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Abstract
Nucleotide alterations detected by next generation sequencing are not always true biologi-

cal changes but could represent sequencing errors. Even highly accurate methods can

yield substantial error rates when applied to millions of nucleotides. In this study, we exam-

ined the reproducibility of nucleotide variant calls in replicate sequencing experiments of the

same genomic DNA. We performed targeted sequencing of all known human protein kinase

genes (kinome) (~3.2 Mb) using the SOLiD v4 platform. Seventeen breast cancer samples

were sequenced in duplicate (n=14) or triplicate (n=3) to assess concordance of all calls

and single nucleotide variant (SNV) calls. The concordance rates over the entire sequenced

region were >99.99%, while the concordance rates for SNVs were 54.3-75.5%. There was

substantial variation in basic sequencing metrics from experiment to experiment. The type

of nucleotide substitution and genomic location of the variant had little impact on concor-

dance but concordance increased with coverage level, variant allele count (VAC), variant

allele frequency (VAF), variant allele quality and p-value of SNV-call. The most important

determinants of concordance were VAC and VAF. Even using the highest stringency of QC

metrics the reproducibility of SNV calls was around 80% suggesting that erroneous variant

calling can be as high as 20-40% in a single experiment. The sequence data have been

deposited into the European Genome-phenome Archive (EGA) with accession number

EGAS00001000826.

Introduction
Massively parallel, next generation sequencing is increasingly used to identify nucleotide alter-
ations in the human genome including single nucleotide variants (SNV) and indels. Several
studies have compared the performance of various next generation sequencing platforms [1]
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and enrichment methods [2, 3] to one another and showed that each method has unique
advantages and disadvantages but their overall performances are similar. So far, few studies
examined the technical reproducibility of sequencing findings in repeat measurements. The
accuracy of next generation sequencing results is often gauged by their ability to detect known
polymorphisms in a given sample. Most methods show> 95% sensitivity for detecting SNVs.
While sensitivity is an important metric, it does not capture all important aspects of assay per-
formance including overall accuracy and specificity. Specificity is particularly relevant because
these methods are often employed not only to detect known polymorphisms, which could be
done more cost effectively with other methods, but to find novel sequence variants. Any
observed SNV may represent a true biological variant or it may be a technical error. Even
highly accurate and sensitive sequencing methods can yield large numbers of erroneous calls
when applied to billions of nucleotides (e.g. a method that misidentifies 1 out of 10,000 nucleo-
tides would yields around 30,000 false calls over the 3 billion measurements of the human
genome). Since the number of true variants in a sample is never known and the magnitude of
technical noise in next generation sequencing methods is not well defined, the signal to noise
ratio of the results and probability of false discovery remains largely unknown and may be
underreported.

When aliquots of the same source DNA are analyzed twice, discordant results represent a
measure of technical noise. In this study, we examined the reproducibility of nucleotide variant
calls in replicate sequencing experiments including library preparation and target region cap-
ture of the same starting genomic DNA. As kinases are major cancer drug targets, we per-
formed targeted sequencing of all known human protein kinase genes (kinome). Genomic
DNA from 17 different breast cancer samples were sequenced in duplicate (n = 14) or triplicate
(n = 3) to assess overall concordance of all nucleotide calls and variant calls. We also examined
what factors influence concordance rates including variations in DNA quality and quantity
(above a quality control threshold), length of DNA storage, the type of nucleotide substitution,
the genomic location of the variant, the depth of coverage and various matrices of the variant
call itself (e.g. allele count, allele frequency).

Material and Methods

Ethics Statement
This study was approved by the Institutional Review Board of the University of Texas MD
Anderson Cancer Center. All patients have signed informed consent to undergo a research
biopsy and for genomic analysis of their cancer.

Patient samples
Fine needle aspiration samples of newly diagnosed stage I-III (n = 12) and metastatic (n = 5)
breast cancers were obtained in the context of a series of biomarker discovery studies at the
University of Texas MD Anderson Cancer Center between 1999–2010. This study was
approved by the Institutional Review Board. Cells from 2 needle passes were collected into a
vial containing 1 ml of RNAlater solution (Ambion, Austin, Texas) and were stored at– 80°C
until total RNA and DNA extraction. DNA was extracted with the QIAamp DNAMini Kit
(Qiagen) following the manufactures instructions from the stored flow-through part of a pre-
ceding RNA extraction step (RNeasy mini kits, Qiagen, Valencia, California). Final DNA con-
centration and purity were assessed by Nanodrop 2000 Spectrophotometer (Thermo Fisher
Scientific Inc., Pittsburgh, Pennsylvania) and Agilent Bioanalyzer 2100 (Agilent Technologies,
Wilmington, Delaware). Sequencing was performed if at least 1.8 μg genomic DNA could be
recovered and if DNA 260/280 OD ratio was> 1.5. Aliquots of the same starting DNA were
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sequenced in duplicates (n = 14) and triplicates (n = 3) including complete replication of the
genomic library preparation, target capture, amplification and sequencing. Each sample had its
unique barcode as part of a 16-sample multiplexed library per SOLiD sequencing slide. The 37
replicate samples (14x2 + 3x3) were sequenced in seven different batches (i.e. seven different
slides) from October 2010 to April 2011 (S1 Table).

