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Abstract
Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to im-

prove sampling design and to develop soil management strategies in terrestrial ecosys-

tems. Moso bamboo (Phyllostachys pubescensMazel ex Houz.) forests have a high SOC

storage potential; however, they also vary significantly spatially. This study investigated the

spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial

variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown

in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for

SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC)

based on spatial distribution. The spatial variability of SOC was then examined using geos-

tatistics. A Kriging map was produced through ordinary interpolation and required sample

numbers were calculated by classical and Kriging methods. An aggregated boosted tree

(ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC)

was best fitted with an exponential model and that it exhibited moderate spatial depen-

dence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with

BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation

(r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical

method given an expected standard error level as per a variance analysis. ABT analysis in-

dicated that the physicochemical variables of soil affected SOC variation more significantly

than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be

strongly influenced by management practices. Thus, this study provides valuable informa-

tion in relation to sampling strategy and insight into the potential of adjustments in agronom-

ic measure, such as in fertilization for Moso bamboo production.
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Introduction
Soil organic carbon (SOC) is significant in the maintenance of soil fertility and in the dynam-
ics of greenhouse gases because it is a large C pool and plays a potential role as a sink or a
source of atmospheric CO2 [1–3]. However, SOC varies spatially (in lateral direction) at vari-
ous scales and in all landscapes [4, 5]. This spatial heterogeneity is related to the variations in
numerous factors, including the physicochemical properties of soil, topography, climate, par-
ent material, land use patterns, and management practices [6, 7]. The correlations between
SOC and either soil properties or spatial variables are complex. As a result of these character-
istics, the relevant processes and mechanisms are difficult to predict [8]. Thus, the under-
standing regarding SOC spatial variation must be enhanced by inclusion of soil properties
and spatial variables to improve SOC sampling design, to develop soil management strate-
gies, and to assess the role of SOC in mitigating global climate warming [7]. Previous studies
have shown that SOC variability can be investigated effectively through geostatistics [4, 6].
Classical statistics was considered to be unsuitable for describing spatial dependency due to
its complete assumption of independent measurements [4]. However, geostatistics takes
into account both the structured and random characteristics of soil observations in data
processing through a set of statistical tools. Thus, spatial patterns can be described and
modeled, un-sampled locations predicted, and the uncertainty attached to these
predictions assessed [4].

Moso bamboo (Phyllostachys pubescensMazel ex Houz.) is the primary bamboo type in
China and covers an area of approximately 3.0 × 106 ha. This area accounts for 71.9% of the
total bamboo area in this country. Moso bamboo grows naturally in subtropical monsoon cli-
mate zone (in summer high temperatures and rainy; in winter cold and dry). It grows at ele-
vations between 10 to 1700 meters above sea level but most of the area is less than 800 m and
in the hills and mountains [9]. It takes about two months for the shoots to emerge and grow
into new culms. Moso bamboo forests are renewable and versatile. Moreover, they possess
both ecological and economic value. This forest area continues to increase at an annual rate
of approximately 3%, suggesting that Moso bamboo forest may have constantly increasing
carbon storage in China [10]. SOC (0 to 60 cm in depth) storage accounts for approximately
66.7% of the C storage in Moso bamboo forests [11]. Thus, the distribution of SOC in the
organic–mineral complex has often been analyzed recently, along with the temporal dynam-
ics of SOC and the effects of fertilization management on SOC [10, 12–15]. However, under-
standing regarding SOC variability remains vague, as is that related to the influences of
environmental factors on the spatial variation of SOC in Chinese Moso bamboo forests. Over
60% of the rhizomes of Moso bamboo grow horizontal and expand within the surface layer of
20 cm in depth [12]. In addition, the dead vegetation and bamboo leaves would return to the
topsoil (0–20 cm) and the decomposition of them usually occurs in the topsoil. Therefore, in
our current research, we studied spatial variability of SOC in the topsoil which was affected
most by the environment and would better represent the variability of SOC in Moso
bamboo forest.

