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Abstract
The aims of this study were to determine if the protein source of the medium influences

zebu embryo development and if developmental kinetics, developmental block and pro-

grammed cell death are related. The culture medium was supplemented with either fetal

calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or

Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post

insemination - hpi -, respectively). The Slow group was further separated into two groups:

those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth

cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane

potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher in-

cidence of developmental block than the Fast group. The embryos supplemented with fetal

calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential

were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more

frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal

calf serum reduces blastocyst development and quality, but the mechanism appears to be

independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible

mechanism of programmed cell death activation prior to genome activation. The apoptotic

cells observed in the slow-developing embryos suggested a relationship between pro-

grammed cell death and embryonic developmental kinetics in zebu in vitro-

produced embryos.

Introduction
In vitro embryo production (IVEP) is used in bovine herds around the world. IVEP was ini-
tially used as a final option for donor cows that could not establish pregnancies through other
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means. However, improvement in this technology has enabled it to become a very practical
and competitive reproductive tool, and large-scale IVF programs have been successfully imple-
mented [1,2].

Zebu cattle greatly contribute to large-scale IVEP in both milk and beef herds [1,2]. Bos in-
dicus cows usually have four-fold more ovarian antral follicles than Bos taurus cows, with aver-
ages ranging from 18 to 25 recovered oocytes per OPU session [3]. Furthermore, Bos indicus
breeds are well adapted to regions with warm weather and high humidity and can maintain
productivity under stressful conditions.

Although current IVF results for bovine species are considered satisfactory, approximately
60% of fertilized oocytes do not complete the pre-implantation phase. This period is character-
ized by the cleavage of a one-cell embryo until just beyond the blastocyst stage and represents
an extremely dynamic period of embryogenesis. At this point, the embryo must undergo sever-
al cell divisions, epigenetic reprogramming, activation of the embryonic genome, compaction,
differentiation into two cell types and development of the blastocoel cavity [4,5].

Among these events, the activation of the embryonic genome is particularly demanding.
After activation of the embryonic genome, which primarily occurs at the eight- to 16-cell stage
in bovines, the embryo becomes dependent on new transcripts produced by the nucleus to con-
tinue development [6]. Embryos that fail to accomplish this task do not survive beyond the
eight-cell stage; this phenomenon is known as developmental block. At this stage, a low level of
DNA fragmentation [7] and rapid development [8] are indicative of embryonic quality.

The addition of fetal calf serum (FCS) to the culture medium has been studied extensively
and appears to affect embryo viability. Despite its undefined and variable composition, FCS is
commonly used as a component of culture media for IVEP because it may provide higher rates
of blastocysts [9]. However, FCS is known to cause adverse effects such as lipid accumulation
[10], changes in mitochondrial structure [11], induction of apoptosis [10] and modifications in
gene expression [12]. These findings suggest that FCS may be involved in blastomere apoptosis
and fragmentation and, possibly, developmental block.

Embryo fragmentation is a morphological feature that has been recognized as a determinant
of viability and appears to be highly related to cellular apoptosis [13]. Increased DNA fragmen-
tation may be related to infertility and implantation failure [14].

In the present study, we investigated whether the ability of Bos indicus embryos to overcome
developmental block and reach the blastocyst stage is influenced by the protein source in the
culture medium (FCS or BSA). In addition, we investigated the association between the speed
of development, embryonic block and the activation of programmed cell death (PCD) in the
first cell cycles. Our hypotheses were as follows: (1) embryos cultured with FCS have higher
rates of developmental block, lower quality and reduced probability of reaching the blastocyst
stage; (2) slow-developing embryos have higher rates of developmental block, lower quality
and a reduced probability of reaching the blastocyst stage; (3) the developmental block induced
by FCS leads to DNA fragmentation of eight-cell embryos; and (4) the speed of embryo cleav-
age is negatively correlated with developmental block and PCD.

FCS decreased blastocyst rates, embryo quality and the number of cell cycles completed.
However, there is no evidence that the effects of FCS on embryo development involve DNA
breakage. Fast-developing embryos had higher blastocyst rates, lower rates of developmental
block and PCD and presented better quality than slow-developing embryos.

Material and Methods
All chemicals used in this study were purchased from Sigma-Aldrich (St Louis, MO, USA) un-
less stated otherwise.
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Study 1: Evaluation of the Potential for Development into Blastocysts
Experimental Design. The experimental design of Study 1 is illustrated in Fig. 1.
Animal Studies. The ovaries used in this study were obtained from a commercial slaugh-

terhouse, from animals that were slaughtered following international guidelines of meat pro-
duction destined to human consumption. Therefore, ethical approval was not requested.