Kinome capture and SOLiD sequencing
Kinome sequencing library preparation. The SureSelect XT Target Enrichment Kits for

AB SOLiD Multiplexed Sequencing (Version 1.0, Nov.2010) was used for kinome sequencing
library preparation. In brief, 1.8–3.0 μg of genomic DNA from each sample was fragmented
into peak fragment size of 150–180 base pairs (Covaris S2 instrument, Covaris Inc. Woburn,
Massachusetts), fragment purification was performed with Agenecourt AMPure plus beads
(Beckman, P/N A63881) followed by end repair using T4 DNA polymerase and Klenow DNA
polymerase at room temperature for 30 minutes. The purified, end-repaired fragments were
ligated with P1 and 1A adaptors on both ends at room temperature for 15 minutes. Subse-
quently, 200bp DNA fragments with ligated adaptors were isolated by electrophoresis using E-
gel SizeSelect 2% gel (Invitrogen, P/N G661002) and were amplified by nick translation per-
formed on PCR 9700 thermocycler using SureSelect pre-capture primers x 12 cycles. The PCR
products were purified and quantified by Agilent bioanalyzer 2100 DNA 1000 assay. The
expected size distribution of this amplified genomic DNA library with P1 and truncated multi-
plex P2 adaptors is 250–275bp.

Target enrichment. Target enrichement was performed individually by using the Agilent
SureSelect Human Kinome XT Kit and Target Enrichment system that targets 3.2 Mb of the
human genome including all known human kinases and a selected group of other cancer-
related genes and their associated untranslational regions (www.agilent.com/genomics/
sureselect). Five hundred ng of DNA from individual genomic libraries was hybridized with
SureSelect kinome capture library, which is a mixture of 120 nucleotide-long biotinylated RNA
baits used as probes for 612 target genes designed from 10,282 exons, following the manufac-
turer's instructions. After 24 hours of hybridization at 65°C, the target regions were isolated by
pulling down the biotinylated probe/target hybrids with streptavidin-coated magnetic beads
(Dynal MyOne Streptavidin T1, Invitrogen). The captured target regions were purified using
Agenecourt AMPure beads. The target DNA libraries from each replicate were enriched and
multiplexing barcodes were added through a 9-cycle PCR amplification step using the SureSe-
lect SOLiD barcode multiplexing PCR primer set. The PCR products representing the final
individual, enriched, kinome sequencing library were purified by Agenecourt AMPure Plus
beads and quantitated with Agilent Bioanalyzer 2100; the expected size distribution of the final
target library is 270–350 base pairs.

Construction of multiplexing libraries. SOLiD paired end sequencing kinome multiplex-
ing libraries were constructed from the equal pooled, individual, barcoded kinome library
above. Batches of 16 barcoded, individual kinome libraries were pooled in equal molar ratio as
one multiplexed library and sequenced in one session. This analysis focuses on 37 replicate
libraries that were part of a larger sequencing project including a total of 112 libraries. A total
of seven pooled, multiplexed libraries were sequenced (7x16 = 112) on seven separate dates;
each sequencing batch included at least 2 replicate samples from another batch. The 600–700
million template beads generated from each multiplexing library by emulsion PCR, corre-
sponding to the full length templates containing both P1 and P2 adaptors, were further modi-
fied by adding oligo-linkers to immobilize template beads and deposited on a pre-coated glass
slide that was loaded onto the flow cell of SOLiD V4 Genome Analyzer (Life Technologies,
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Carlsbad, CA). The barcoded, multiplex, paired end (5+35+50 nucleotides) sequencing run of
each slide was performed following the SOLiD operation instructions.

Sequencing data analysis
Sequence analysis pipelines. All sequenced reads in paired end of 50 (F3-tagged reads)

and 35 (F5-tagged reads) nucleotides on the same sequencing templates in color-space from
each barcoded individual sample were processed by the BioScope software. The data on quality
metrics (�.qual files) and color calls (�.csfasta files) were fed into Applied Biosystems BioScope
software (version 1.3). We used the software to carry out the following modular data analyses
sequentially, including applying the SOLiD Accuracy Enhancer Tool (SAET) to F3- and
F5-tagged reads, mapping of the F3 and F5 reads, paired-end pairing of F3 and F5 reads,
enrichment on the target regions, and error reporting of each read position. The results were
then used to detect (“call”) SNVs using the diBayes models in BioScope. Based on the length of
the target region and the size of libraries, the estimated average coverage was greater than 80x;
therefore, we set the SNV-call stringency parameter to the highest level in BioScope. The refer-
ence genome used in this analysis was GRCh37 (hg19). Spearman and concordance correlation
coefficients of the basic sequencing metrics were calculated for the paired replicates. Coverage
and genotype of the entire sequenced regions were taken from BioScope output files �_Consen-
sus_Calls.txt for each sample. The number of total F3-tagged reads was used as the number of
total reads of the pair of F3- and F5-tagged reads. Statistical analysis of the data generated by
BioScope was carried out in statistical language R. The sequence data have been deposited into
the European Genome-phenome Archive (EGA) with accession number EGAS00001000826.

The ANNOVAR software [4] was used to annotate the observed SNVs based on their geno-
mic locations. The upstream and downstream annotations refer to variant overlapped 1-kb
region upstream or downstream of transcription start site or end site, respectively. The Muta-
tion Assessor (MA) [5] was used to predict the functional importance of SNVs. The Mutation
Assessor scores and prediction categories were obtained though MA’s web-based application
programming interface (http://mutationassessor.org/). High functional importance (HFI) SNV
was defined as either (i) predicted to be in the high or medium functional importance category
by the Mutation Assessor, or (ii) a stopgain (nonsense) or (iii) stoploss variant.