The current study is conducted on the Moso bamboo forests in Jian’ou City (county-level
city), southern China, and it aims (1) to map SOC spatial distribution using geostatistics and
geographic information system (GIS) facilities and to assess the characteristics of its spatial dis-
tribution patterns; (2) to quantitatively determine the complex relationships between environ-
mental variances and SOC; and (3) to provide background for decisions regarding sampling
design and forestry management.
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Materials and Methods

Study area description
Jian’ou City (117°580 to 118°570 E, 26°380 to 27°210 N) is located in the northern part of Fujian
Province, southern China. It has a total area of 4214.0 km2 and lies at the center of the Moso
bamboo distribution in China [16]. At 8.63 × 104 ha, this city also houses the largest Moso
bamboo area in China at the county scale [17]. The mountain, hill, and valley basin regions ac-
count for 57%, 30%, and 13% of the total area of the county, respectively. The study area is
characterized by a subtropical marine monsoon climate. The mean annual temperature is ap-
proximately 17–21°C, and average annual precipitation is 1600–1800 mm. Sixty percent of
mean annual precipitation occurs in the rainy season (fromMarch to June), whereas only 21%
occurs during the dry season (from October to the following February). The sunny season lasts
for 1842 h annually, and the duration of the frost-free period is approximately 280–290 d. The
major soil types (subgroup) in this county are red soil, yellow soil, lateritic red soil and yellow-
ish red soil according to the soil genetic classification of China, and the parent materials of soil
primarily include red sandstone, alluvium, Quaternary red clay, and shale [18]. The understory
plants in Moso bamboo forests in this area include Digitaria sanguinalis, Paederia scandens,
Houttuynia cordata, Ampelopsis aconitifolia, Cyperus diffomis, Dicranopteris linearis.

Soil sampling and analysis
209 soil samples (0 cm to 20 cm) were collected in August 2009. The sampling locations were
homogeneously distributed in Jian’ou City, and permission to enter each location was given by
Fujian Jiou’ou Forestry Bureau, China. The coordinates of the locations were recorded by a
global positioning system and the distribution of sampling sites is presented in Fig. 1. We ob-
tained five soil samples at random from each sampling location within a radius of approxi-
mately 50 cm using an auger with a diameter of 5 cm. The five samples were then mixed to
obtain the representative soil sample of the sampling point. All samples were air-dried, ground
to pass through 2 mm sieves, and stored for further analysis. Another soil core samples were
collected from each sampling location (0–20 cm) for bulk density (BD) determination.

There was no need of approval by Institutional Review Board (IRB) or Ethics Committee or
by an Institutional Animal Care and Use Committee (IACUC) or equivalent animal ethics
committee because our study was not human subject research and our object was Moso bam-
boo forest which was a plantation but not an animal.

Soil BD was determined using the core method, gravel content (GC) was obtained using the
weight method, and soil pH was determined through potentiometry [19]. Soil organic matter
(SOM) was obtained with the potassium-dichromate external heating method [20]. SOC was
then derived from SOM using the van Bemmelen coefficient (1.724). Soil cation exchange ca-
pacity (CEC) was determined by ammonium acetate extraction buffered at pH 7 [19].

Statistical and geostatistical methods
In this study, the central trend and the spread of data were described by the following statistical
parameters: the mean, median, standard deviation, coefficients of variation, maximum and
minimum values, and the skewness and kurtosis of the dataset. The normal frequency distribu-
tion of data was verified by the Kolmogorov–Smirnov (K–S) test.

The semivariogram of geostatistics [21, 22] was used to measure the spatial variability of a
regionalized variable and to generate the input parameters for the Kriging method of spatial in-
terpolation. The semivariogram is half of the expected squared difference between paired data
values Z (x) and Z (x + h) to the lag distance h by which locations are separated [21]. For
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discrete sampling sites such as those in this study, the function is usually written in the follow-
ing form:

gðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

½ZðxiÞ � Zðxi þ hÞ�2; ð1Þ

where Z (xi) is the value of the variable Z at location xi; h is the lag; and N (h) denotes the num-
ber of pairs of sampling points separated by h. The distance between the sample pairs is rarely
equal to h in irregular sampling. That is, h is often represented by a distance interval.

Experimental variograms were generated by calculating the variogram at different lags.
Spherical, exponential and Gaussian models were selected to fit these variograms, as well as to
investigate the spatial structure and the input parameters for Kriging interpolation. The best-
fitting model for the variable would be chose based on the determination coefficients (R2).