Fig 1. Experimental design. Experiment 1: Oocytes/embryos were subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC).
The embryos were classified according to the time to reach the fourth cell cycle as either Fast (48 h post-insemination—hpi) or Slow (90 hpi). The blastocyst
rate (% Bl) and total nuclei count were assessed at eight days post-insemination (D8). To evaluate the hatching rate (% Be) and nuclei count of the inner cell
mass (ICM) and trophectoderm (TE) of the hatched embryos were assessed on day 9 (D9). Experiment 2: The Slow group was further separated into two
groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). The cleavage and blastocyst
rates, cell number, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated in the embryos.

doi:10.1371/journal.pone.0119463.g001
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Ovary Collection and In VitroMaturation (IVM). Ovaries from zebu cows were collect-
ed at Raja slaughterhouse in Piracicaba, São Paulo, stored in saline solution at 25°C to 30°C
and transported to the laboratory. Oocytes with at least three layers of compact cumulus cells
and homogeneous cytoplasm were matured in TCM 199 containing Earle’s salts and L-gluta-
mine (Gibco Labs) supplemented with 10% fetal calf serum (FCS; Gibco Life Technologies), so-
dium pyruvate (22 μg/ml), gentamycin (50 μg/ml), FSH (0.5 μg/ml), LH (0.5 μg/ml) and
estradiol (1 μg/ml). IVM was performed in drops of 100 μL covered in mineral oil at 38.5°C
and 5% atmospheric CO2 for 22 to 24 h.

In Vitro Fertilization (IVF). IVF was performed in drops of 100 μL of TALP medium
supplemented with 10 μg/mL heparin, 22 μg/ml sodium pyruvate, 50 μg/ml gentamycin, 6 mg/
ml fatty acid-free bovine serum albumin (FAF BSA) and PHE (2 μMpenicillamine, 1 μM hypo-
taurine and 0.25 μM epinephrine). Previously tested, frozen-thawed sperm of a Nelore sire
kindly offered by CRV Lagoa, Sertãozinho, São Paulo, was centrifuged at 200 X g for 30 min in
a 90–45% Percoll gradient. After a visual assessment of motility, the sperm was diluted to a
final concentration of 2 x 106 motile sperm/ml. Fertilization was performed in drops in which
sperm and oocytes (30 oocytes/drop) were co-cultured for 20 h under the same conditions
used for IVM.

In Vitro Culture (IVC). After gamete co-incubation, the cumulus cells were removed via
successive pipetting. The presumptive zygotes were washed and moved to 100-μL drops (20
embryos per drop) of synthetic oviduct fluid (SOF [15]) supplemented with 10% FCS or 0.8%
FAF BSA. In vitro culture was performed in a modular incubator in a low-O2 atmosphere (5%
CO2, 5% O2 and 90% N2).

At 48 h post-insemination (hpi), the cleavage rate was assessed, and the embryos that were
not cleaved were removed. At this time, the culture medium was renewed (feeding). The em-
bryos were separated based on the speed of development: Fast—embryos that reached the
fourth cell cycle at 48 hpi and therefore had between five and eight cells; and Slow—embryos
that reached the fourth cell cycle at 90 hpi. Embryo development was assessed at days 8 and 9
post-insemination and 383 blastocysts were observed for evaluation of hatching rates. Expand-
ed and hatched blastocysts were used for cell number analysis.

Qualitative Embryo Evaluation. For the estimation of cell numbers, 75 expanded D8-
blastocysts were fixed in 3.7% paraformaldehyde with 10% Triton X-100 for 1 h and then
transferred to a PBS solution supplemented with 0.3% BSA for 1 h. The embryos were stained
via immersion in glycerol containing the vital dye Hoechst 33342, and nuclear counting was
performed by epifluorescence microscopy.

The hatched D9-embryos (n = 66) were qualitatively analyzed based on the number of cells
of the inner cell mass (ICM) and the ratio of ICM and trophectoderm (TE) cells, which was
based on differential staining by fluorochrome [16]. The zona pellucida (ZP) was removed
from the embryos, and the embryos were washed in TCM-199 Hepes with 10% FCS and in
TCM-199 Hepes without FCS. The embryos were then incubated on ice for 10 min in a picric
acid solution (10 mM) and polyvinyl pyrrolidone (PVP; 3 mg/ml) in PBS and washed in TCM-
199 Hepes. The embryos were subsequently incubated at 39°C for 15 min in an inactivated
anti-bovine rabbit serum and diluted 1:10 with TCM-199 medium containing bicarbonate.
After washing in TCM-199 medium with 10% FCS, the embryos were incubated at 39°C for 15
min in guinea pig complement diluted 1:10 in TCM-199 Hepes containing 2 μg/ml Hoechst
33342 and 1 μg/ml propidium iodide (PI). Finally, the embryos were washed in PBS containing
0.3% BSA and fixed in blades with glycerol.

The number of live and pyknotic nuclei in the ICM and TE of the embryos was evaluated by
epifluorescence microscopy. All nuclei were stained with Hoechst 33342 (vital dye; blue
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fluorescence). Nuclei with pink fluorescence due to staining with PI (non-vital dye) were con-
sidered TE cells and the number of ICM cells was obtained by subtraction.

