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Abstract

Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality manage-
ment, which ensures that urban drinking water is safe from harmful algal blooms. This study
developed a model to predict Chl-a levels in the Yugiao Reservoir (Tianjin, China) biweekly
using water quality and meteorological data from 1999-2012. First, six artificial neural net-
works (ANNs) and two non-ANN methods (principal component analysis and the support
vector regression model) were compared to determine the appropriate training principle.
Subsequently, three predictors with different input variables were developed to examine the
feasibility of incorporating meteorological factors into Chl-a prediction, which usually only
uses water quality data. Finally, a sensitivity analysis was performed to examine how the
Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN
is a powerful predictive alternative to the traditional modeling techniques used for Chl-a pre-
diction. The back program (BP) model yields slightly better results than all other ANNs, with
the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-
Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the
testing period. Second, the incorporation of meteorological data greatly improved Chl-a pre-
diction compared to models solely using water quality factors or meteorological data; the
correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were
included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to
other water quality and meteorological variables.
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Introduction

Chlorophyll-a (Chl-a) is commonly used as an indicator of the abundance of phytoplankton
and the population levels of primary productivity in the lakes and reservoirs that provide most
of the drinking water for dozens of large and medium cities in China. Predicting the levels of
Chl-a is a vital part of water quality management to ensure that urban drinking water is safe
from harmful algal blooms.

Chl-a levels in lakes and reservoirs have been modeled for over 40 years [1], [2], and several
statistical and process-based physical models have been developed using analysis of phyto-
plankton. Two of the most commonly used statistical predictors are linear regression models
[3], [4] and principal component analysis [5], [6], [7]. These methods are simple but often do
not yield reliable results, and sometimes even produce significant errors due to poor statistical
stability and the use of linear equations. With improved understanding of aquatic ecosystem
processes and advanced computing capabilities, physical models are now used to address water
quality problems [8], [9], [10]. Although these models can describe variations in Chl-a levels
based on the mechanism, they are not well suited for most Chinese lakes and reservoirs they re-
quire a significant amount of field data.

Artificial neural networks (ANNs), which imitate the basic characteristics of the human
brain such as self-adaptability, self-organization and error tolerance, are able to map non-linear
relationships among the variables that are typical of aquatic ecosystems [11]. Since their first
application for the prediction of algal blooms from water quality databases of the Saidenbach
Reservoir in Germany [12], ANNs have been widely applied to study Chl-a. Some examples of
their application include prediction of algal blooms in Lake Kasumigaura in Japan [13], fore-
casting the incidence of cyanobacteria in the Murray River in Australia [14], estimation of the
Chl-a levels in three water bodies in Turkey [15], analysis of algal bloom dynamics in the coast-
al waters of Hong Kong [16], elucidation of phytoplankton dynamics in the Nakdong River in
Korea [17], prediction of the Chl-a levels in the Nanzui water area of Dongting Lake in China
[18], and modeling of Chl-a levels during spring algal blooms in the Xiangxi Bay of the Three
Gorges Reservoir in China [19]. These studies revealed that ANNs outperform traditional sta-
tistical models in modeling non-linear behavior and are more flexible than physical models be-
cause they require less detailed knowledge of the aquatic ecosystem. However, none of these
studies encountered difficulties specific to modeling of the Yugiao Reservoir, which has exten-
sive submerged aquatic plants in addition to problems common to most reservoirs, such as
abundant blue algae, limited data, highly variable water levels, and complex physical and chem-
ical processes. Shallow water and appropriate nutrition conditions in the Yuqiao Reservoir
have led to extensive growth of submerged aquatic plants.

Furthermore, although it is important to select the proper training method to improve predic-
tion, few studies have systematically analyzed the performance of different ANNSs in predicting
Chl-a levels. Finally, almost all these studies used only water quality data as inputs, whereas mete-
orological factors that greatly affect the growth and accumulation of algae were rarely considered.
Therefore, this study developed an accurate biweekly Chl-a predictor for the Yugiao Reservoir by
selecting appropriate training methods based on comparison of several ANN and non-ANN
methods and by determining the appropriate model inputs including meteorological factors.

Study Area and Data
1. Study area

The Yugiao Reservoir (Fig. 1) is located downstream of the Haihe River Basin in northern
China. It is the largest reservoir and the only source of drinking water for Tianjin, the third
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Fig 1. A map of the Yuqiao Reservoir in Tianjin, China.

doi:10.1371/journal.pone.0119082.9001

largest city in China with a population of 2.92x10” in 2010. The reservoir was built in 1959 and
used as a regulating reservoir during the diversion project from Luanhe to Tianjian in 1983.
The reservoir surface area is 86.8 km?, and its volume and average depth at normal water level
are 0.42x10° m’ and 4.6 m, respectively. The mean annual precipitation and air temperature of
the basin are 750 mm and 11.5°C, respectively.