Fig 1. Spatial distribution of soil samples in Jian’ou City, southern China.

doi:10.1371/journal.pone.0119175.g001
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The spherical model is given by

gðhÞ ¼
C0 þ C
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The exponential model is given by

gðhÞ ¼ C0 þ C 1� exp � h
a

� �� �
; ð3Þ

The Gaussian model is given by

gðhÞ ¼ C0 þ C 1� expð�h
2

a2Þ
" #

; ð4Þ

where C0 is the nugget variance (h = 0)that represents the experimental error and field variation
within the minimum sampling space. The variogram increases with the increase in lag distance
to either attain or approach a maximum value or sill (C0 + C) that is almost equivalent to the
population variance, i.e., a priori variance. C is the structural variance, whereas a is the spatial
range across which the data are correlated spatially.

Validation of the best-fitting models before carrying out spatial prediction (interpolation) is
an important step to ensure model quality. Assessment of the best-fitting model quality was
performed using leave-one-out cross-validation (LOOCV) where each observation was re-
moved from the data set and the SOC at that location was predicted using the remaining obser-
vations. Two measures of model quality were calculated:

Mean error (ME):

ME ¼ 1

n

Xn

i¼1

ðZi � Z
^
iÞ; ð5Þ

Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðZi � Z
^
iÞ2

vuut ; ð6Þ

Where, Zi is the measured SOC while Z
^
i is the predicted SOC from LOOCV. A good model has

a value close to zero for ME and RMSE.
In this study, a traditional statistical analysis was conducted using SPSS 17.0 (SPSS Inc., Chi-

cago, IL, USA). The geostatistical analysis utilized GS+ 9.0 software (Gamma Design Software
LLC, Plainwell, MI). Spatial interpolation maps were produced using the GIS software ArcGIS
9.3 (ESRI, Redlands, CA) based on the variogram parameters calculated using the GS+ software.

Topography
The soil sampling process did not provide topographic information (spatial variables), such as
elevation, slope, and aspect (expressed in positive degrees from 0 to 359.9 and measured clock-
wise from north). Thus, a regular 30 m grid digital elevation model (DEM) was used to derive
the elevation, slope, and aspect data for each soil sampling point. The DEM was based on the
recordings of the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) as provided by the National Aeronautics and Space Administration (NASA) and the
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Japanese Ministry of Economy, Trade and Industry (METI) in 2009. The digital elevation
maps of Jian’ou are shown in Fig. 2. The slope and aspect map were processed based on the
DEM using ArcGIS 9.3. The elevation, slope, and aspect data of each soil sampling point were
derived from the DEM according to the sample positions recorded by GPS. The linear correla-
tion between SOC and the spatial variables (elevation, slope, and aspect) was analyzed using
SPSS 17.0.

Aggregated boosted tree (ABT) analysis
Traditional statistical models such as linear regression are routinely used to explain relation-
ships among data relationships in simple terms. As a result, they fail to quantify the complex
interactions between the variances and responses [23]. However, ABT which is a statistical
learning method that aims to attain both accurate prediction and explanation can quantitative-
ly determine these complex relationships, including nonlinearities. Therefore, it can explain
underlying processes [23]. In addition, ABT, based on BTs, can deal with many types of re-
sponse variables (numeric, categorical and censored) and environmental variables (numeric,
categorical) and has been widely applied in ecological studies [23, 24].

In this study, ABT analysis was conducted using the gbmplus package in R language 2.7.1
and was used to evaluate the relative influence of four physicochemical variables (GC, CEC,

Fig 2. DEM of Jian’ou City, southern China.

doi:10.1371/journal.pone.0119175.g002
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BD, and pH) and three spatial variables (slope, elevation, and aspect) on SOC. The variance im-
portance figure was plotted using Matlab 7.0 (MathWorks Inc., Natick, MA, USA).

Estimation of variance
Cline [25] summarized the sampling principles followed by soil scientists and provided the
classical formulas used to estimate the means and variances and to determine the number of
observations (sample size) that generates the desired estimation variance. Thus, if the true
mean is μ and a deviation of x—μ is acceptable in its estimation, then the required sample size
n can be calculated as follows:

n ¼ t2aS
2=ðx � mÞ2; ð7Þ

where S2 is the estimated variance and tα is the value of Student’s t at the chosen level of proba-
bility α.