Study 2: Evaluation of Developmental block and Apoptosis
Experimental Design. To analyze embryonic development block and apoptosis, the em-

bryos were separated based on their speed of development. Those that reached the fourth cell
cycle (between 5 and 8 cells) at 48 hpi were classified as Fast; those presenting exactly 4 cells at
48 hpi were classified as Slow/4 cell, and those that reached the fourth cell cycle at 90 hpi were
classified as Slow (Fig. 1).

For qualitative analysis, the embryos from the Fast group were evaluated using Comet and
TUNEL assays and Annexin V and Mito Tracker/JC-1 staining at 48 hpi. A portion of the Fast
group was maintained in culture for up to 90 hpi for evaluation by the TUNEL technique and
stained with Mito Tracker and JC-1. The embryos from the Slow/4 cell group were analyzed by
TUNEL assay and Annexin V and Mito Tracker/JC-1 staining at 48 hpi. The Slow group was
evaluated by the Comet assay at 90 hpi.

Comet Assay. Embryos from the Slow (at 90 hpi) and Fast (at 48 hpi) groups were sub-
jected to the Comet assay to detect DNA damage in isolated blastomeres. From the embryos
treated with BSA, 58 of the Fast group and 47 of the Slow group were evaluated; from the em-
bryos treated with FCS, 33 of the Fast group and 53 of the Slow group. Embryos were first pre-
pared by removing the ZP with Tyrode’s solution, and the blastomeres were isolated in a
solution free of calcium and magnesium. Then, the blastomeres were transferred to a slide with
a thin layer of 1% agarose, covered with a low melting point agarose gel [17] and incubated at
50°C for 2 h in lysis solution (10 mM Tris, pH 10, with 2.5 mMNaCl, 100 mMNa2-EDTA, 1%
Triton X-100 and 10 μg/ml K proteinase). After 20 min of equilibration in the electrophoresis
solution (1 mMNa2-EDTA and 300 mMNaOH), the slides were subjected to electrophoresis
for 20 min at 25 V to separate the degraded DNA.

The slides were stained with ethidium bromide, and the DNA damage was assessed by fluo-
rescent microscopy by evaluating the tail length (measured from the cell membrane to the end of
the tail) and the proportion of damaged DNAmeasured using KS 400 software (Carl Zeiss, Inc.).

Tunel Assay. In order to evaluate a possible influence of time of culture on DNA fragmen-
tation, the embryos from the Fast and Slow/4 cell groups were analyzed at 48 hpi and at 90 hpi.
Of the embryos treated with BSA, 32 from the Fast group and 30 from the Slow group were
evaluated; of the embryos treated with FCS, 28 from the Fast group and 18 from the Slow
group. The embryos were washed in PBS containing 1 mg/ml PVP and fixed in 3.7% parafor-
maldehyde for 1 h. The embryos were then permeabilized for 1 h in 0.5% Triton X-100 and
0.1% sodium citrate diluted in PBS and washed in PBS with PVP. The embryos were then incu-
bated in a humidity chamber for 1 h at 37°C in a buffer solution of TDT 10X, CoCl2, 2 mM
dATP, 0.5 units/μl terminal deoxynucleotidyl transferase enzyme and 0.5 mM Cy3-dUTP and
were washed in PBS with PVP.

For DNA visualization by epifluorescence microscopy, slides were prepared by staining
with Hoechst 33342 diluted in glycerol (1 μg/ml). The blue fluorescent nuclei (stained using
Hoechst 33342) indicated total cell number, and red fluorescent staining (stained using
Cy3) indicated cells with fragmented DNA. For each replicate, a few embryos were incubated
for 1 h in buffer containing 50 U/ml DNase, thus establishing a positive control group. The
results were evaluated based on the number of embryos with more than 50% TUNEL-
positive nuclei.

Annexin V Staining. The Annexin V (Molecular Probes, Inc.) staining technique enables
the differentiation of cell death by apoptosis from cell death by necrosis. In viable cells,
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phosphatidylserine (PS) is located on the inner surface of the cytoplasmic membrane; in cells
in the death process, the PS is displaced from the inner to the outer membrane. Annexin V,
which is bound to a fluorescent label, binds to PS in the presence of Ca+, enabling its visualiza-
tion by epifluorescence microscopy. Propidium iodide (PI), a dye that is permeable to damaged
membranes and therefore identifies dead cells, assists in distinguishing cells undergoing apo-
ptosis (in which no membrane has been compromised) from necrotic cells. Thus, the results
are analyzed as follows: living cells are not stained with PI (neither the cytoplasm nor nucleus);
cells undergoing apoptosis are externally stained with Annexin V (blue); and the cytoplasm of
necrotic cells is stained with Annexin V, and their nuclei are stained with PI (red). A failure of
this method concerns anucleate cells, in which no marking occurs, making it impossible to de-
termine whether they are in the process of apoptosis or necrosis.