The ecosystem of the Yuqiao Reservoir has undergone significant changes over the past few
decades because of the natural evolution of biological species, changes in water diversion pat-
terns, accelerated eutrophication of water quality, and substantial reduction of runoftf resulting
from climate change and human activities. The dominant species of submerged vegetation has
changed from Potamogeton maackianus to Potamogeton crispus, and the biomass of Potamoge-
ton crispus in late May increased from 4.8x10” kg in 1988 to 1.19x10® kg in 2009, whereas the
distribution area of this species increased from 34.85% to 60.84%, according to remote-sensing
estimates made using the Huanjing-1A/B satellite. The safety of the water supply of the Yugqiao
Reservoir is now threatened by excessive growth of Potamogeton crispus in spring and algal
outbreaks in summer. Potamogeton crispus is a submerged aquatic plant that purifies water by
absorbing excess nutrients and competing for resources with cyanobacteria during its high
growth period from April to mid-May. Furthermore, Potamogeton crispus promotes the
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growth of cyanobacteria by accelerating nutrient release during its explosive death and decay
during late May and early June.

2. Data

(1) Samples. In this study, water quality and meteorological data from 1999-2012 were collect-
ed (S1 Data). The water quality data comprise 20 parameters including water temperature
(Tw), pH, conductivity (Cond), transparency (Tran), chloride (CL), hardness (Hard), ammo-
nia nitrogen (NH,4-N), nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO,-N), total nitrogen
(TN), dissolved oxygen (DO), permanganate index (PI), biochemical oxygen demand (BOD),
total phosphorus (TP), phosphate (PS), total solids (TS), suspended solids (SPS), soluble solids
(SLS), salinity (SAL) and Chl-a. These data were collected by the Yugiao Reservoir Administra-
tive Bureau from the center of the reservoir (117°30'30.24"E and 40°02/35.02"N) approximately
every two weeks in the summer and monthly in other seasons.

Meteorological data were obtained at the Tianjin site (117° 04’ E and 39° 05’ N) daily by the
National Weather Service Information Center. These data include 11 parameters: mean air
pressure (P), maximum air pressure (Pmax), minimum air pressure (Pmin), mean air tempera-
ture (Ta), maximum air temperature (Tamax), minimum air temperature (Tamin), precipita-
tion (PCP), average wind speed (WS), maximum wind speed (WSmax), sunshine duration
(SD), and total radiation (R).

(2) Features and variables. Feature extraction and determination of variables are important
for any pattern recognition task, especially for Chl-a prediction, which involves complicated
processes and variations. Excessive inputs may result in inefficient Chl-a prediction, whereas
limited inputs may fail to describe the relationship between the influential variables and Chl-

a levels.

To prepare features and variables for model inputs, we first interpolated the field water qual-
ity data into biweekly sets using a linear method and then processed the meteorological data to
match the water quality data. The predicted day was set as Day,, and the current day was set as
Day;s. Therefore, the average value of the water quality and meteorological data of the preced-
ing days 15-165 were processed into biweekly intervals. Second, considering the absence of
field data for days 0-15 relative to the predicted day, we supplemented these data with the 10-
year (2000-2009)-average water quality and meteorological variables of the corresponding pe-
riod. Therefore, a total of 372 variables ((11 meteorological data + 20 water quality variables) x
12) were prepared (Table 1).

To reduce the dimensionality of the input data and to determine the appropriate model in-
puts, a threshold was applied to the correlation coefficient (Table 1). Variables whose correla-
tion coefficient with Chl-a was over 0.5 were considered relatively important and selected as
inputs. Therefore, a total of 27 variables of 6 water quality features (6 Tw variables: Twsg, Twys,
Twegg, TWys, TWog, and Twygs; 3 DO variables: DO3g, DOys, and DOgg; 3 PI variables: PIsg, Plys,
and Plg; 5 TP variables: TP3,, TP4s, TP, TP7s5, and TPgg; 5 NO5-N variables: Niag, Nia; s,
Niasg, Niays, and Niagg; 5 Chl-a variables: Chlay, Chla; s, Chlasg, Chla,s, and Chlag) and 16
variables of 4 meteorological features (4 P variables: P¢g, P75, Pog, and Pygs; 4 Pmax variables:
Pmaxg, Pmax;s, Pmaxgg, and Pmax;ys; 4 Pmin variables: Pming,, Pmin,s, Pmingg, and
Pmin, s; 4 Ta variables: Tagg, Ta19s, Ta;20, and Ta,35) were selected.

