colombia. A number of these species have been described or re-
described based on morphological characters of life stages or male genitalia [18–21], and a few
molecular taxonomic studies have been conducted revealing hidden diversity [14,22]. Such in-
formation is an essential prerequisite for understanding the biology, bionomics and role in ma-
laria transmission of these species.

Anopheline surveys are mostly based on field collected adult females, using human and ani-
mal baits, traps or other methods [23,24]. Rapid and accurate species identification of adult
Anopheles females is of great relevance for vector biologists, particularly among species pre-
senting difficulties during morphological identification[14,22,25]. Morphological characters of
adult females, although useful [8,18,26,27], are limited for discriminating among closely related
species or cryptic species with overlapping geographical distributions [28,29]. Morphological
similarity among Arribalzagia Series species is widely documented [13,19,20]. For example, a
recent molecular study that compared several specimens morphologically defined as An. punc-
timacula from Colombia, with reference material from Peru, Ecuador and Panama, revealed
that some of these were An. calderoni [14].

Nuclear and mitochondrial markers have been used in molecular systematic studies and to
elucidate phylogenetic relationships among Anopheles species [30]. Of these markers, the ITS2
(Internal Transcribed Spacer 2) region is reliable for differentiation of closely related species
[31–33] and restriction fragment length polymorphism (RFLP) of the ITS2 is a sensitive, spe-
cific and rapid method for molecular confirmation [19,22,25,34–36]. The mitochondrial COI
barcode region is another important systematics tool, but recent analysis suggests that resolu-
tion is higher when the barcode is combined with nuclear markers, at least for mosquitoes [30].
Morphology and COI barcode were used to discriminate successfully among An. calderoni, An.
malefactor and An. punctimacula in Colombia [14]. Recently, based on phylogenetic analysis
of COI and ITS2 sequences, An. punctimacula in Panama was designated as a species complex
that includes at least two lineages (An. punctimacula s.s. and lineage B). Likewise, An. apicima-
cula encompasses at least two species, each comprising two lineages [22].

Considering that: i) accurate Anopheles species identification is essential for the design of
targeted control vector strategies [23], ii) previous molecular work has suggested the presence
of species complexes among the Arribalzagia Series, and iii) few studies exist on the molecular
taxonomy of these species despite their possible role as malaria vectors, we hypothesize that
seven morphospecies represent more than seven Molecular Operational Taxonomic Units
(MOTUs) [37] in Colombia.

Material and Methods

Specimen sampling and DNA extraction
Specimens were collected in various localities across ten departments of Colombia from
2005–2012 and the study did not involve endangered or protected species. Mosquitoes were
collected on private property, and permission was received from landowners prior to sam-
pling (Fig. 1, Table 1). Most specimens were collected as adults using human landing catches
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under a protocol and written informed consent agreement approved by a University of Antio-
quia Institutional Review Board (Comité de Bioética, Sede de Investigación Universitaria,
CBEIH- SIU, approval number 07–41–082). In addition, some An.malefactor fourth stage
larvae were collected and reared to adults. Selected larval exuviae and male genitalia were
mounted on microscope slides using Euparal, and at least one voucher specimen per species
was deposited in the collection of the Laboratorio de Microbiología Molecular, Universidad
de Antioquia, Colombia. Morphospecies were identified using the keys of González & Carrejo
[8] and Wilkerson & Strickman [26]. Genomic DNA was extracted from abdomens using a
salt precipitation protocol [38].

Fig 1. Map of collection sites for Arribalzagia Series species.Departments are noted with three letter codes. AMA: Amazonas; ANT: Antioquia; CHO:
Chocó; COR: Córdoba; GUA: La Guajira; MAG: Magdalena; NAR: Nariño; NDS: Norte de Santander; RIS: Risaralda; VDC: Valle del Cauca. Identical
symbols indicate the same species. Numbers on the map indicate collections sites detailed in Table 1.

doi:10.1371/journal.pone.0119488.g001
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Barcode region
The COI gene region was amplified using the LCO and HCO universal primers [39] and modi-
fied PCR conditions [40]. PCR products were subjected to bidirectional sequencing. All the se-
quences were translated to amino acids to detect stop codons and potential shifts in reading
frame as a test for possible nuclear mitochondrial pseudogenes (Numts). The COI protein se-
quence published for Anopheles gambiae (GI: 5834913) was used as a reference to indicate po-
sitions of amino acid changes. Potential contamination was explored using BLAST searches
[41] (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Additional COI sequences from GenBank were
included for comparison with the original dataset (Table 2). COI sequences obtained in this
work were deposited in GenBank under accession numbers KF698801- KF698878.