The embryos from the Fast and Slow/4 cell groups (both at 48 hpi) were washed in PBS and
transferred to the Annexin 1X buffer (200 μL of Annexin 5X buffer in 800 μL of deionized
water). Subsequently, they were incubated in a solution of Biotin-X Annexin V (2.5 μL Biotin-
X Annexin V in 50 μL 1X Annexin buffer) at 37°C for 45 min. The embryos were then trans-
ferred to an Alexa Fluor 350 solution (0.5 μL of 1 mg/ml streptavidin Alexa Fluor 350 in 50 μL
of 1X Annexin buffer) for 30 min at 37°C. After this period, the embryos were washed in 1X
Annexin buffer and stained with PI (0.2μL of 1 mg/ml PI in 200 μL of Annexin 1X buffer) for
10 min. The embryos were then evaluated by fluorescence microscopy to determine the num-
ber of embryos in which more than 50% of cells were stained blue.

Mito Tracker Green and JC-1. Changes in membrane potential were qualitatively evaluat-
ed using the marker Mitotracker Green as well as JC-1 (Molecular Probes, Inc.) in Fast and
Slow/4 cell embryos at 48 and 90 hpi to investigate possible alterations in mitochondrial oxida-
tive phosphorylation. The embryos were incubated with 7.5 μM JC-1 for 40 min and 0.05 μM
Mitotracker Green for 30 min and then observed by fluorescence microscopy.

Statistical Analysis. For statistical analysis of the cleavage, blastocyst and hatching rates,
as well as data obtained using TUNEL and Annexin V techniques, the variable responses were
presented as percentage and subjected to a logistic regression test using the Car statistical pack-
age of “R” software [18,18]. The average number of cells and differences in the intensity of nu-
clei damage in the blastomeres (measured using the Comet assay) were presented as mean
and standard error and were evaluated by analysis of variance followed by Tukey’s t test
(JMP software version 2.0.4; SAS Institute). In Study 1, the number of nuclei at D8 and the
hatching rates were conducted separately. In Study 2, the Comet assay, TUNEL, Annexin
V and JC-1 were conducted separately. Differences were considered significant when P�
0.05. Changes in the distribution of mitochondria and membrane potential were
evaluated qualitatively.

Results

Study 1
Embryos supplemented with BSA had higher cleavage (P< 0.01) and blastocyst rates (P< 0.01)
than those cultured with FCS (93.5% vs. 84.0% and 31.9/% vs. 26.2%, respectively). Blastocyst
rates were higher among Fast embryos than both slow-developing groups in groups cultured
with either BSA (54.2% vs. 32.1%; P< 0.01) or FCS (49.4% vs. 31.8%; P< 0.01). There was no
significant difference in the blastocyst rates of slow-developing embryos in the groups cultured
with different protein sources (32.1% for BSA and 31.8% for FCS; P = 0.910; Table 1).

The hatching rate of the BSA group was higher than that of the FCS group for both fast-
(78.4% vs. 38.9%; P< 0.01) and slow-developing (69.7% vs. 37.9%; P = 0.01) embryos.

Embryonic Developmental Block and Apoptosis
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However, there were no differences in the hatching rates of Fast and Slow embryos cultured
with BSA (P = 0.274) or FCS (P = 0.920).

Of the slow-developing embryos, 68% in both groups (BSA, 32.1% ± 3.0 and FCS, 31.8% ±
3.0) suffered developmental block after reaching the fourth cell cycle. Of the fast-developing
embryos, 46% in the BSA group (54.2% ± 1.9) and 51% of those in the FCS group (49.4% ± 2.1)
underwent developmental block at this stage.

Approximately 50.7 (1,235/2,434) and 19.9 (485/2,434) % of the cleaved embryos reached
the fourth cell cycle at 48 hpi (fast developing group) and 90 hpi (slow-developing group), re-
spectively; the remaining embryos (n = 714) did not reach the fourth cycle prior to 90 hpi.

The blastocysts from the Fast and Slow groups hatched in D9 supplemented with BSA had
higher cell numbers than the fast- (181.4 ± 7.1 vs. 126.8 ± 9.0) and slow-developing groups
(148.5 ± 12.8 vs. 108.6 ± 9.0) supplemented with FCS (P< 0.01; Table 2).

The embryos supplemented with FCS had fewer cells in the ICM (42.2 ± 3.7) and TE (79.9 ±
5.2) than those supplemented with BSA (58.4 ± 3.4 and 111.2 ± 5.2; P = 0.002 and P< 0.01, re-
spectively; Table 3; Fig. 2). In embryos supplemented with BSA, the Fast group had more cells
in the ICM than the Slow group (64.6 ± 4.1 vs. 47.4 ± 4.7; P = 0.012; Table 4). Data regarding
nuclei number in the ICM and TE from embryos supplemented with FCS are shown in
Table 5. The blastocysts produced with FCS also had more pyknotic nuclei in the ICM than
those produced with BSA (5.8 ± 0.8 vs. 3.4 ± 0.4; P = 0.012). However, the ICM/TE ratio re-
mained constant among the treatments (0.56 ± 0.04 and 0.56 ± 0.04 for BSA and FCS, respec-
tively; Table 3).