Based on field experience, meteorological variables such as WS, SD and R were added as in-
puts because of their close relationship to Chl-a despite their low correlation coefficients
(<0.5), which result from the typical non-linear relationship between variables and Chl-a.
Meteorological variables whose correlation coefficient with Chl-a was over 0.3 were also select-
ed as inputs. Therefore, 14 meteorological variables (5 WS variables: WSy, WS, 5, WS35, WSy,
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Table 1. Correlation coefficients of Chlorophyll-a (Chl-a) with water quality and Chl-a with meteorological variables.

Variables*

Tw

pH
Cond
Tran
CL
Hard
NH4-N
NOs-N
NO>-N
TN
DO

PI
BOD
TP

PS

TS
SPS
SLS
SAL
Chl-a

Pmax
Pmin
Ta
Tamax
Tamin
PCP
WS
WSmax
SD

R

Note:

Day,* *

0.28
0.18
0.00
0.46
0.14
-0.32
0.05
-0.55
-0.07
-0.45
-0.4
0.59
0.11
0.54
-0.04
-0.07
0.47
-0.15
-0.24
1.00
0.31
0.28
0.29
0.45
0.41
0.42
0.42
0.29
0.28
0.23
0.21

Day5* **

0.33
0.2
0.02
0.49
0.19
-0.33
0.09
-0.56
-0.14
-0.42
-0.47
0.57
0.03
0.46
0
-0.15
0.4
-0.15
-0.27
0.71
0.36
0.34
0.35
0.46
0.42
0.43
0.44
0.36
0.35
0.25
0.25

Dayso Day,s

0.58
0.23
-0.05
0.49
0.17
-0.42
0.02
-0.55
-0.16
-0.45
-0.51
0.57
0.01
0.53
-0.08
-0.15
0.45
-0.15
-0.28
0.69
0.41
0.4
0.41
0.47
0.43
0.44
0.46
0.36
0.36
0.3
0.31

0.58
0.24
-0.1
0.48
0.15
-0.44
-0.03
-0.52
-0.16
-0.44
-0.52
0.59
0.02
0.56
-0.11
-0.16
0.41
-0.17
-0.29
0.69
0.46
0.45
0.46
0.47
0.43
0.44
0.48
0.38
0.38
0.31
0.34

Dayeo

0.59
0.26
-0.15
0.48
0.13
-0.48
-0.1
-0.49
-0.17
-0.43
-0.51
0.57
0
0.56
-0.11
-0.19
0.39
-0.18
-0.3
0.66
0.51
0.5
0.51
0.48
0.45
0.45
0.48
0.37
0.37
0.3
0.32

Dayzs
0.57
0.28

-0.18
0.45
0.1

-0.5

-0.18

-0.46

-0.2

-0.42

-0.49
0.53

-0.03
0.54

-0.13

-0.19
0.39

-0.18

-0.3
0.6
0.55
0.55
0.55
0.49
0.46
0.46
0.47
0.29
0.29
0.28
0.29

Daygo
0.55
0.29

-0.2
0.43
0.09

-0.49

-0.23

-0.43

-0.24

-0.4

-0.45
0.48

-0.06
0.52

-0.14

-0.17
0.36

-0.18

-0.28
0.54
0.53
0.52
0.53
0.51
0.48
0.48
0.45
0.28
0.28
0.26
0.26

Day+0s

0.51
0.3
-0.21
0.4
0.06
-0.47
-0.29
-0.39

-0.3
-0.38
-0.39
0.42
-0.05
0.46
-0.15
-0.17
0.29
-0.2
-0.27
0.48
0.5
0.51
0.5
0.52
0.49
0.49
0.44
0.27
0.26
0.24
0.23

Day120

0.47
0.29
-0.22
0.32
0.04
-0.45
-0.35
-0.36
-0.36
-0.36
-0.31
0.35
-0.06
0.39
-0.15
-0.17
0.24
-0.2
-0.26
0.41
0.48
0.48
0.48
0.51
0.48
0.48
0.42
0.26
0.25
0.24
0.22

Day13s

0.42
0.27
-0.22
0.26
0.01
-0.41
-0.39
-0.32
-0.41
-0.32
-0.22
0.28
-0.05
0.33
-0.16
-0.16
0.19
-0.21
-0.25
0.35
0.46
0.47
0.48
0.51
0.48
0.48
0.41
0.26
0.25
0.23
0.22