The ignorance of global variability may increase costs unnecessarily in sample collection
and analysis, whereas the neglect of local variability can aggravate estimation errors or uncer-
tainty [26]. An enhanced appreciation of the spatial variability of soil properties may improve
the applied sampling strategy [27]. McBratney and Webster [27] also proposed equations to
calculate standard error (SE) based on the semivariance of a given dataset using Kriging (Equa-
tions 8 and 9) in consideration of the spatial dependency of soil properties. Nonetheless, the
Thiessen polygon should be constructed prior to calculation. S is a triangular grid in this poly-
gon; the observation points at its center and at the side are equal to the sampling interval. The
estimation variance of its average value is expressed as

s2
S ¼ 2�gðx; SÞ � �gðS; SÞ; ð8Þ

where n is the number of samples required to estimate the mean value; �gðx; SÞis the average
semivariance between the central point, x, and all other points in the grid; and �gðS; SÞ is the var-
iance within the grid.

Furthermore, SE is calculated as:

SE �
ffiffiffiffiffiffiffiffi
1

n
s2
S

r
; ð9Þ

ArcGIS 9.3 is used to construct the Thiessen polygon based on the sampling points. In this
study, the SE figure was plotted using Matlab 7.0.

Results

Descriptive statistics
Table 1 summarizes the descriptive statistics for the soil physicochemical parameters of the 209
soil samples obtained from the Moso bamboo forests in Jian’ou City. All of the soil properties
were similar in terms of mean and median values, thereby indicating that the dataset of the soil
properties was evenly and normally distributed. Soil pH ranged from 3.85 to 6.02, GC ranged
from 1.10% to 60.40%, BD ranged from 0.76 g cm−3 to 1.19 g cm−3, and SOC ranged from
0.42% to 6.48%.

The coefficient of variation (CV) is a major indicator of the variability of soil properties. A
variable is considered weakly variable when the CV is less than 10%. A variable is moderately
variable when the CV is between 10% and 100%. Otherwise, a variable is strongly variable [28].
Except for pH (CV = 6.42%), the soil variability data in Table 1 indicated that BD had the
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lowest CV (CV = 8.05%), suggesting a weak variability. The CVs for SOC, GC, and CEC ranged
from 12.08% to 96.40%, thereby indicating a moderate variability.

A normal distribution is desirable for a studied variable in linear geostatistics and in conven-
tional statistics [29]. Serious deviations from normality, such as excessive skewness, can impair
the variogram structure and the Kriging results. The quantitative parameters of the probability
distribution and the significance level of the K–S test were thus calculated for conformance to a
normal distribution. The results indicated that the SOC data passed the K–S normality test at a
significance level of 0.05 after logarithmic transformation.

Table 2 displays the linear correlation coefficients among the five variables. SOC was
significantly correlated with BD (r = −0.373��), pH (r = −0.429��), GC (r = −0.163�), and CEC
(r = 0.263��). Variables such as BD and GC (r = 0.451��), pH and BD (r = 0.206��), and pH and
GC (r = 0.353��) were also significantly correlated as generally reported.

Geostatistical analysis
Geostatistics has mainly been used to estimate and map soil chemical properties in un-sampled
areas through semivariogram analysis [7]. The parameters of the four models fitted to the SOC
semivariogram are shown in Table 3. The best-fitting model for ln(SOC) was selected based on
the determination coefficients (R2). A model with the maximum R2 was preferable; therefore,
ln(SOC) was best fitted with an exponential model (R2 = 0.953). The determination coefficients
of ln(SOC) were greater than 0.9, thereby indicating that these measured parameters can be
modeled with a high degree of confidence. Fig. 3 presents the semivariogram and best fitted
model (exponential) for ln(SOC).

Table 1. Descriptive statistics of soil variablesa.

Variable Mean Median SD CV (%) Skewness Kurtosis

BD (g cm−3) 0.95 0.95 0.08 8.44 0.42 0.36

GC (%) 18.71 17.20 10.62 56.76 1.17 2.06

pH 4.94 4.96 0.32 6.42 0.07 0.69

CEC (mmol+ kg
−1) 39.17 3.87 4.73 12.08 4.17 38.85

SOC (%) 2.37 2.02 1.12 47.42 1.31 1.96

aSD = standard deviation, CV = coefficient of variation, BD = bulk density, GC = gravel content, CEC = cation exchange capacity and SOC = soil

organic carbon

doi:10.1371/journal.pone.0119175.t001

Table 2. Correlation coefficients among selected soil properties of the Moso bamboo forest in Jian’ou City, southern China.