Table 1. Cleavage, blastocyst (8 days post-insemination) and hatching rates (9 days post-insemination) of the Fast and Slow development
groups of embryos at the 5–8 cell stage cultured with bovine serum albumin (BSA) or fetal calf serum (FCS) as protein supplements

Protein Source Oocytes Cultured Cleaved Group Embryos in the
4th cell cycle

Blastocysts Hatched
blastocysts

(n) (n) (n) (%) (n) (%) (n) (%) (n) (%)

BSA 1505 1377 1288 93.5a Fast 670 52.0a 363 54.2a 149/190 78.4a

Slow 240 18.6b 77 32.1b 23/33 69.7a

FCS 1448 1364 1146 84.0b Fast 565 49.3a 279 49.4a 51/131 38.9b

Slow 245 21.4b 78 31.8b 11/29 37.9b

. The blastocyst rates were calculated based on the number of embryos that reached the 4th cell cycle.

a, b—different letters in the same column indicate a significant difference (P � 0.05).

doi:10.1371/journal.pone.0119463.t001

Table 2. Nuclei number of expanded blastocysts 8 days after IVF (Bx—D8) and from hatched blastocysts 9 days after IVF (Be—D9) classified
according to the speed of development (Fast or Slow) and sources of protein (BSA or FCS).

ProteinSource Group Day 8 Bx nunclei number (mean ± SE) Day 9 Be nunclei number (mean ± SE)

BSA Fast 134.2 ± 9.1 (24) a 181.4 ± 7.1 (25) a

Slow 119.4 ± 8.3 (10) ab 148.5 ± 12.8 (14) ab

FCS Fast 124.3 ± 4.5 (30) ab 126.8 ± 9.0 (20) b

Slow 101.1 ± 7.8 (11) b 108.6 ± 13.8 (7) b

a, b
—Different letters in the same column indicate significant differences (P � 0.05).

doi:10.1371/journal.pone.0119463.t002
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Table 3. Nuclei number in the ICM and TE from hatched blastocysts 9 days after IVF (Be—D9) classified according to the sources of protein
(BSA or FCS).

Protein
source

N Nuclei number in the
IMC (Mean ± SE)

Pyknotic nuclei number in
the ICM (Mean ± SE)

Nuclei number in the
TE (Mean ± SE)

Pyknotic nuclei number in
the TE (Mean ± SE)

ICM/TE ratio
(Mean ± SE)

BSA 39 58,4 ± 3,4 a 3,4 ± 0,4 a 111,2 ± 5,2 a 8,0 ± 1,0 a 0,56 ± 0,04 a

FCS 27 42,2 ± 3,7 b 5,8 ± 0,8 b 79,9 ± 5,2 b 11,0 ± 1,4 a 0,56 ± 0,05 a

a, b
—Different letters in the same column indicate significant differences (P � 0.05).

doi:10.1371/journal.pone.0119463.t003

Fig 2. Differential staining by fluorochrome. Epifluorescence photomicrography of the differential staining by fluorochrome of hatched blastocysts cultured
with two sources of protein and classified according to the speed of development: A) Fast developing embryo cultured with BSA; B) Slow developing embryo
cultured with BSA; C) Fast developing embryo cultured with FCS; and D) Slow developing embryo cultured with FCS.

doi:10.1371/journal.pone.0119463.g002
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Study 2
The Comet assay revealed that the Slow group supplemented with either FCS or BSA exhibited
significantly higher tail length and degraded DNA density than the Fast group (P< 0.01 in all
comparisons; Fig. 3; Table 6).

Fragmented nuclei were not observed by TUNEL assay in any group (Fast and Slow/4 cell
supplemented with BSA or FCS) at 48 hpi. However, at 90 hpi, TUNEL-positive nuclei were
observed (Fig. 4). In the Fast and Slow/4 cell groups, 25.0% and 41.7% of the embryos,

Table 4. Nuclei number in the ICM and TE from hatched blastocysts 9 days after IVF (Be—D9), supplemented with BSA, classified according to
the speed of development (Fast or Slow).

Speed of
development

N Nuclei number in the
IMC (Mean ± SE)

Pyknotic nuclei number in
the ICM (Mean ± SE) *

Nuclei number in the
TE (Mean ± SE) *

Pyknotic nuclei number
in the TE (Mean ± SE) *

ICM/TE ratio
(Mean ± SE) *

Fast 25 64,6 ± 4,1a 3,6 ± 0,5 116,8 ± 4,9 6,9 ± 1,0 0,57 ± 0,03

Slow 14 47,4 ±4,7b 3,1 ± 0,8 101,8 ± 11,3 9,8 ± 2,3 0,55 ± 0,08

a,b
—Different letters in the same column indicate significant differences (P � 0.05).