Day;so
0.36
0.24

-0.23
0.2

-0.02

-0.38

-0.42

-0.28

-0.46

-0.29

-0.14
0.21

-0.04
0.27

-0.17

-0.18
0.14

-0.22

-0.25
0.29
0.45
0.47
0.47
0.49
0.46
0.46
0.39
0.25
0.24
0.23
0.21

Day;es
0.3
0.19

-0.25
0.17

-0.06

-0.34

-0.44

-0.24

-0.49

-0.26

-0.06
0.13

-0.03
0.19

-0.17

-0.22
0.09

-0.22

-0.26
0.23
0.43
0.46
0.47
0.48
0.45
0.45
0.38
0.25
0.24
0.22
0.21

* Tw, water temperature; Cond, conductivity; Tran, transparency; CL, chloride; Hard, hardness; NH,4-N, ammonia nitrogen; NO3-N, nitrate-nitrogen; NO»-
N, nitrite-nitrogen; TN, total nitrogen; DO, dissolved oxygen; PIl, permanganate index; BOD, biochemical oxygen demand; TP, total phosphorus; PS,
phosphate; TS, total solids; SPS, suspended solids; SLS, soluble solids; SAL, salinity; P, daily mean air pressure; Pmax, maximum air pressure; Pmin,
minimum air pressure; Ta, average air temperature; Tamax, maximum air temperature; Tamin, minimum air temperature; PCP, precipitation; WS, average

wind speed; WSmax, maximum wind speed; SD, sunshine duration; R, total radiation.

** Day,, data of the predicted day;
*** Day4s, Dayso. . .Dayqes, the average data of the previous 15, 30...165 days.

doi:10.1371/journal.pone.0119082.t001

and WSg; 5 SD variables: SD, SDs5, SD3q, SDys, and SDgg; 4 R variables: Rsg, Rys, Rgo, and
R;5) were selected.

meteorological variables.
Considering the similarity of air pressure variables, 3 air pressure features (P, Pmax
and Pmin) were reduced to one (P), and 8 air pressure variables were excluded (4 Pmax

pH was also selected as an input despite a low correlation coefficient, similar to the WS
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Table 2. Features and variables of the Chl-a prediction model.

Type
Water quality

Meteorology

Note:

* Features are the same as listed in Table 1.

Features* No. of variables Variables* *

Tw 6 Twao, TWas, TWeo, TW75, TWgo, TW10s
pH 1 pH1os

DO 3 D030, DO4s, DOgo

PI 3 Plsg, Plys, Plgo

TP 5 TP3g, TP45, TPgo, TP75, TPgg
NO3-N 5 Niag, Niays, Niazg, Niays, Niagg
Chl-a 4 Chla;s, Chlagzg, Chlays, Chlagg
P 4 P601 |:’751 PQO: |:’105

Ta 4 Tago, Taios, Ta120, TA135

WS 5 WS, WS15 WS30, WSys5, WSgo
SD 5 SDg, SD1s, SD3p, SD4s, SDgo

R 4 RSOv F{45: R60: R75

** Average value of the variables over the indicated number of preceding days. For example, Twg, represents the average water temperature of the

preceding 30 days.

doi:10.1371/journal.pone.0119082.t002

variables: Pmaxgy, Pmax;s, Pmaxg, and Pmax;os; 4 Pmin variables: Pmingy, Pmin,s, Pming,
and Pmin;s).

Precipitation was not considered in this study despite relatively good correlation coefficients
(0.38-0.48) because precipitation events were rare, and their values varied greatly, which might
cause significant uncertainty in the prediction model.

Chla, was excluded because by definition it was the predicted Chl-a, i.e., the 10-year-average
Chl-a. The use of Chla, might significantly influence the annual average Chl-a prediction
model, making it less flexible to variations in water quality and meteorological conditions.

Therefore, a total of 49 variables of 12 features (27 variables of 7 water quality features and
22 variables of 5 meteorological features) were selected for this study (Table 2).

(3) Configuration. Based on the above parameters, the Chl-a predictor was designed as
shown in Fig. 2. The predictor comprises three parts: an input layer, an output layer and several
hidden layers. Each layer contains several neurons. Each neuron receives inputs from neurons
in the previous layers or from external sources and then converts the inputs either to an output
signal or to another input signal for neurons in the next layer. The connections between neu-
rons in successive layers were assigned weighted values, which represent the importance of that
connection in the network.