Duplicated reads removal was carried out using software Picard MarkDuplicates (http://
broadinstitute.github.io/picard). VarScan2 SNV calls were generated and filtered by using
SAMtools [6] mpileup and VarScan2 [7].

Concordance rate calculation. The concordance rate, Rc, between duplicate samples was
defined as

Rc ¼
Nc

meanðN1;N2Þ
where Nc was the number of concordant SNVs between a pair of replicate samples (i.e., variants
that were detected in both samples), and N1 and N2 were the total number of SNVs detected in
each of the duplicated sample (i.e., the sum of concordant and discordant NVs). For triplicate
measurements, three pairwise concordance rates among the replicates were calculated, and
their average was used as the concordance rate for that case.

We examined concordance rate by seven different factors and the values of each factor were
divided into different categories (i.e. bins), based on (i) natural categories, e.g. nucleotide sub-
stitution type (A->C, A->G, C->T, etc.), and gene annotation type (exonic, intronic, etc.); (ii)
empirical values, e.g. coverage was divided into five categories: [1,5), [5,20), [20,80), [80,200),
�200, or (iii) algorithmically generated bins using Sturges' formula that was implemented in
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the histogram function in R. These bins were generated by using the values of all of the 37,268
SNV positions that were detected in the 37 samples. Bins at the two tails that contained very
small number of positions were combined together. Factors whose categories were generated
using this method included variant allele (also called non-reference allele or novel allele) count,
variant allele frequency, variant allele quality, and SNV-call p-value. The histogram bins for
variant allele count was generated using log10-transformed variant allele count values. The
concordance rate by a factor was calculated within each category of the factor. The factor values
at every position in the entire sequenced regions were taken from BioScope output files �_Con-
sensus_Calls.txt for each sample. For a pair of replicated samples, only chromosomal positions
in both samples that were in the same category of a factor were used to calculate concordance
rate for that factor. Positions that were in different categories for a factor in the paired samples
were disregarded for concordance rate calculation of that factor. Wilcoxon rank sum test or
two-sided t-test was used to test the significance of the difference in concordance rates in differ-
ent categories.

Association tests between factors and concordance status. Concordance status was
coded as 1 (concordant) or 0 (discordant) for a chromosomal position in a pair of replicated
samples. Three methods were used to test the strength of association between a factor and con-
cordance status, including mutual information, AIC, and Lasso regression. Mutual information
between a factor and the concordance status was calculated by treating the factor as a discrete
variable using the same bins that were used in calculating concordance rate. Akaike informa-
tion criterion (AIC) between a factor and the concordance status was calculated using univari-
ate logistic regression. Multivariate Lasso logistic regression was performed using R package
glmnet [8] with default setting. Both AIC calculation and Lasso regression analysis were per-
formed by using the factors as continuous variables.

Results

Variations in basic sequencing metrics in replicate experiments
The basic sequencing metrics varied between samples and replicated experiments. The number
or total pairs of reads in the 37 experiments ranged from 22.4 to 54.3 million and the percent-
age of reads that mapped to targeted regions, defined as regions in the BED file provided by
Agilent as their designed target, ranged from 43.22% to 70.43%. Fig 1A and 1B show bar graphs
of the number of read pairs (i.e. number of F3- and F5-tagged paired reads) and the percentage
in target region for each of the replicated samples. Coverage depth (i.e. number of the reads at
a given nucleotide position) ranged from 0 to 32,100 for individual nucleotide positions and
the average coverage depth ranged from 156 to 631 across the 37 experiments. Between each of
the seven sequencing batches, the number of total read pairs, the percentage of reads mapped
to a targeted region, the average depth of coverage, and the percentage of nucleotides with
>20x coverage in the target region all showed relatively large variations (Fig 1C–1F). Table 1
shows the percentage of nucleotides in the targeted region with>1x and>20x coverage,
respectively, for each replicate. The percent of nucleotides in the targeted region with>20x
coverage ranged from 77–93% in individual experiments. The Pearson correlation coefficients
for coverage depth for all nucleotide positions that had at least one read in both replicate pairs
ranged from 0.29 to 0.77.

Concordance over all nucleotide calls
To verify the overall reproducibility over the entire sequenced target regions, we calculated the
concordance rate of all nucleotide calls. The concordance rates over the entire covered
sequenced regions ranged from 97.0% to 99.0%. The majority of discordant calls were due to

Reproducibility of Variant Calls by Next-Generation Sequencing

PLOS ONE | DOI:10.1371/journal.pone.0119230 July 2, 2015 5 / 16



Fig 1. Barplots and boxplots showing variations in basic sequencingmetrics between replicated samples and batches. Barplots of (A) the number
of total reads (i.e. number of reads of F3- and F5-tagged paired reads), and (B) percentage of mapped reads in target region for each of the replicate pairs.
The boxplots show the batch-to-batch differences in the number of total reads (C), the percentage of mapped reads in the target region (D), the average
coverage (E), and the percentage of nucleic acids with�20x coverage within the target region (F).

doi:10.1371/journal.pone.0119230.g001
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ambiguous calls where one call of a pair was a specific nucleotide (A, T, C, or G) and the other
call of the pair was "N" (which stands for any of the four nucleotides, equivalent as missing).
Such ambiguous calls composed of 1–3% of the entire sequenced regions. If we consider only
unambiguous calls, the overall concordance rates increased to 99.99% (Table 2), which is in
agreement with the low technical error rates in nucleotide calls claimed by manufacturers.