*—There were no significant differences between treatments (P � 0.05).

doi:10.1371/journal.pone.0119463.t004

Table 5. Nuclei number in the ICM and TE from hatched blastocysts 9 days after IVF (Be—D9), supplemented with FCS, classified according to
the speed of development (Fast or Slow).

Speed of
development

N Nuclei number in the
IMC (Mean ± SE) *

Pyknotic nuclei number in
the ICM (Mean ± SE) *

Nuclei number in the
TE (Mean ± SE) *

Pyknotic nuclei number
in the TE (Mean ± SE) *

ICM/TE ratio
(Mean ± SE) *

Fast 20 45,7 ± 4,5 6,5 ± 1,1 81,1 ± 6,0 11,3 ± 1,7 0,60 ± 0,07

Slow 7 32,1 ± 3,7 4,0 ± 0,6 76,4 ± 10,5 10,0 ± 2,1 0,43 ± 0,03

*—There were no significant differences between treatments (P � 0.05).

doi:10.1371/journal.pone.0119463.t005

Fig 3. Comet assay. Epifluorescence photomicrography of the results for blastomeres isolated from embryos during the fourth cell cycle, which were
classified according to the speed of development as either Fast developing (A) or Slow developing (B). The arrow indicates migrated DNA.

doi:10.1371/journal.pone.0119463.g003
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Table 6. Assessment of DNA fragmentation using the Comet assay (tail length and density) and nuclear diameter of the blastomeres of
embryos in the fourth cell cycle classified according to the speed of development as Fast (at 48 hpi) or Slow (at 90 hpi) and cultured in media
with different sources of protein.

Protein
Supplementation

Group Embryos in the 4th cell
cycle (n)

Tail density (%)
± Standard error

Tail length (μm)
± Standard error

Nucleus Diameter (μm)
± Standard error

BSA Fast 58 12.67 ± 1.26 b 27.89 ± 2.55 b 67.65 ± 3.29

Slow 47 43.38 ± 3.08 a 65.66 ± 5.05 a 63.59 ± 4.09

FCS Fast 33 14.45 ± 2.57 b 23.08 ± 2.72 b 71.83 ± 3.89

Slow 53 44.72 ± 3.10 a 74.59 ± 5.84 a 70.30 ± 3.31

a, b
—Different letters in the same column indicate significant differences (P � 0.05).

doi:10.1371/journal.pone.0119463.t006

Fig 4. TUNEL assay. Epifluorescence photomicrography of embryos at 48 and 90 hpi classified according to the speed of development as either Fast
(reached the fourth cell cycle at 48 hpi) or Slow/4 cells (exactly 4 cells and prior to the fourth cell cycle at 48 hpi). A) Fast embryo at 48 h of culture; B) Slow/4
cell embryo at 48 h of culture; C) embryo at 48 h of culture submitted to DNA fragmentation via exposure to DNase (technique positive control); D) Fast
embryo at 90 h of culture; E) Slow/4 cell embryo at 90 h of culture; and F) embryo at 90 h of culture submitted to DNA fragmentation via exposure to DNase.
The blue fluorescent nuclei indicate total cell number and red fluorescent staining indicates cells with fragmented DNA.

doi:10.1371/journal.pone.0119463.g004
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respectively, exhibited greater than 50% TUNEL-positive nuclei (P = 0.068); there were also no
significant differences between the embryos supplemented with BSA and those supplemented
with FCS (32.3 vs. 32.6%; P = 0.969).

The results of Annexin V staining in the Fast and Slow/4 cell groups to assess apoptosis and
necrosis are illustrated in Fig. 5. The number of Annexin-positive blastomeres was higher in
the Slow/4 cell embryos than the Fast embryos (14.3% vs 1.2%; P< 0.01). There were no differ-
ences between the rates of positive cells in the embryos supplemented with BSA (7.9%) and
FCS (7.1%). No necrotic nuclei (stained with PI) were observed; however, there were many
fragments of anucleated cytoplasm, complicating the results analysis. Among the embryos sup-
plemented with BSA, 15% of the Fast group and 21% of the Slow/4 cell group had at least one
anucleated blastomere. Among the embryos supplemented with FCS, 9% and 7% of the Fast
and Slow/4 cell groups, respectively, had at least one anucleated blastomere.

No membrane potential was detected via JC-1 at 48 hpi regardless of the speed of develop-
ment. However, the organelles exhibited a low mitochondrial membrane potential, as demon-
strated by staining with Mitotracker Green. Both markers indicated the existence of membrane
potential at 90 hpi, at which time nuclear fragmentation was also observed (Fig. 6).