Variablea BD GC pH CEC

GC 0.451**

pH 0.206** 0.353**

CEC −0.082 −0.093 −0.028

SOC −0.373** −0.163* −0.429** 0.263**

*,**Significant at P = 0.05 and P = 0.01 levels, respectively
aThe number of SOC observations was 209. BD = bulk density, GC = gravel content, CEC = cation exchange capacity and SOC = soil organic carbon

doi:10.1371/journal.pone.0119175.t002
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Kriging map for SOC
The LOOCV result showed that ME and RMSE for spatial interpolation of SOC were 0.011
and 0.852, respectively. The RMSE provides a measure of interpolation precision, with lower
values indicating more precise methods, while the ME measures the bias (Gumiere et al. 2014).
The ME values close to zero indicated that the selected model was unbiased. The two criteria
for interpolation of SOC indicated that the interpolation method performed well based on the

Table 3. Semivariogram models and model parameters for ln(SOC) in the Moso bamboo forest of Jian’ou City, southern China

Model Nugget Sill Nugget/sill ratio Range (m) R2

Linear 0.1635 0.2375 0.688 42586.11 0.652

Spherical 0.0002 0.2084 0.001 15996.88 0.924

Exponential 0.1032 0.2234 0.462 24870.00 0.953

Gaussian 0.0257 0.2084 0.123 11750.00 0.867

doi:10.1371/journal.pone.0119175.t003

Fig 3. Experimental semivariogramswith the best-fit model (exponential) for SOC [ln(SOC)]

doi:10.1371/journal.pone.0119175.g003

Spatial Variability of Topsoil Organic Carbon in Moso Bamboo Forests

PLOS ONE | DOI:10.1371/journal.pone.0119175 March 19, 2015 9 / 17



parameters from the best-fitting model for ln(SOC). Fig. 4 showed the interpolation map of the
SOC of the study area produced by ordinary Kriging. Although the Kriging map covers all
soils, including non-soils, the non-Moso bamboo forest soil blocks in the map do not represent
the actual values because we collected data only in relation to Moso bamboo forest soil. That is,
the map values can only be applied to Moso bamboo forest soil.

Kriging maps represent the detailed spatial distribution of SOC. Based on the interpolation
map of SOC contents, SOC concentrations were lowest in the center of the study area, which
extends to the northwest and the southwest. By contrast, SOC content increases at the edge of
the city, such as in the north and southeast areas. The statistical result shows that the area with
the lowest SOC contents, which range between 1.3% and 1.9%, accounted for 18.43% of Jian’ou
City. The area with the highest values, which range from 4.0% to 5.0%, constituted 6.31%.

Analysis of the correlation between topographical factors and SOC
The linear correlation between SOC and topographic factors was performed. SOC was signifi-
cantly and positively correlated with elevation in the investigated surface layer (0 cm to 20 cm)
of the soil in the Moso bamboo forests of Jian’ou City (r = 0.192, P< 0.05). However, SOC and
slope degree (aspect) were not significantly correlated in Moso bamboo forests.

Fig 4. Spatial distribution of SOC (%) interpolated by ordinary Kriging for Moso bamboo stands in Jian’ou City, southern China

doi:10.1371/journal.pone.0119175.g004
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ABT analysis of the contributions of variables to SOC variability
The ABT analysis results suggested that the contribution percentages of the seven variables
(pH, BD, CEC, aspect, elevation, slope, and GC) to SOC variation vary significantly from
4.00% to 29.06% (Fig. 5). The variable importance figure indicated that the four physicochemi-
cal variables (pH, BD, GC, and CEC) accounted for 77.86% of SOC variation, whereas the
three spatial variables (aspect, elevation, and slope) accounted for 22.14%. Of the three physi-
cochemical variables, pH had the highest contribution percentage to SOC variation, followed
by BD. Among the three spatial variables, aspect had the highest contribution percentage, fol-
lowed by elevation.

Estimation of SE using two methods
The SOC estimation variances and their square roots (the SEs) were calculated using the classi-
cal (Equation 7) and Kriging methods (Equations 8 and 9) for the SOC in the soil of Moso
bamboo forests. The results obtained with these methods are plotted as SE versus sample size

Fig 5. Contribution percentages of the four physicochemical variables (GC, CEC, BD, and pH) and of the three spatial variables (slope, elevation,
and aspect) to SOC variation as revealed by ABT analysis

doi:10.1371/journal.pone.0119175.g005
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(Fig. 6). In Fig. 6, the SEs (estimated) calculated using the classical and Kriging methods de-
creased with the increase in the number of observations to a maximum of 40. Beyond this
limit, the trend leveled off.