ITS2 region
The rDNA ITS2 was amplified using the primers ITS2-F (5’-TGAACTGCAGGACACAT-
GAAC-3’) and ITS2-R (5’-ATGCTTAAATTTAGGGGGTAGTC-3’), and analyzed by a RFLP
assay [25,34,36]. Available confirmed specimens from the Arribalzagia Series species were used
as controls for amplification and RFLP. The in silico restriction digestion for each species was
predicted using Webcutter 2.0 tool available at http://rna.lundberg.gu.se/cutter2.

PCR products were cloned using the CloneJET PCR Cloning Kit (Thermo Fisher Scientific
Inc., PA, USA), and three to five clones per specimen were selected for sequencing. The ITS2
sequences were deposited in GenBank under accession numbers KF698879- KF698921 and
KM262754-KM262760.

COI and ITS2 analyses
The COI and ITS2 sequences were edited in Geneious version 6.0.6 [42]. For ITS2, the flanking
5.8S and 28S regions were identified using the Diptera model through the ITS2 annotation tool
[43,44] and excluded before ITS2 analysis. Analyses of intragenomic, intra- and interspecific
ITS2 variation were performed in at least two specimens per morphospecies using DAMBE
[45]. Mean uncorrected pairwise distances and standard errors were calculated with MEGA 5.0
[46]. The presence of interspersed and tandem repeat sequences was explored using the bioin-
formatics software Spectral Repeat Finder (SRF) [47] and Tandem Repeat Occurrence Locator
(TROLL) [48], respectively.

For interspecific comparison, ITS2 sequences of Anopheles species belonging to Arribalzagia
Series retrieved from GenBank also were analyzed (Table 2). Manual editing and multiple

Table 2. Species and GenBank accession numbers of COI and ITS2 sequences used in the phylogenetic analyses.

Anopheles species COI ITS2

An. punctimacula HQ622626, KC354818, KF698833-KF698837 JX212806-JX212814, KF698889-KF698895

An. malefactor HQ622625, KF698838-KF698842 JX212822-JX212823, KF698896-KF698897

An. neomaculipalpus JX205124, JX205125, KF698843-KF698864 JX212821, KF698898-KF698906

An. apicimacula KF698866-KF698872 JX212815-JX212819, KF698907-KF698910, KM262754-KM262760

An. mattogrossensis JX205126, KF698873-KF698874 KF698917-KF698920

An. peryassui HM022405, KF698875-KF698877 KF698911-KF698916

An. calderoni HQ642964-HQ642974, KF698801-KF698832, KF698879-KF698888

An. pseudopunctipennis KF698878 KF698921

Sequences obtained in this work are underlined.

doi:10.1371/journal.pone.0119488.t002
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sequence alignment were performed with Geneious version 6.0.6 under default parameters. Se-
quences were checked for insertions or deletions.

Phylogenetic analysis
Sequences were aligned and gaps were treated as missing data. Because saturation in substitu-
tions can have negative effects on phylogenetic inference, saturation levels were tested in
DAMBE [49]. The best-fit model of DNA substitution and the parameter estimates used for
tree construction were chosen according to the Akaike Information Criterion (AIC) as imple-
mented in jModeltest version 2.1.4 [50]. The results provided TrN+I+G and TIM3+G as the
best-fit models for the COI and ITS2 datasets, respectively. Phylogenetic trees based on ITS2,
COI or the concatenated (COI+ITS2) datasets were constructed using methods of Neighbor-
Joining (NJ) in MEGA 5.0 [46], Maximum Likelihood (ML) in PhyML 3.0 [51] and Bayesian
(BI) analysis in MrBayes [52]. To construct the NJ tree we chose Kimura’s (1980) two-parame-
ter model (K2P), typically used in the DNA barcode strategy [53]. ML and BI were run with
the parameters inferred from jModeltest.

Although all ITS2 variants were included in the ITS2 phylogeny, only the most frequent var-
iant of each specimen was included in the concatenated analysis. For Bayesian inference, the
analyses were initiated with random starting trees and the Markov chain Monte Carlo search
was run with four chains for five million (ITS2 and ITS2+COI) for ten million generations
(COI), sampling every 1,000 generations and discarding and average of 25% of each run as
burn-in. Bootstrap sampling (1,000 replicates) was performed to test inferred phylogenies.
Anopheles (Anopheles) pseudopunctipennis was used as the outgroup [54].