Discussion
In this study, we investigated the influence of the protein source in the culture medium on the
ability of bovine embryos to overcome developmental block and reach the blastocyst stage. We

Fig 5. Annexin V staining. Epifluorescence photomicrography of embryos during the fourth cell cycle at 48 hpi: A) embryo with blastomeres undergoing
apoptosis; B) blastomeres with blue staining indicating a positive reaction to the Annexin V antibody; and C) blastomeres without membrane permeability to
propidium iodide.

doi:10.1371/journal.pone.0119463.g005
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also studied the association between embryonic block and the activation of programmed cell
death during the first cell cycles. Embryos cultured with FCS had lower blastocyst rates and
were of lower quality compared with those produced with BSA. In addition, the speed of devel-
opment appears to be associated with PCD and developmental block.

The embryos produced with BSA had higher hatching rates than those produced with FCS,
indicating that serum influences embryo quality and development capacity. Rooke et al. [20]
observed that FCS may alter embryo development in the ovine species; they also reported a bi-
phasic effect in which the inclusion of FCS at the beginning of IVC retarded embryo develop-
ment. However, the inclusion of serum during the last days of IVC produced a higher
blastocyst rate.

Whether supplemented with BSA or FCS, the embryos from the Fast group had higher blas-
tocyst rates than the embryos from the Slow group, which had higher rates of developmental
block at the fourth cell cycle. These results are in agreement with previous reports of higher
blastocyst rates among fast-developing embryos [19,8]. Slow-cleaving embryos might have a
higher incidence of chromosomal abnormalities, altered gene expression and increased DNA
double-strand breaks compared to rapidly cleaving embryos [8,7]. In contrast, there are reports
of abnormalities in the expression of imprinted genes in fast-developing mice embryos [20].
However, there were no differences in the hatching ability or the ICM/TE ratio among fast-
and slow-developing embryos supplemented with either protein source. These results suggest
that the developmental blocks at the beginning of embryo development promote selection that
results in equivalent potential of the embryos to reach the blastocyst stage in both the fast- and
slow-developing groups.

Other studies have also shown that fast-developing embryos present better quality than
slow-developing embryos [21,22,23]. It is important to consider that the selection time frame
used in the present study was not particularly restrictive. Studies on timing of embryo develop-
ment performed with time-lapse videosystems provide more detailed information. Somfai et al.
[24], using time lapse cinematography, described oocytes showing direct division from one cell
to three or four blastomeres, a phenomenon linked to a high frequency of
chromosomal abnormalities.

The embryos produced with BSA exhibited increased cell numbers when they developed
from expanded to hatched blastocysts. This difference indicates that the embryos from the Fast
and Slow groups completed 0.4 and 0.3 cell cycles, respectively, during this period (Table 2).

Fig 6. Mitotracker Green and JC-1 staining. Epifluorescence photomicrography of the staining of embryos at 90 hpi: A) blastomeres stained in green =
membrane potential detected via staining with Mitotracker Green; B) blastomeres stained in red = membrane potential detected via staining with JC-1; and C)
blastomeres stained in green = the absence of membrane potential detected via staining with JC-1.

doi:10.1371/journal.pone.0119463.g006
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This phenomenon was not observed among embryos supplemented with FCS, which did not
exhibit an increase in the number of nuclei from one stage to the next. This lack of increase in
the number of nuclei may explain the low hatchability of these embryos, indicating again that
FCS leads to lower development capacity and embryonic quality. Another possibility is that
embryos supplemented with FCS can accelerate the mechanism of programmed cell death by
stimulating factors such as the apoptosis-inducing factor (AIF), which is required for the for-
mation of the blastocoel [25]. Thus, the reduced cell number could be due to the presence of
fewer cells at the induction of apoptosis for the formation of the blastocoel. Consequently, the
number of remaining cells (that are able to replicate) that are prepared for the opening of the
blastocoel cavity would be lower in the embryos treated with FCS. Despite the fact that embry-
os produced with BSA had higher quality than the embryos produced with serum, it is impor-
tant to consider that BSA is essentially a protein derived from serum. Therefore, other
components of FCS must be harmful for early development of bovine embryos.

The differential staining technique highlights characteristics that are of great importance for
embryo survival, such as the ICM/TE ratio and the distribution of morphologically altered nu-
clei. The embryos supplemented with FCS exhibited lower numbers of total nuclei in the ICM
and TE as well as higher number of pyknotic nuclei in the ICM. However, the ICM/TE ratio re-
mained constant among the treatments, indicating that the difference in cell number and em-
bryo quality did not occur due to any effect induced by FCS on differentiation but instead most
likely occurred at an earlier stage of development. Alternatively, the total cell number of blasto-
cysts cultured with FCS could be influenced by growth factors. Growth factors can accelerate
the mechanism of PCD by stimulating factors such as apoptosis-inducing factor (AIF). Thus,
the smaller number of cells reported here could be due to a reduced number of cells available at
the induction of apoptosis for the opening of the blastocoel. Consequently, the number of re-
maining cells (that are able to replicate) would be lower in the embryos that were treated with
FCS, which exhibited early induction of cavity formation.