Discussion

Relationship between SOC and soil properties
SOC is an indicator of soil productivity [6]. However, it is a highly spatial variable because it is
affected by weather, soil texture, soil porosity, vegetation, and topography [30, 31]. SOC con-
tent was significantly and negatively correlated with pH in the investigated surface layer (0 cm
to 20 cm) of the Moso bamboo forest. This result indicated that SOC content decreased with
the increase in pH, which is consistent with the results of other studies. These studies indicate
that soil pH affected the regulation of the decomposition of fresh organic matter considerably
along with SOM decomposition by influencing microbial activity [31–34]. Shi et al. (2012) also
observed a negative relationship between SOC and soil pH and concluded that acidification in-
hibits SOC decomposition; thus, general C loss from soils is insignificant. However, our finding
differs from that of Weigand et al. [35] who did not observe a correlation between SOC and
soil pH. This discrepancy may be attributed to their use of various soils derived from different
parent materials under varied climatic conditions.

The significant and negative correlation between SOC and BD was confirmed by other stud-
ies [31, 36, 37]. The reduction in BD can be attributed to the increased organic matter content
in the soil, the enhanced aggregation and consequent increase in the volume of micropores
[38], and the increased root growth of Moso bamboo. Furthermore, SOC and CEC were signifi-
cantly and positively correlated in accordance with the results reported by other studies [6, 39].

The variable GC is generally neglected in previous studies of SOC variation in forest soil.
However, the Moso bamboo usually grows on mountains with much gravel. Moreover, SOC
was significantly and negatively correlated to GC, as per the current study. Olaleye et al. [39]
reported a similar result. The increased contents of subsoil gravel reduce soil porosity and
available water-holding capacity, and they increase soil compaction. As a result, root growth is
inhibited [39, 40]. Therefore, the GC is a variable that is essential to the study of SOC variability
in Moso bamboo forests.

Geostatistical analysis
In geostatistics, the range of the semivariogram is the maximum distance over which the soil
properties of two samples are related. Thus, it can be an effective criterion for the evaluation of
sampling design and the mapping of soil properties [41, 42]. Table 3 shows that the spatial cor-
relation (range) of ln(SOC) was 24870 m. No spatial dependence (autocorrelation) was ob-
served in the soil properties when the separation distance between two samples was out of
range. By contrast, soil properties are similar (spatial correlation) when the distance is short
and is within the range. Therefore, the sampled points cannot be used for either interpolation
or extrapolation when the distance between the sampled and the predicted points is longer
than the model range. The observed values of the soil properties in a wide range are influenced
by other values of these properties over longer distances than soil properties with smaller
ranges, according to Zhang et al. [41]. Thus, the ln(SOC) range of approximately 24870 m in
the study area indicates that ln(SOC) values influenced the neighboring ln(SOC) values over
longer distances than other soil variables with a smaller range.

The nugget/sill ratio can generally be used to classify the spatial dependence of soil proper-
ties [43]. A variable displays strong spatial dependence if the ratio is less than 0.25 and moder-
ate spatial dependence if the ratio lies between 0.25 and 0.75. Otherwise, the variable has weak
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Fig 6. SEs of SOC as estimated using the classical and Kriging methods for Moso bamboo stands in Jian’ou City, southern China

doi:10.1371/journal.pone.0119175.g006
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spatial dependence. In the study area, ln(SOC) with nugget/sill ratios of 0.50 showed moderate
spatial dependence. This result may be attributed to the comparable effect of intrinsic (soil-
forming processes) and extrinsic (soil fertilization and cultivation practices) factors [44].

Spatial distribution of SOC
The block distribution (not patchy distribution) in the SOC spatial distribution maps suggests
that SOC displayed moderate spatial dependence. This finding is consistent with the result of
the geostatistical analysis, which indicates that SOC attained mid-range values (Table 3). This
result also suggests that SOC was affected by both the natural environment and human activi-
ties such that its spatial distribution did not display a significant geographic trend.