The goal of sequencing experiments is often to find novel or different SNVs between two
genomes; therefore, we next examined the reproducibility of variant calls. The average number
of SNV calls per sample was 961. When defining concordance of SNV calls between a pair of
replicated samples, genotype comparison was used. For all SNV calls, the concordance rate per
replicated sample ranged from 52.7% to 72.8%, with a median of 68.1% (Table 2). For high
functional important (HFI) SNVs, the concordance rate per replicated sample ranged from 0%
to 75.0%, with a median of 57.1%. These low concordance rates indicate substantial technical
noise in the variant calls suggesting that only a fraction of them represent true variants.

Factors that affect concordance of variant calls
In order to identify factors that influence reproducibility of variant calls, we examined concor-
dance rates by different biologically and technical factors including nucleotide substitution
type, genome annotation type, coverage, variant allele count (VAC), variant allele frequency
(VAF), variant allele mapping quality, SNV call p-value, and GC content.

To have an overall picture, we first pooled all SNV calls into two groups, reproduced and
not-reproduced, and compared the values of those technical factors in the two groups. As
expected, the mean values of coverage, variant allele count, variant allele frequency, variant
allele quality, and SNV call p-values were all highly significantly higher in reproduced SNV
calls than that in not-reproduced SNV calls (Fig 2). However, the high standard deviation in

Table 1. The percentage of target base pairs with at least 1x or 20x coverage for each replicated sample.

�1x Coverage �20x Coverage

Sample ID R1 R2 R3 R1 R2 R3

294 95.99 93.27 88.99 77.26

339 95.87 94.79 88.73 80.87

494 94.22 94.67 83.84 80.99

506 93.86 96.46 80.2 89.79

512 95.29 93.65 88.02 78.88

524 93.73 97.12 77.06 92.69

571 96.11 95.64 94.69 85.39 89.66 81.24

647 96.43 94.31 92.01 80.11

658 92.57 93.76 96.39 78.94 77.38 91.74

763 95.94 92.77 89.81 77.59

792 94.06 96.17 81.32 89.21

LP16 95.99 96.49 82.98 86.72

LP52 96.79 96.23 89.56 91.51

LP40 95.97 97.01 83.42 89.3

LP9 95.46 94.03 84.03 82.16

LP63 95.63 96.82 94.05 83.46 89.6 82.42

M15 95.65 94.29 89.31 80.23

R1 = sequencing experiment 1, R2 = sequencing experiment 2, R3 = sequencing experiment 3.

doi:10.1371/journal.pone.0119230.t001
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each group indicated large spread of the factor values in both reproduced and not-reproduced
groups. To examine the precise effect of the factors and to identify their potential thresholds,
we categorized each factor and studied their effect in detail below.

Nucleotide substitution types. There was no statistically significant difference in concor-
dance rates between nucleotide transitions (A>G, C>T, G>A and T>C) or transversions
(A>C, A>T, C>A, C>G, G>C, G>T, T>A and T>G) by Wilcoxon rank sum test (Fig 3A).
However, there were significantly more SNVs that represented transitions (range 111–271;
medians of 169–184 per replicated sample per nucleotide substitution type) compared to trans-
versions (range 16–62; medians of 23–38 per replicated sample per nucleotide substitution
type) (see also S1 Fig).

Genome annotation types. The SNVs were annotated by location in the genome as exonic,
intronic, 5’- and 3’-UTR, intergenic, downstream, upstream, exonic/splicing, splicing, or non-
coding RNA (ncRNA). As expected from targeted sequencing of the kinome, intergenic,
upstream, downstream, exonic/splicing, and splicing regions had overall low coverage and few
SNVs fell into these regions (0–19 per sample, S1 Fig). Concordance rates for these regions had
large variance. Among the rest of the annotation types, the median concordance rate of the intro-
nic regions (0.5) was significantly lower (Wilcoxon rank sum test p-values = 1.2x10-7–6.2x10-6)

Table 2. Concordance rates between pairs of replicated samples of all unambiguous nucleotide calls over the entire sequenced regions and of
SNV calls.

Sample
ID

Replicate
type

Concordance rate of all unambiguous nucleotide calls (N_cc/
N_total)

Concordance rate of SNV calls (N_cc/
N_total)

294 Dup 99.9919% (3402302/3402578) 64.4% (567/880)

339 Dup 99.9902% (3531773/3532119) 68.2% (634/930)

494 Dup 99.9899% (3527458/3527813) 68.1% (719/1056)

506 Dup 99.9905% (3260377/3260687) 52.7% (430/816)

512 Dup 99.9914% (3244079/3244357) 59.5% (412/692)

524 Dup 99.9915% (3596181/3596485) 71.8% (851/1186)

647 Dup 99.9917% (3554321/3554617) 66.9% (615/919)

763 Dup 99.9938% (3218631/3218829) 61.2% (394/643)

792 Dup 99.9909% (3301138/3301440) 56.2% (461/820)

LP16 Dup 99.9910% (3584535/3584858) 72.8% (846/1162)

LP52 Dup 99.9865% (3667521/3668018) 64.2% (803/1251)

LP40 Dup 99.9880% (3625547/3625983) 71.4% (989/1386)

LP9 Dup 99.9947% (3220037/3220209) 61.6% (414/672)

M15 Dup 99.9908% (3488692/3489012) 65.9% (558/846)

571 Trp 99.9866% (3448705/3449176) 57.7% (465/905)

(3548364/3548819) (813/1186)