Methodology

This section introduces the strategy used to develop a Chl-a predictor, which considers factors
including choice of an appropriate training method, determination of adequate model inputs,
and identification of suitable network architecture and parameters.

1. Training method

To identify which model is best suited for the Chl-a predictor, the following six widely used
ANNSs were compared: Back Propagation (BP), Probabilistic Neural Network (PNN), Modular
Neural Networks (MNN), Jordan-Elman network, Self-Organizing Map (SOM), and Co-Active
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Water quality
7 features 27 variables
Water temperature(Tw)  Tyys
pH To
. W30
Dissolved oxygen(DO) g
Permanganate index(PI) 3

Total phosphorus(TP)  Chla,s -
Nitrate-nitrogen(NO;-N)
Chlorophyll a(Chl-a)
Meteorology
5 features 22 variables
Atmospheric pressure(P) Tars g

Chla(,g ¢

24

(O— Predicted Chl-a

Air temperature(Ta) 1430
Wind speed(WS) :

8
-]
-]
]

|<7 Input layer >l Hidden layer—»}«— Output layer—>|

Fig 2. Configuration of the Chlorophyll-a (Chl-a) predictor using artificial neural networks (ANN). Left: input water quality and meteorological variables
extracted by the correlation coefficient threshold method; middle: configuration of the predictor; right: predicted Chl-a. White circles on the left and right
represent input and output neurons, respectively. Black circles represent neurons in the hidden layer. Lines around the circles indicate the data flow. A total of
49 variables of 12 features (27 variables of 7 water quality features and 22 variables of 5 meteorological features) were used.

doi:10.1371/journal.pone.0119082.g002

Neuro-Fuzzy Inference System (CANFIS). BP is most likely the most widely used ANN and
comprises a feed-forward multi-layer neural network in which connections can jump over one
or more layers, and errors are propagated back to connections stemming from the input units.
PNNs are nonlinear hybrid networks typically containing a single hidden layer of processing
elements and use Gaussian transfer functions; all weights can be calculated analytically in these
networks. MNNs combine the results from several parallel multilayer perceptrons. SOMs
transform arbitrary dimensional inputs into a one- or two-dimensional discrete map consider-
ing topological constraints. CANFIS integrates adaptable fuzzy inputs with a modular neural
network to rapidly and accurately approximate complex functions. These ANNs are described
in detail in Liu et al. [20].

To examine the performance of ANNs, ANNs were compared to two typical traditional
non-ANN methods: principal component analysis (PCA) and support vector machine (SVM).
PCA is a widely used statistical method, which identifies relatively few “features” or compo-
nents that as a whole represent the full object state. SVM geometrically separates the training
set using a hyperplane or more complex surfaces if necessary; SVM is a new mathematical
method, which is widely used in modeling ecosystems.

The ANN predictors were performed using the NeuroSolutions 6.31 (www.neurosolutions.
com) software for the MATLAB neural network toolbox.
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2. Model inputs

To examine the feasibility of including meteorological variables in the Chl-a predictor, which
uses only water quality data, three models were constructed and analyzed using the following
inputs: (a) only water quality factors (WQ) (27 variables of 7 features); (b) only meteorological
factors (MF) (22 variables of 5 features); (c) both water quality and meteorological factors
(WM) (49 variables of 12 features).

3. Evaluation indices

The performance of the Chl-a predictor was measured first by computational cost and then by
precision. The first evaluation index was based on the training time required, and the second
index was based on the normalized mean square error (NMSE), the correlation coefficient
(Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE). These evaluation indices are
described below.

Z (ypi_yi)2

NMSE = (=4 N )2 (1)

Z(ypi X yz)

(Z ()" x Z )"

Corr =

Z (ypi_yi)2

NSE=1-——— (3)

Z (ypi_y):)

Vpi is the predicted Chl-a value at moment i, and y; is the observed value; N is the number of
days with interval of 15 days; yis the average Chl-a value observed at all moments.

4. Model parameters

Selection of parameters such as the number of hidden layers, number of neurons, and learning
rules, etc. was mainly based on the performance of NMSE, Corr, and NSE, which depended on
the experience of the researcher and several tests. The Chl-a predictor was trained with maxi-
mum supervised epochs of 10000 times, and average MSE less than 0.01 were used as the termi-
nation constraint condition.

The learning momentum of the 6 ANN models was set as 0.7. A hyperbolic tangent function
was used as the transfer function for axons (TanhAxons) as follows: f(x;w;) = tanh(x;"™), where
x™ = Bx; is the scaled and offset activity inherited from the linear axon. The learning momen-
tums and TanhAxons were the same for SVM and PCA in the output layers.