DNA-based approaches for species recognition
Molecular Operational Taxonomic Units (MOTUs) were identified according to the reciprocal
monophyly criterion for the different phylogenetic approaches using individual markers (COI
or ITS2) or concatenated (COI+ITS2) trees. The species delimitation plugin for Geneious [55]
was used to calculate Rosenberg’s PAB value, a test for taxonomic distinctiveness based on the
null hypothesis that the observed monophyly was found by chance alone [56]. Correspondence
between morphospecies and MOTUs in the gene trees was evaluated.

Criteria for assessing and comparing the COI barcode for specimens of the seven Arribalza-
gia Series species, included Best Match (BM), Best Close Match (BCM) and All Species Bar-
codes (ASB), as performed in TaxonDNA. These three algorithms are used to test
identification success [57]. The presence or absence of the “barcode gap”, or the result of a
smaller intraspecific divergence with respect to interspecific divergence, was evaluated. In addi-
tion, identification success was determined based on the 1% standard threshold cut-off value
suggested by The Barcode of Life Data System [58], using SPIDER [59]. Automatic Barcode
Gap Discovery (ABGD) allowed the partitioning of the DNA sequence datasets into clusters of
like taxa setting a range of maximum values of intraspecific divergence (P) without an a priori
species hypothesis [60].

Results

Species assignment
Overall, molecular confirmation agreed with the morphological identification for 83.21% of the
wild-caught females. For the remaining 16.79%, missassignments among individual species were
90.91% (n = 10) for An. apicimacula s.l., 30% (n = 9) for An. neomaculipalpus, 16.67% (n = 1)
for An.malefactor, 9.09% (n = 2) for An. punctimacula and 1.64% (n = 1) for An. calderoni.

Molecular Taxonomy of Arribalzagia Series Species
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Anopheles apicimacula s.l. was frequently confused with An. punctimacula (54.55%) or An. neo-
maculipalpus (36.63%). The latter species was also misidentified as An. punctimacula (23.33%).

The PCR-RFLP-ITS2 assay was used as an initial approach for species confirmation. The
PCR-ITS2 yielded a different product size for each species (Table 2), ranging from 393 bp for
An. punctimacula to 481 bp for An. apicimacula s.l. Interestingly, there were two slightly differ-
ent PCR product sizes for Anopheles malefactor Dyar and Knab: 396 bp (specimens from Anti-
oquia) and 401 bp (specimen from Norte de Santander). The species An. punctimacula s.s., An.
apicimacula, An. neomaculipalpus could be differentiated by their PCR-RFLP-ITS2 patterns
(Table 3). Furthermore, An.mattogrossensis and An. peryassui yielded similar banding patterns
with slight differences in band sizes, which could not be discriminated on the electrophoresis
gel. Two restriction patterns were detected for An.malefactor. Specimens from Antioquia and
Córdoba Departments yielded a similar restriction pattern to An. punctimacula s.s. However,
the ITS2 fragment corresponding to the Norte de Santander specimen was not cut by the en-
zyme, a result confirmed by bioinformatic analysis.

ITS2 sequence characterization
The Arribalzagia Series species had a range of ITS2 size from 265 bp in An. punctimacula s.s. to
353 bp in An. apicimacula from the Colombian Caribbean or lineage C. Overall, ITS2 size was
conserved at the intraspecific level, except for a few specimens within some species (S1 Table).
At the individual level, low intragenomic ITS2 variation was detected in all species and was re-
stricted to a few mutations. The highest ITS2 intragenomic mean uncorrected p-distance of
1.23% was detected for one An. calderoni specimen from Risaralda. Anopheles mattogrossensis
specimens had two ITS2 variants that differed by one bp (336 and 337 bp); the mean uncorrect-
ed p-distance between them was 1.19%. Comparison of both ITS2 variants with those available
from GenBank found that the 336 bp ITS2 variant had the same deletion as a sequence re-
ported for An.mattogrossensis from the state of Rondônia in western Brazil (AF461754). Like-
wise, the 337 bp variant was similar to the one reported for An.mattogrossensis from southern
Colombia (JX198307). Further details about the specimens, number of clones and the mean
uncorrected p-distance among ITS2 sequences can be found in S1 Table.