(3418099/3418572) (487/916)

658 Trp 99.9938% (3417223/3417415) 72.2% (748/1024)

(3497328/3497561) (760/1083)

(3548737/3548960) (816/1108)

LP63 Trp 99.9929% (3537753/3538017) 70.3% (660/946)

(3467992/3468237) (636/912)

(3510910/3511142) (692/969)

Replicate Type refers to duplicated (Dup) or triplicated (Trp) measurements. In parenthesis after the concordance rates are the actual numbers of

concordant nucleotide positions (N_cc) and the average total number of sequenced nucleotide positions or SNV calls in the pair (N_total). For triplicated

samples, the concordance rates shown are the averages of the concordance rates across the three pairs of measurements.

doi:10.1371/journal.pone.0119230.t002
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than the median concordance rates of the exonic, 3’-UTR and 5’-UTR regions, respectively (each
around 0.7) (Fig 3B). Concordance rates were similar for synonymous and non-synonymous
exonic SNVs (S2 Fig).

Coverage. We examined concordance by coverage depth in five empirical coverage bins,
including “1-4x", "5-19x", "20-79x", "80-199x", "�200x". Concordance rate increased signifi-
cantly with coverage until it reached the 20-79x coverage level (Wilcoxon p-value = 10-8–10-4)
(Fig 3C). Further increase in coverage did not significantly increased concordance rates above
around 70% even at high levels of coverage (�200x).

Since the target enrichment kit was designed to capture exons, we hypothesized that the dif-
ference in concordance rates between exonic and intronic regions is caused by differences in
coverage depths (i.e. higher coverage of exonic regions). The coverage level of SNVs in exonic
regions was significantly higher compared to SNVs in intronic regions (average 65x vs 44x,
Wilcoxon rank sum test p-value<2.2x10-16). Next, we examined concordance rates within
exonic and intronic regions while controlling for coverage depth. The difference in concor-
dance rates between intronic and exonic regions, and between intronic and 3’- and 5’-UTR
regions, were much smaller within each stratified coverage level compared to concordance
rates calculated across all coverage levels which confirms that coverage depth is an important
driver of concordance rates (S3 Fig).

To further assess the impact of coverage depth on concordance of SNV calls, we filtered out
all positions with coverage<20x in either or both paired replicates and re-calculated the con-
cordance rates for each pair. This coverage-based filtering significantly improved concordance
for all SNVs (median of 73.1%, p-value = 0.006) but had lesser impact on the concordance

Fig 2. Boxplots comparing the values of different factors between the pooled reproduced and not-
reproduced SNV calls. The factors include coverage, variant allele count, variant allele frequency, variant
allele quality, and p-value of SNV calls. The numbers beside each boxplot indicate the mean±standard
deviation of the factor values in the group of SNV calls. T-test p-values are shown.

doi:10.1371/journal.pone.0119230.g002
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Fig 3. Boxplots of SNV call concordance between replicated samples by different factors, including (A)_nucleotide substitution type (gray-shaded
boxes = transversions, open boxes = transitions), (B) genome annotation type, (C) coverage, (D) variant allele account, (E) variant allele
frequency, (F) variant allele quality, and (G)) SNV call p-value. The numbers in parenthesis (m) represents the median of the numbers of SNVs per
replicated sample that were counted in a given category. ANOVA test p-values are shown. Coefficient of determination (R2), indicating the proportion of the
total variation of concordance rate that is explained by the factor alone, is shown for each factor.

doi:10.1371/journal.pone.0119230.g003
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rates for HFI SNVs (median of 66.7%) due to the much larger sample-to-sample variation in
difference in concordance rate before and after filtering.

In order to identify pre-analytical variables that may influence coverage depth, we exam-
ined the association between coverage value and (i) length of DNA storage (5–71 months),
(ii) origin of tissue sample (metastatic versus primary cancer), (iii) purity (OD 260/280 ran-
ged between 1.5–2.38) and (iv) concentration (17.9–274.4 ng/μl) of the input DNA above the
a priory defined QC thresholds. No significant association was detected. On the other hand,
the total number of reads was significantly positively associated with greater average coverage
(S4 Fig).

Variant allele count (VAC). VAC is the number of reads of the most abundant non-refer-
ence allele at a position. The values of VAC correlated strongly with coverage (Spearman corre-
lation coefficient of 0.86) and also showed a strong positive relationship with concordance rate.
With the increase of VAC, the concordance rate increased steadily without a plateau. The
median concordance rates reached 100% in the last two bins of variant allele count (�158x)
(Fig 3D).

Variant allele frequency (VAF). VAF is the proportion of the variant allele out of all allele
reads at a given position. From its distribution in all SNV positions, the variant allele frequency
peaked at around 1. There was another much lower peak at VAF around 0.5. The concordance
rate also increased as the VAF increased (Fig 3E). There seemed to be a significant increase in
the concordance rate for positions with a VAF higher than or equal to 0.7 compared to those
that below 0.7 (Wilcoxon rank sum test p-values = 10-7-10-4).

Variant allele quality (VAQ). VAQ is the mean of the individual quality values of all vari-
ant allele reads at a given position. The VAQ values ranged from 0 to 35 across all positions.
The concordance rate increased with the increase of variant allele quality (except for the high-
est quality category, VAQ� 28) (Fig 3F). The concordance rate was significantly higher in
positions with quality range of 20–28 than those with a quality value< 20 (Wilcoxon rank sum
test p-values = 10-7-0.01).