Other parameters of the 8 Chl-a models with the same inputs are shown in Table 3. For the
three models using different inputs, parameters were identical to the chosen model shown in
Table 3 except for the number of neurons in the input and hidden layers. The number of neu-
rons in the input layer for the models WQ, MF and WM were 27, 22, and 49, respectively,
whereas the number of neurons in the first hidden layer were 30, 20 and 40, respectively, and
in the second hidden layer, there were 25, 20 and 30 neurons, respectively.

PLOS ONE | DOI:10.1371/journal.pone.0119082 March 13,2015 8/16



@'PLOS ‘ ONE

Training Principle and Input Variables in Chlorophyll-a Prediction

Table 3. Parameters of the eight Chl-a predictors.

Type of network*

ANN BP
MNN
Jordan-Elman **x*()
PNN***(2)
SOM***(3)
CANFIS***)
Non-ANN SVM
PCA)***(S)

Note:

Output layer Hidden layer
Learning step Number of hidden layers Number of Neurons Learning step
0.1 2 40,30**(" 0.1
0.1 1 45,30%*® 0.1
0.1 1 40 0.1
1 1 60 1
0.1 1 60 1
0.1 50 0.1
0.01
0.1

* BP, Back Propagation; MNN, Modular Neural Network; Jordan-Elman, Jordan-Elman network; PNN, Probabilistic Neural Network; SOM, Self-Organizing
Map network; CANFIS, Co-Active Neuro-Fuzzy Inference System; SVM, the Support Vector Machine; PCA, Principal Component Analysis.

** Number of neurons: (1): Hidden layer 1: 40; Hidden layer 2: 30; (2): Upper processing elements (PEs) = 45; Low PEs = 30.

*** Some structural parameters of the models are (1) Time: 0.4; Integrator axon; (2): Cluster: 40; Competitive: conscience; Metric: Euclidean; (3) Rows: 4;
columns: 10; Starting: 4; Final radius: 0; Neighborhood shape: Square Kononen Full; (4) Gamma axon memory; Depth in: 10; Trajectory: 50; (5) Learning
rule: Sanger full; Principal 4. Further information on the parameters is available at http://www.neurosolutions.com/downloads/documentation.html.

doi:10.1371/journal.pone.0119082.t003

5. Training and validation

Since 1983, when the Yugiao Reservoir became the only source of drinking water for Tianjin
city, the greatest changes in water quality, weather conditions and ecosystem in the reservoir
occurred during 1999-2012. These changes occurred because of increased nutrient input, sig-
nificant reduction of runoff, change in water diversion patterns, and natural evolution of eco-
systems, which were closely related to climate change, urban water consumption, and newly
built water conservancy projects in the upper reaches. The Chl-a level varied from 0.00-0.35
mg/lin 1999-2009 and from 0.00-0.28 mg/l in 2010-2012. The factors influencing the aquatic
ecosystems were similar in 2010-2012 and 1999-2009, and there were no extreme weather
conditions or changes in water utility patterns. Therefore, the prediction model was developed
using data from 1999-2009 and tested using data from 2010-2012 because generally approxi-
mately 80% of the samples are used for training and the rest are used for testing while develop-
ing ecologic models.

Among the development data, seventy percent were randomly selected to train the model,
and the remaining data were used for cross-validation. To avoid over-fitting the network, train-
ing was stopped if there was no improvement from the cross-validation process after 100 itera-
tions. Weighted connection values were adjusted to minimize the RMSE between the desired
and predicted outputs.

Because the training data spanned most cases of extreme conditions in the Yuqiao Reservoir
since 1983, and the validation data were appropriate to test the performance of the proposed
model, the Chl-a predictor should illustrate variations in Chl-a levels corresponding to changes
in the ecosystem, weather conditions, and water diversion plans. Furthermore, the proposed
model used a greater number of appropriate water quality factors and incorporated meteoro-
logical factors as inputs, whereas traditional predictors only use a limited number of water
quality factors; therefore, compared to most traditional Chl-a predictors, the proposed model
should adapt better to variations in weather conditions and water diversion patterns.
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However, the performance of the model under new water diversion patterns and extreme
weather conditions is unclear. This scope of this study did not include cases with limited water
quality data and extreme conditions, which are low-probability events and occur randomly.