At the intraspecific level, two ITS2 variants were detected in An.malefactor. The ITS2 vari-
ant detected in Norte de Santander Department, NE Colombia, was identical to a previously

Table 3. Comparison of in vitro with in silico results from PCR-RFLP-ITS2 assay.

Species Agarose gel fragment sizes (bp) Bioinformatic prediction of fragment
sizes (bp)

PCR product PCR-RFLP PCR product PCR-RFLP

An. neomaculipalpus 500 259, 165, 111 452 255, 136, 61

An. apicimacula lineage C (Caribbean) 481 300, 150, 70 481 290, 130, 61

An. apicimacula lineage P (Pacific) 480 390, 70 480 372, 61, 47

An. punctimacula s.s. 397 334, 81 393 317, 76

An. calderoni 394 Uncut 401 Uncut

An. malefactor 399 Uncut; 378, 313, 113 401; 396 Uncut; 326, 70

An. mattogrossensis 505 230, 80 464* 213, 190, 61

An. peryassui 500 300, 96 464* 287, 116, 61

* An ITS2 variant of 463 bp was found that yielded 286, 116 and 61 bp in the in silico restriction analysis.

PCR: Polymerase Chain Reaction; RFLP: Restriction Fragment Length Polymorphisms; (bp): base pairs.

doi:10.1371/journal.pone.0119488.t003

Molecular Taxonomy of Arribalzagia Series Species

PLOS ONE | DOI:10.1371/journal.pone.0119488 March 16, 2015 7 / 17



reported ITS2 for a Panamanian specimen of An.malefactor, 273 bp in length (JX212823). In
contrast, specimens from a Caribbean locality in Antioquia Department, NW Colombia, had a
deletion of five base pairs (268 bp) and 12 single mutations. The uncorrected p-distance be-
tween ITS2 variants of An.malefactor from the NE and NWwas 4.5%. The overall mean un-
corrected p-distance among all ITS2 sequences for each MOTU was: An. neomaculipalpus
(0.2±0.1%), An. punctimacula s.s. (0.3±0.2%), An. calderoni (0.3±0.1%), An. peryassui
(0.5±0.2%), An.mattogrossensis (0.8±0.4%), An. apicimacula s.l. (0.9±0.2%) and An.malefactor
(2.4±0.6%). Anopheles punctimacula s.s. was molecularly confirmed in Caribbean and north-
west Colombian localities by comparison of ITS2 sequences with those from Panama. Three
fixed substitutions detected in the Panamanian specimens (positions 62, 131 and 81 of the
ITS2 alignment) [22], were also found in those from Colombia. Two additional nucleotide sub-
stitutions were detected, one transversion at position 108 of the ITS2 alignment (T!A) in
some sequences from Antioquia and La Guajira, and a unique sequence with a transition
(G!A) at position 169 from La Guajira. The mean average ITS2 interspecific K2P distance
was 48.8%. The highest ITS2 genetic distance was between An. peryassui and An.mattogrossen-
sis (66.2±3%), and the lowest between An. punctimacula s.s. and An.malefactor (11.5±1.8%)
(S2 Table). A common pentanucleotide tandem repeat (CACCT)2 present in all ITS2 of the
Arribalzagia Series species from Panama [22], was detected in five Colombian species, An.
punctimacula s.s., An. calderoni, An.malefactor, An. neomaculipalpus and An. apicimacula s.l.
Additionally, one hexanucleotide tandem repeat (TGCGCA)2 was detected in An. calderoni.

DNA barcoding
The COI alignment was 611 bp and yielded 79 unique haplotypes. There were 180 polymorphic
sites (29.46%), from which 160 were parsimoniously informative (26.18%). Nucleotide changes
mainly occurred at the third-codon positions and were silent. However, some interspecific COI
nucleotide differences led to non-synonymous amino acid substitutions and some single
amino acid differences were fixed at the species level. Anopheles punctimacula s.s. had a substi-
tution (serine to alanine) at position 171, and An.malefactor at position 191 (valine to isoleu-
cine). The average genetic distance among all COI sequences was 9.77±0.83%. Intraspecific
variation values were An. punctimacula s.s. (0.42±0.16%), An.malefactor (0.55±0.2%), An. per-
yassui (0.83±0.26%), An. neomaculipalpus (0.86±0.19%), An.mattogrossensis (1±0.33%), An.
calderoni (1.09±0.21%) and An. apicimacula s.l. (4.44±0.63%).