The pyknotic nuclei observed may be related to embryonic cell death; however, this may be
a survival and not necessarily a destruction mechanism [26]. The apoptosis of abnormal cells
can be a mechanism for the removal of damaged cells and may not be lethal in embryos that
also have normal nuclei [27].

Nuclear fragmentation was estimated using the Comet assay, and the Slow group exhibited
higher DNA degradation than the Fast group. This DNA damage may reduce the speed of de-
velopment and increase the developmental block occurring at this phase. The embryos supple-
mented with BSA or FCS exhibited no difference in the amount of degraded DNA. These data
suggest that the effects of FCS are not directly involved in DNA breakage. Serum may cause in-
creased sensitivity to apoptosis induction systems involving cytokines or other constituents,
therefore exerting an indirect effect in the blocking of embryo development.

However, the duration of the culture could have exerted an effect on the DNA damage ob-
served in the Comet assay; the embryos of the Fast group reach the fourth cell cycle 48 h after
IVF, and the embryos of the Slow group required up to 90 h to reach the same stage. Thus,
DNA damage was also analyzed in the Slow/4 cell group using the TUNEL technique before
these embryos reached the fourth cell cycle. In this case, the embryos of the Fast and Slow/4
cell groups were not in the same cell cycle and had blastomeres of varying sizes, preventing a
comparison of their Comet assays results.

Fragmented nuclei were not observed in any group assessed within 48 hpi; however, a signif-
icant increase in the number of TUNEL-positive nuclei was observed at 90 hpi. These data are
in accordance with other reports indicating that TUNEL-positive cells are first observed in em-
bryos cultured in vitro between the six- and eight-cell stages [30]. Together, these data indicate
that there may be some resistance to nuclear fragmentation during the first three days of
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culture. Brad et al. [26] reported that the block to apoptosis occurs in two-cell embryos at two
points in the apoptotic cascade: at the activation of caspase-9 activity and during caspase-
mediated DNA damage.

Annexin V staining was performed to detect early signs of apoptosis (PS exposure) and ne-
crosis (membrane permeability). The exposure of PS observed at 48 hpi may indicate the acti-
vation of a cell death mechanism prior to nuclear fragmentation because no DNA
fragmentation was detected via the TUNEL assay during the same period. There is limited in-
formation in the literature to correlate early embryonic development with PS exposure; howev-
er, when combined with other techniques, this could be an interesting tool to understand the
mechanism of apoptosis in embryos.

Staining with Mitotracker Green and JC-1 permitted us to assess the changes in membrane
potential and also helped us determine whether a change in mitochondrial oxidative phosphor-
ylation of the embryos is associated with DNA fragmentation. The absence of membrane po-
tential at 48 hpi may indicate that low ATP production limits the action of certain enzymes
involved in the apoptosis process. After 90 hpi, a mitochondrial membrane potential was veri-
fied, which coincided with the appearance of apoptotic nuclei. ATP is necessary for the release
of cytochrome C, an enzyme involved in caspase activation that can cause cell death by apopto-
sis [28]. There is evidence that mitochondria play a central role in regulating programmed cell
death and that the release of proapoptotic factors such as cytochrome C and AIF (from the mi-
tochondria) is a primary event in caspase activation [29]. Thus, the absence of membrane po-
tential at 48 hpi could prevent or delay death by apoptosis and could be a mechanism
underlying the absence of apoptosis observed via the TUNEL technique in embryos at 48 hpi.

Some of the nuclear fragmentation may have been triggered by oxidative stress caused at the
moment of handling the embryos at 48 hpi, when they are subjected to a sudden change in the
O2 rate. There is evidence that oxidative stress can cause mitochondrial dysfunction [30] and
increase DNA damage in embryos [31], thus potentially influencing apoptotic cell death in-
duced by oxidative stress [32].

The specific characteristics of Bos indicus breeds must also be considered. In addition to dif-
fering numbers of antral follicles, zebu and taurine cows diverge in several aspects, such as es-
trus manifestation [33], progesterone concentration, follicle size [34] and IGF-I and insulin
concentrations [35]. Furthermore, zebu embryos differ from taurine embryos with respect to
lipid amount and tolerance to cryopreservation [36]. Therefore, the findings obtained in this
study may not extend to Bos taurus embryos.

Conclusions
The results obtained in this study lead us to conclude that, supplementation with 10% FCS dur-
ing the culture period decreases blastocyst rates and the quality of the embryos produced, thus
reducing the number of cell cycles completed as well as hatching ability. Activation of pro-
grammed cell death can be detected in early-stage embryos (before the embryos have the ability
to perform DNA fragmentation) via Annexin V staining. Lastly, fast-cleaving embryos exhibit
higher blastocyst rates, and the speed of development appears to be negatively associated with
programmed cell death and the blocking of embryo development.
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