6. Sensitivity

To examine how the trained Chl-a predictor reacted to changes in each input, a sensitivity
analysis was performed. Each input to the model was altered by 5%, 10% and 20%, and the cor-
responding change in output was calculated. For an input indicator to be considered sensitive,
the corresponding output variation had to be greater than the input variation. A maximum
input alteration of 20% was selected because some parameters such as pH and air pressure are
relatively stable and vary by less than 20%.

Results and Discussion

The performance of the Chl-a predictor was examined in three ways. First, 6 ANNs and 2 non-
ANN predictors were compared to identify the appropriate model. Second, three ANN models
with different input variables were developed to determine the feasibility of incorporating
meteorological variables. Third, a sensitivity analysis was performed to examine how the
trained network reacted to changes in each input.

1. Comparison of ANN and non-ANN predictors

Table 4 shows the results of the training, validation and testing of the eight Chl-a predictors.
Except for the PNN method, all other methods required a training period that was less than
30 seconds. There were no time limits for most ANNSs.

Except for the SVM method, the Corr between the observed and predicted Chl-a values of
the ANNs was 0.524-0.880 in the testing period. This level of precision was consistent with
similar studies on other water bodies, such as a correlation coefficient of 0.5-0.7 in the Putra-
jaya Lake of Malaysia [21] and 0.77 in the Nakdong River Basin of South Korea [17]. The per-
formance of the ANN predictors was largely satisfactory considering the difficulties
encountered in modeling the Yugqiao Reservoir, which contains extensive submerged aquatic
plants in addition to the complex physical, chemical, and biological processes observed in
other water bodies. Furthermore, the long-term series training data extending over 11 years

Table 4. Results of the eight Chl-a predictors with the same inputs.

Method* Time (S) Training Validation Testing
NMSE (mg/l) Corr NSE NMSE (mg/l) Corr NSE NMSE (mg/l) Corr NSE

BP 12.00 0.004 0.897 0.772 0.003 0.895 0.808 0.003 0.88 0.754
MNN 7.00 0.005 0.686 0.714 0.005 0.6 0.739 0.006 0.553 0.637
Jordan/El man 14.67 0.004 0.648 0.736 0.005 0.53 0.703 0.004 0.489 0.629
PNN 42.00 0.003 0.766 0.711 0.003 0.684 0.634 0.004 0.631 0.668
SOM 14.00 0.003 0.748 0.749 0.003 0.654 0.633 0.006 0.603 0.604
CANFIS 29.33 0.004 0.742 0.761 0.005 0.676 0.706 0.005 0.624 0.702
PCA 26.30 0.003 0.604 0.619 0.005 0.576 0.583 0.005 0.524 0.540
SVM 14.87 0.227 -0.050 0.49 0.341 -0.062 0.314 0.258 -0.057 0.491
Note:

* Methods are the same as shown in Table 2.

doi:10.1371/journal.pone.0119082.t004
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(1999-2009) also contributed to the complexity of Chl-a prediction because the important fac-
tors governing Chl-a values changed significantly over time. For example, Potamogeton crispus
became the dominant submerged aquatic plant with biomass and distribution areas that dou-
bled every May over the past 30 years.

The training precision for the predictors was ranked in the following order based on the
NMSE, Corr, and NSE evaluation indices: BP > MNN, CANFIS, SOM, Jordan/Elman, PNN >
PCA > SVM. The results obtained during validation and testing were consistent with results
obtained during training.

In this study, all 6 ANNs outperformed non-ANN methods. For example, the NSE of ANNs
during testing was 0.604-0.754, whereas the NSE of the PCA and SVM methods was 0.540 and
0.491, respectively. The failure of the PCA and SVM methods may result from the complex
nonlinear nature of the Yuqiao Reservoir ecosystem.

Among the ANNs, the BP method best predicted Chl-a levels with NMSE, Corr and NSE
values of 0.003 mg/l, 0.880, and 0.754, respectively, during testing. However, there was no clear
advantage of one ANN over others because all 6 ANN models yielded acceptable results.

The SVM method is not suitable for Chl-a prediction because Corr was < 0.1 and NSE was
< 0.50 during the training, validation and testing periods; this is potentially because the SVM
method treats multi-category problems as a series of binary problems and may thus fail to cap-
ture the high variability of the aquatic system in the Yugqiao Reservoir.

In conclusion, the performance of the eight predictors indicated that ANNs, especially
when trained by the BP method, are a powerful alternative to traditional modeling techniques
for Chl-a prediction.