The most frequent An. calderoni haplotype (KF698801 = 27.27%) was shared among Pacific
region localities within 122 km (Buga-Pereira). For An. punctimacula s.s., the most frequent
haplotype (KF698833 = 66.67%) was from localities in Antioquia, Córdoba and La Guajira De-
partments (maximum straight-line distance between the farthest localities = 495 km). Lastly,
the localities of Antioquia and Córdoba contained the most frequent haplotype for An. neoma-
culipalpus (KF698843 = 20%). There was a high number of unique haplotypes in the analyzed
taxa (49.6%). The overall mean nucleotide diversity for the barcode was 0.084.

Intertaxa COI genetic distances among the seven Arribalzagia Series members ranged from
9.3±1.3% between An. punctimacula s.s. and An.malefactor, to 14.7±0.8% between An. calder-
oni and An. peryassui (S3 Table). Each of the Anophelesmembers formed a monophyletic
group in the NJ, ML and BI trees with high support (Fig. 2). Results were also supported by
Rosenberg’s PAB values that were significant for all MOTUs (p<0.05). The BM and BCM crite-
ria yielded identical results with 100% “correct” identifications. Moreover, 97.87% and 2.13%
of the COI sequences were assigned as “correct” and “ambiguous” using the ASB criterion, re-
spectively. The problematic identifications corresponded only to COI sequences of An. apici-
macula lineage C.
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Fig 2. NJ topology based on barcode (COI) sequences for members of the Arribalzagia Series. First
number in each node indicate NJ bootstrap values (in percentages), numbers in bold indicate Bayesian
posterior probability for each MOTU. Anopheles pseudopunctipenniswas included as the outgroup.

doi:10.1371/journal.pone.0119488.g002
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A COI threshold value equal or greater than 1% provided a perfect species identification for
the dataset, with the presence of a barcoding gap. The ABGDmethod consistently revealed
eight groups using an a priori intraspecific genetic divergence�1.47% under Jukes and Can-
tor’s model (JC69), supporting each morphospecies as a single species, except for An. apicima-
cula that encompassed two provisional MOTUs for all lower cut-offs.

Phylogenetic relationships
There was no saturation signal among the COI sequences (p< 0.05), validating the dataset for
phylogenetic analyses. Phylogenetic trees based on NJ, ML and BI approaches with each mark-
er (i.e. COI or ITS2) showed highly supported discrete clades for An. punctimacula s.s., An. cal-
deroni, An.malefactor, An. neomaculipalpus, An. apicimacula Caribbean and Pacific lineages,
An.mattogrossensis and An. peryassui. Two highly supported mitochondrial lineages (BPP:
0.98) were detected in all trees for An. apicimacula s.l. that corresponded exclusively to speci-
mens from the Caribbean and Pacific regions of Colombia (Figs. 2–4). Bayesian trees derived
from ITS2 and COI+ITS2 data showed very similar topologies, whereas species groups in the
COI tree were less evident.

Discussion
This study confirms that previously recognized morphospecies of the Arribalzagia Series of Co-
lombia constitute independent evolutionary lineages or MOTUs and reveals hidden lineages.
Strong molecular evidence supports at least two geographically separated MOTUs of An. apici-
macula in the Colombian Pacific and Caribbean regions, respectively. The level of COI intra-
specific variation for An. apicimacula s.l. (4.44%), compared to the standard value usually
found for Anopheles species (<2%) [61,62], and the fixed ITS2 sequence differences together
support the hypothesis that An. apicimacula is a complex [22]. These lineages are distributed

Fig 3. Bayesian topology of ITS2 sequences for species of the Arribalzagia Series.Numbers on each branch represent posterior probabilities.
Anopheles pseudopunctipenniswas the outgroup.

doi:10.1371/journal.pone.0119488.g003
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along the Chocó/Darien/Western Ecuador biodiversity hotspot [63]; a variety of factors in this
region, including landscape heterogeneity, historical demographical processes and Pleistocene
environmental changes might have driven divergence [64,65]. It will be interesting to include
An. apicimacula specimens from the type locality (Livingston, Guatemala) [66], to determine
whether either of these lineages constitutes An. apicimacula s.s. Further sampling of An. apici-
macula s.l., and the application of integrative taxonomic analysis will assist new species delimi-
tation and geographical range [67,68].