The spatial distribution over the entire region could be clearly derived from the Kriging
SOC maps. Therefore, the Moso bamboo forests in Jian’ou City may be classified into groups
based on similar SOC contents. Different groups can be subject to appropriate fertilization to
manage soil precisely and efficiently [7]. Moreover, the Kriging SOC maps can be used to accu-
rately estimate C storage in Moso bamboo forests. In the process, we can precisely assess the
role of Moso bamboo in the mitigation of global warming.

Effect of topographical factors on SOC
SOC was significantly and positively correlated with elevation. This finding is consistent with
the results of other studies [2, 45]. Previous studies demonstrated that temperature decreases
with an increase in elevation and that this relationship is a key factor that controls the rate of
organic matter decomposition [46, 47]. An increase in temperature enhances soil respiration
rate and increases the chances of C loss from the soil to the atmosphere as CO2. The area with
a low SOC value is located at the center of the region, according to the spatial interpolation
map (Fig. 4).

Contribution of variables on SOC variation
The sum of the contribution percentages of the physicochemical variables to SOC variation is
larger than that of the contribution percentages of the spatial variables, which indicated that
the physicochemical variables of soil affected SOC variation more significantly than spatial var-
iables. Although spatial variables significantly influenced SOC in previous studies [48–50],
they also controlled the hydrothermal regime (including temperature, precipitation and soil
moisture), which in turn influenced soil properties. Accordingly, the values of the spatial vari-
ables were high and indirectly affected SOC. Therefore, we expect soil physicochemical vari-
ables to influence SOC variation more strongly than spatial variables do.

According to the Pearson correlation analysis, elevation was significantly and positively cor-
related with SOC, whereas there was no significant correlation between aspect and SOC. How-
ever, the ABT analysis revealed that aspect has a higher contribution percentage to SOC
variation than elevation. This finding may be attributed to the fact that the correlation of aspect
with SOC is more nonlinear than that of elevation with SOC. As mentioned above, the Pearson
correlation analysis can determine only the linear correlation between SOC and spatial vari-
ables, whereas the ABT analysis can also detect the nonlinear correlation between SOC and
spatial variables.

SOC sampling strategy
Fig. 6 shows that the advantage of Kriging estimation increases with the increase in sample size
or specifically, sampling intensity. This advantage holds in all instances in which spatial
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dependence is observed. The extent to which the advantages diminish with sparse sampling de-
pends on the semivariogram. Kriging estimates are more precise than those derived using clas-
sical methods given 10 or more samples because the semivariogram of the SOC was
exponential and displayed a moderate range, although its nugget variance was fairly small. The
sampling interval exceeds the range of the semivariogram with few samples. Therefore, the two
variance estimates converge.

The results shown in Fig. 6 can be used to determine the number of samples to be collected
given an expected SE level. The investigator decides the tolerable level of error and determines
the corresponding sample size from the lower of the two curves. For instance, the number of
SOC samples to be obtained from the study area should be approximately 10 on the grid using
the Kriging method and approximately 64 on the grid using the classical method if the allow-
able SE is 0.15. The advantage of the Kriging estimate is enhanced with a small required SE.
Thus, the sample size should be approximately 19 using the Kriging method and 125 when the
classical method is utilized for an expected SE of 0.1. Therefore, the classical method is more
challenging to apply than the Kriging method.

Conclusions
SOC varies spatially at various scales in all landscapes. However, the correlations between SOC
and either soil properties or spatial variables are highly complex. Therefore, this study applied
geostatistical, GIS, and ABT approaches to explore the relationship between SOC and either
soil properties or spatial variables. The geostatistical analysis showed that ln(SOC) exhibited
moderate spatial dependence and that the spatial SOC map could be illustrated through Kri-
ging interpolation. This map can be used to assess soil fertility and to estimate C storage. More-
over, the results of variance analyses that considered both the classical and Kriging methods
suggested that the advantages of Kriging estimates are enhanced as sample size increases given
an expected SE level. Moreover, the Kriging method required fewer samples than the classical
method. An ABT analysis also revealed that the physicochemical variables of soil affected SOC
variation more strongly than spatial variables, thereby suggesting that the SOC in Moso bam-
boo forests can be influenced significantly by management practices. Thus, this study provides
valuable information regarding sampling strategy and insight into the potential of adjustments
in agronomic measure, such as in fertilization.
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