P-value for each SNV call by Bioscope. The majority (91%) of the p-values at called SNV
positions were 0 (i.e. highly significant). Only 2% of the p-values were 1, and 7% were between
0 and 1. The concordance rates for positions that had SNV-call p-value of 0 in both replicated
samples were very high (mean concordance rate = 0.95, standard deviation = 0.03) and signifi-
cantly greater than positions with higher p-values (Fig 3G). However, the median number of
SNV positions in the p = 0 category was only 615, while the average number of SNVs per repli-
cated sample was 1007. Almost 40% of SNV positions per sample were filtered out because
they had p-value of 0 in one sample and non-zero in the replicated sample.

GC content. One of the potentially important factors in sequencing was GC content. The
GC content in the targeted kinome region in this study had a loosely bimodal distribution sepa-
rated at 50% (S5 Fig). The coverage depths in low-GC content regions were significantly higher
than those in high-GC content regions (mean coverage of 116x vs. 39x, p-value< 10-16). The
concordance rates in the low-GC content regions were significantly higher than those in the
high-GC content regions (mean concordance rate of 0.55 vs. 0.40, p-value = 1.5x10-6, S5 Fig).

Variation explained by factors. Most of the factors we considered indeed had a signifi-
cant impact on concordance rate of SNV calls. To quantify this impact, coefficient of determi-
nation (R2) was used to measure the proportion of the total variation of concordance rate that
was explained by each factor alone (Fig 3). VAC and coverage alone explained most of the var-
iation (77% and 63%), followed by p-value of SNV call, VAF, and genome annotation type
(59%, 48%, and 49%). VAQ explained the least of the variation among the significant-impact
factors (11%).
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Relative importance of different factors
Since five of the above factors including coverage, variant allele count, variant allele frequency,
variant allele quality, and SNV call p-value each significantly associated with variant call con-
cordance rate, we quantitatively compared the relative importance of these factors and their
prediction ability for concordance rate.

First, we examined correlation between these 5 factors. Only coverage depth and variant
allele count showed a strong linear correlation (S6 Fig). Checking the association of these fac-
tors with concordance status (concordant or discordant) was done by using mutual informa-
tion (the factors were treated as discrete variables) and logistic regression (the factors were
treated as continuous variables). Mutual information measures the dependence between two
variables, and larger values of mutual information indicate more dependency between the vari-
ables [9]. VAC and VAF showed much larger mutual information with concordance status
than the other three factors (Fig 4A). The Akaike information criterion (AIC) is often used in
model selection, and models with smaller values of AIC are preferred. VAC and VAF were
again the two factors with the smallest AIC values while all other factors showed comparable
but larger values (Fig 4B).

We also performed Lasso model selection [10] to identify factors that are the most associ-
ated with concordance status (regular least squares method was not able to separate the factors
because they were all highly associated with concordance status). With penalty value λ goes
from large to small, the most significant variable enters the model first, and the least significant

Fig 4. Comparisons between the relative importance of the 5 different variables in determining
reproducibility of SNV calls. Importance was assessed using mutual information value (A), Akaike
information criterion (B), and Lasso regression methods (C, D). On panels C and D, the y-axis indicates
whether a factor is in the model (y = 1) or not (y = 0). VAC = variant allele count, VAF = variant allele
frequency, VAQ = variant allele quality and p-value refers to SNP call p-value generated by BioScope.

doi:10.1371/journal.pone.0119230.g004
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variable enters the model last. Fig 4C shows that with the decreasing of λ from right to left,
VAF entered the model first, followed by VAC, SNV-call p-value, variant allele quality and
coverage. Coverage may have entered the model later than all other factors because of its close
correlation with VAC. This is illustrated by Fig 4D, which shows the same Lasso plot after
removing VAC from the variables. We see that factor VAF entered the model first, followed by
SNV-call p-value, and variant allele quality and coverage entered the model at the same time.
In summary, all 3 methods identified VAF and VAC as the most consistently associated vari-
ables with variant call concordance status.

Effect of factor filtering and duplicates removal
In order to verify our results and identify possible criteria for reproducible SNV calls, we gener-
ated SNV calls using another popular variant calling algorithm, VarScan2 [7]. The unfiltered
SNV calls were generated using default parameters except for requiring p-value less than 0.05.
Filtering criteria that were based on the pooled reproduced SNVs (Fig 2) included coverage
(min-coverage) of 78, VAC (min-reads2) of 45, VAF (min-var-freq) of 0.6, and VAQ (min-
avg-qual) of 22. Filtering criteria that were based on the categorized concordance analysis (Fig
3) included coverage of 20, VAC of 20, VAF of 0.3, and VAQ of 20.

The mean concordance rate of the unfiltered SNV calls was 22.5%, which significantly
increased to 45.1% after filtering by criteria based on the pooled reproduced SNV calls, which
further significantly increased to 52.9% after filtering by criteria based on the categorized con-
cordant SNV calls (p-values< 10-10, Table 3). This result verified that these factors provide
effective filtering criteria for more reliable SNV predictions.

To assess the potential impact of duplicated reads that were likely caused by PCR amplifica-
tion, we removed duplicated reads and repeated the above analysis. Removal of duplicates alone
increased the mean concordance rate of unfiltered SNV calls from 22.5% to 27.6%, significant
(p-value = 0.03) but not substantial. For the SNV calls that were filtered by the pooled criteria,
the concordance rate significantly increased from 45.1% to 56.5% after removal of duplicated
reads (p-value = 3x10-5). For the SNV calls that were filtered by the categorized criteria, the
increase in concordance rates after removal of duplicates was not significant, but also showed
an increasing trend (52.9% increased to 58.9%, Table 3). In summary, removal of duplicates
combined with filtering significantly and substantially increased the concordance rates.