Low intragenomic ITS2 variation was detected for most of the Arribalzagia species (<1%),
with values comparable to those for other Anopheles species such as African Anopheles arabien-
sis (0.07%), An. gambiae (0.43%) [69], Neotropical An. nuneztovari (<0.2%) [70], and mem-
bers of the Albitarsis Complex (<0.57%) [71]. At the intraspecific level, an unexpected 4.5%
divergence between the N and the NE An.malefactor ITS2 variants was higher than those re-
ported among 21 species of the subgenus Nyssorhynchus (0–2.8%) [72] or members of the Albi-
tarsis Complex (0.28–1.17%) [71]. Nonetheless, ITS2 divergence was not supported by COI
analysis (K2P distance <1%). Although the greatest distance between the collection localities
for the Colombian An.malefactor specimens was 517 km, geographical distance alone cannot
explain the ITS2 differentiation. The Panamanian An.malefactor ITS2 sequences were identi-
cal to those of the Colombian NE, collected 550 km away, whereas the NW specimens collected
227 km from the Panamanian An.malefactor collection site differed. Other factors may be re-
sponsible for this divergence, e.g., although it is recognized that concerted evolution homoge-
nizes the ITS2 at the species level [73,74], differences in population size or migration rates
could also affect ITS2 evolution among populations [75]. Similar COI but highly divergent
ITS2 sequences in An.malefactor is hypothesized to be the result of mitochondrial introgres-
sion or incomplete lineage sorting at the mitochondrial locus, as observed for other species
such as An. cruzi [76–79] and it also suggests that An.malefactor comprises at least two
MOTUs. An integrative taxonomic approach that includes analysis of additional molecular
markers should provide details of population structure, demographic history, and the forma-
tion of evolutionarily independent lineages in An.malefactor [64,80].

Fig 4. Bayesian topology of the concatenatedCOI and ITS2 datasets. Numbers on each branch represent posterior probabilities. Anopheles
pseudopunctipenniswas the outgroup.

doi:10.1371/journal.pone.0119488.g004
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Morphological keys to adult females were useful for initial species identification, but some
An. apicimacula were misidentified as An. punctimacula or An. neomaculipalpus. Overall,
some Arribalzagia Series species females differ in morphological characters such as wing spot
pattern (S1 Fig.). For instance, the small and appressed dark scales on the cubital vein of An.
apicimacula s.l., which differ in form in An. punctimacula and An. neomaculipalpus, [8,26] was
not easily detected in some specimens, resulting in their misidentification. This character of
An. apicimacula is only shared with An. intermedius, a species that has been historically re-
ported in forested areas from Central and South America [81], but with just one doubtful early
record in Villavicencio, Colombia [8,82]. In this study, An.malefactor s.l. was relatively easy to
separate based on its entirely white hindtarsomere 5, which usually has at least one dark band
in An. punctimacula and An. calderoni [8]. Misidentification of specimens could result from in-
traspecific variation in wing spots as documented for other anopheline species [14,83], the loss
of thoracic scales due to the sampling technique or during the mosquito life cycle [84] or
human error in identifying ambiguous or damaged field samples. It will be important to deter-
mine if An.malefactor and An. apicimacula lineages are truly morphologically cryptic [85].

The PCR-RFLP-ITS2 strategy facilitated the identification of most members of the Arribal-
zagia Series. However, for accurate identification of An. punctimacula s.s.-An.malefactor s.l.
and An.mattogrossensis-An. peryassui, that showed similar restriction patterns, we recommend
sequencing the ITS2 or COI barcode region. Nevertheless, the low cost and effort needed to im-
plement PCR-RFLP protocols in the laboratory [25,34,86,87], suggest the importance of de-
signing a PCR-RFLP strategy based on a useful marker for the rapid and accurate
discrimination of species and lineages in the Arribalzagia Series.

Conclusions
Nuclear and mitochondrial markers recovered monophyletic morphospecies in the Arribalza-
gia Series and allowed updating records of these species in several localities of the country. This
is the first work in Colombia providing molecular confirmation of An. apicimacula, An. puncti-
macula s.s. and An.malefactor s.l. The two An. apicimacula evolutionary lineages detected, Pa-
cific and Caribbean, with fixed differences in the mitochondrial and nuclear loci, likely
represent two species. A possible mitochondrial introgression event or incomplete lineage sort-
ing during the phylogenetic history of An.malefactor is hypothesized. Information on accurate
identification of Colombian Arribalzagia Series species constitutes the baseline for future stud-
ies on their bionomics and vectorial importance that could be used for targeted and effective
control efforts.
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