Discussion
The overall concordance rate for all nucleotides across the entire sequenced region was high
(>99.99%) but the concordance rate between variant calls was substantially lower, 54.3%

Table 3. Concordance rates of SNVs called by VarScan2 program between replicated samples and after removal of duplicated reads.

Unfiltered mean
(sd) %

Filtered by criteria based on pooled SNV calls
mean (sd) %

Filtered by criteria based on categorized SNV calls
mean (sd) %

VarScan2 22.5 (7.7) 45.1 (8.9)a 52.9 (11.6) a,b

Remove
dup

27.6 (8.3) 56.5 (8.3) a 58.9 (12.7) a

Column one (Unfiltered) contains all SNV calls generated using default parameters except for requiring p-value less than 0.05. Column two contains SNV

calls that were filtered based on results from pooled SNV calls as shown in Fig 2. Column three contains SNV calls that were filtered based on results

from categorized SNV calls as shown in Fig 3. Row two (Remove dup) shows the same variables after removal of duplicated reads.
a Significantly different from the concordance rates of unfiltered SNV calls (p-value < 10-10).
b Significantly different from the concordance rates of filtered by criteria based on pooled SNV calls (p-value = 0.013).

doi:10.1371/journal.pone.0119230.t003
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-75.5%. We also observed substantial variability in basic sequencing metrics such as the num-
ber of total reads and depth of coverage in a particular nucleotide location in repeat experi-
ments. Coverage depth had an important correlation with reproducibility of variant calls. Since
the number of total reads directly influences coverage, it is also the most easily controlled factor
in sequencing experiments that could increase reproducibility. Call concordance increased sig-
nificantly as coverage reached�20x, however, it did not increase beyond 80% even at very high
coverage levels indicating that other factors also play important roles in influencing the repro-
ducibility of variant calls. Variant allele count, variant allele frequency, variant allele quality,
and the p-value of the SNV-call also correlated significantly with concordance rates and variant
allele count and variant allele frequency were the most important factors.

Interestingly, the concordance rates in the highest categories of variant allele frequency and
variant allele quality dropped despite a clear and significant association between higher values
and greater concordance (Fig 3E–3F). We hypothesize that PCR artifacts may cause this dur-
ing library preparation; a small portion of genomic DNA fragments may be randomly ampli-
fied to much higher level than other fragments during the PCR reaction resulting in very high
allele frequency and allele quality for these sequences but low reproducibility during repeat
library preparation [11]. Because of the enrichment step, deep sequencing of the targeted
regions possibly have many duplicated reads. Our study showed that removal of duplicated
reads combined with filtering by the key factors significantly and substantially increased the
concordance rates.

Although it was previously shown that the SOLiD system was less prone to GC-content
based bias compared to other techniques [12], our study showed significantly lower coverage
and lower concordance rate in high-GC content regions. However, since in general we cannot
control GC content in an experiment, it was not used as a filtering factor in our study.

Several previous studies examined concordance between known SNVs detection by next
generation sequencing and by SNP arrays [2, 13]. These studies showed high sensitivity of
sequencing to detect the known variants in a given sample. Our observations are consistent
with these reports; we also noted high overall sequencing concordance in replicate experi-
ments that translate into high sensitivity to detect specific variants. However, we also show
that concordance rates for novel variant calls are much lower. This is in contrast with one pre-
vious small study (n = 4) that addressed a similar question and suggested that novel SNV
detection concordance rates are� 95% in biological replicates [14]. It is not clear from the
methods section of that paper how the replications were exactly performed. In our study, we
replicated every step in the sequencing procedure starting from aliquots of the same genomic
DNA and the replicates were performed on different days that may account for the higher dis-
cordance rates.

In summary, our study suggests that even at reasonably high coverage levels variant calls
using the SOLiD v4 sequencing platform and BioScope software have less than optimal repro-
ducibility. We recognize that sequencing platform, read lengths, library type and read map-
ping/variant calling software may affect the reproducible variant calls. However, in our
experiments, even applying the highest stringency QC metrics only yielded SNV reproducibil-
ity calls around 80%. These results suggest that global mutation differences observed in various
biological tissues such as primary cancer and metastasis or different regions of the same tumor
contain a substantial amount of technical noise.

Supporting Information
S1 Fig. Boxplots showing concordant and discordant SNVs by substitution and annotation.
A & B: Boxplots of the number of concordant and discordant SNVs within different nucleotide

Reproducibility of Variant Calls by Next-Generation Sequencing

PLOS ONE | DOI:10.1371/journal.pone.0119230 July 2, 2015 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s001


substitution types. Red boxes indicate nucleotide transitions and blue boxes indicate nucleotide
transversions. C & D: Boxplots of the number of concordant and discordant SNVs by genome
annotation type. E: Boxplot of the average coverage within each genome annotation region per
sample for all sequenced regions.
(PDF)

S2 Fig. Boxplot showing the concordance rates of the synonymous and non-synonymous
SNVs, respectively.
(PDF)

S3 Fig. Boxplots of concordance rate of SNV call by genomic annotation type, stratified by
coverage levels. Concordance rate of coverage category [1,5) is not shown due to small number
of SNVs in this category.
(PDF)

S4 Fig. Scatter plots of average coverage in target region versus the number of total reads
per sample. The Pearson correlation coefficients (Pearson CC) and p-value of the correlation
test (Pearson Correlation p-value) are as shown.
(PDF)

S5 Fig. GC content. A: Histogram and density plot showing the empirical distribution of GC-
content in the targeted Kinome region in this study. B: Coverage depths were significantly
higher in GC-low regions than those in GC-high regions. C: The concordance rates in GC-low
regions were significantly higher than those in the GC-high regions.
(PDF)

S6 Fig. Pairwise correlation between coverage, variant allele count (VAC), variant allele fre-
quency (VAF), variant allele quality (VAQ) value, and SNV-call p-values. The panels below
the diagonal line show the pairwise smoothed scatter plots between the factors for all the SNV
positions from the replicate experiments. A locally weighted smooth regression (LOWESS) line
is also shown for each scatter plot. The panels above the diagonal show the values of pairwise
Spearman correlation coefficients.
(JPG)

S1 Table. Distribution of the replicated samples in different sequencing batches ordered by
the dates in which each multiplexed library was sequenced.
(DOCX)

Acknowledgments
We thank Dr. Han Liang at the Department of Bioinformatics and Computational Biology at
MD Anderson Cancer Center for helpful discussions and suggestions.

Author Contributions
Conceived and designed the experiments: LP. Performed the experiments: XL CL BW. Ana-
lyzed the data: YQ KRHWS. Contributed reagents/materials/analysis tools: WFS. Wrote the
paper: YQ LP.

References
1. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, et al. Evaluation of next

generation sequencing platforms for population targeted sequencing studies. Genome Biol. 2009; 10
(3):R32. doi: 10.1186/gb-2009-10-3-r32 PMID: 19327155

Reproducibility of Variant Calls by Next-Generation Sequencing

PLOS ONE | DOI:10.1371/journal.pone.0119230 July 2, 2015 15 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119230.s007
http://dx.doi.org/10.1186/gb-2009-10-3-r32
http://www.ncbi.nlm.nih.gov/pubmed/19327155


2. Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, et al. Comparison of three tar-
geted enrichment strategies on the SOLiD sequencing platform. Plos One. 2011; 6(4):e18595. doi: 10.
1371/journal.pone.0018595 PMID: 21559511

3. Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, et al. Systematic comparison of
three genomic enrichment methods for massively parallel DNA sequencing. Genome Res. 2010; 20
(10):1420–31. doi: 10.1101/gr.106716.110 PMID: 20810667

4. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-
put sequencing data. Nucleic Acids Res. 2010; 38(16):e164. doi: 10.1093/nar/gkq603 PMID: 20601685

5. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer
genomics. Nucleic Acids Res. 2011; 39(17):e118. doi: 10.1093/nar/gkr407 PMID: 21727090

6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

7. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012; 22(3):568–76.
doi: 10.1101/gr.129684.111 PMID: 22300766

8. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate
Descent. Journal of Statistical Software. 2010; 33(1):1–22. PMID: 20808728

9. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating
dependencies between variables. Bioinformatics. 2002; 18 Suppl 2:S231–40. PMID: 12386007

10. Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society
Series B-Methodological. 1996; 58(1):267–88.

11. Heinrich V, Stange J, Dickhaus T, Imkeller P, Kruger U, Bauer S, et al. The allele distribution in next-
generation sequencing data sets is accurately described as the result of a stochastic branching pro-
cess. Nucleic Acids Res. 2012; 40(6):2426–31. doi: 10.1093/nar/gkr1073 PMID: 22127862

12. Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC. Comparison of Sequencing Plat-
forms for Single Nucleotide Variant Calls in a Human Sample. Plos One. 2013; 8(2).

13. Sulonen AM, Ellonen P, Almusa H, Lepisto M, Eldfors S, Hannula S, et al. Comparison of solution-
based exome capture methods for next generation sequencing. Genome Biol. 2011; 12(9):R94. doi:
10.1186/gb-2011-12-9-r94 PMID: 21955854

14. Londin ER, Keller MA, D'Andrea MR, Delgrosso K, Ertel A, Surrey S, et al. Whole-exome sequencing of
DNA from peripheral blood mononuclear cells (PBMC) and EBV-transformed lymphocytes from the
same donor. BMCGenomics. 2011; 12:464. doi: 10.1186/1471-2164-12-464 PMID: 21943378

Reproducibility of Variant Calls by Next-Generation Sequencing

PLOS ONE | DOI:10.1371/journal.pone.0119230 July 2, 2015 16 / 16

http://dx.doi.org/10.1371/journal.pone.0018595
http://dx.doi.org/10.1371/journal.pone.0018595
http://www.ncbi.nlm.nih.gov/pubmed/21559511
http://dx.doi.org/10.1101/gr.106716.110
http://www.ncbi.nlm.nih.gov/pubmed/20810667
http://dx.doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
http://dx.doi.org/10.1093/nar/gkr407
http://www.ncbi.nlm.nih.gov/pubmed/21727090
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://www.ncbi.nlm.nih.gov/pubmed/12386007
http://dx.doi.org/10.1093/nar/gkr1073
http://www.ncbi.nlm.nih.gov/pubmed/22127862
http://dx.doi.org/10.1186/gb-2011-12-9-r94
http://www.ncbi.nlm.nih.gov/pubmed/21955854
http://dx.doi.org/10.1186/1471-2164-12-464
http://www.ncbi.nlm.nih.gov/pubmed/21943378