2. Incorporation of meteorological variables

Fig. 3 and Table 5 show the results of the three ANN models with different inputs of water
quality and meteorological variables. The model with only meteorological factors (MF) as in-
puts always overestimated the concentration of Chl-a, whereas the model with only water qual-
ity variables (WQ) as inputs underestimated Chl-a, which was evident during the training
period. Combining the water quality and meteorological variables (WF) improved the perfor-
mance of the Chl-a predictor greatly by accurately detecting peak timing and magnitude. For
example, the Corr of the WF model was 0.880, whereas the Corr of the WQ and MF models
was only 0.574 and 0.686, respectively. The NSE of the WF model was 0.754, whereas the NSE
of the WQ and MF models was 0.225 and 0.662, respectively.

3. Sensitivity

The sensitivity of the Chl-a predictor to water quality variables is shown in Fig. 4. The sensitivi-
ty decreased in the following order: pH > DO, Tw, PI > NO5-N, TP and the prior Chl-a.

Tw has a short-term positive effect on the Chl-a concentration but a negative impact over
longer durations. For example, the concentration of Chl-a increases with increasing water tem-
perature in the preceding 30-75 days but reduces with increasing water temperature in the pre-
ceding 90-105 days. This may be because warm water promotes the growth of algae in the
summer and Potamogeton crispus in the spring; excessive growth of Potamogeton crispus can
inhibit the growth of algae by competing for nutrients and light.

Chl-a is very sensitive to pH variations, and the Chl-a concentration increases at twice the
rate of pH change. This is potentially because a slight decrease in pH may significantly promote
algal photosynthesis by increasing the dissolution of CO, in water.

A higher Chl-a value generally implies a higher level of DO. To some extent, the level of DO
can indicate how much oxygen is produced by phytoplankton.
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Table 5. Results of three Chl-a predictors with different inputs

Evaluation indices

RMSE (mg/l)

Corr
NSE

Note:

wQ*
0.005
0.710
0.395

Training Validation Testing

MF* * WEF*** waQ MF WF wa MF WF
0.008 0.005 0.003 0.003 0.003 0.004 0.005 0.003
0.844 0.897 0.735 0.884 0.895 0.574 0.686 0.880
0.679 0.772 0.361 0.674 0.808 0.225 0.662 0.754

* ** and *** indicate models using only water quality factors, only meteorological factors, and both water quality and meteorological factors as
inputs, respectively.

doi:10.1371/journal.pone.0119082.t005
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PI and TP have similar effects on Chl-a, and Chl-q is relatively more sensitive to the per-
manganate index than to TP. This is because PI can indicate the abundance of phytoplankton,
whereas TP influences Chl-a indirectly by promoting the growth of phytoplankton.

Chl-g has similar sensitivity to NO3-N and water temperature: Chl-a first increases then de-
creases with increasing NO3-N.

The Chl-a concentration is closely related to the Chl-a level during the preceding 15-60
days. This indicates that algal seeds significantly influence growth and Chl-a levels in the subse-
quent two months.

The sensitivity of the Chl-a predictor to meteorological variables is shown in Fig. 5. The sen-
sitivity decreased as follows: P > WS, SD, and R > Ta.

The Chl-a concentration increases rapidly as P decreases because low air pressure promotes
floating and accumulation of algae on the water surface.

Chl-a is almost completely insensitive to changes in Ta; the Chl-a level varied by less than
5% when Ta was altered by 20%. This is because air temperature influences the aquatic system
indirectly with water as a medium.

Tw

Chla,Chla,]

po | Pl TP i NO-N | Chea

Variables

Fig 4. Sensitivity of the predictor to water quality variables. Bars indicate changes in Chl-a values caused by changes in the input variables, which were
altered by 5%, 10% and 20%. Black, slash-filled, and cross line-filled bars indicate the change in Chl-a values caused by 5%, 10%, and 20% changes in input
variables, respectively. Tw, water temperature; DO, dissolved oxygen; Pl, permanganate index; TP, total phosphorus; NO3-N, nitrate-nitrogen.

doi:10.1371/journal.pone.0119082.g004
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Fig 5. Sensitivity of the predictor to meteorological variables. Bars indicate changes as described for Fig. 4. P, daily average air pressure; Ta, average
air temperature; WS, wind speed; SD, sunshine duration; R, total radiation.
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WS has a short-term negative effect and a long-term positive effect on Chl-a levels. This is
because strong wind promotes the release of nutrients from the sediment, which promotes
Chl-ag increase in a relatively slow manner; however, strong wind rapidly inhibits the growth
and accumulation of algal particles.

Longer SD and R periods result in increased Chl-a because they increase energy input to the
aquatic ecosystem, which promotes photosynthesis.

Sensitivity to meteorological variables is meaningful for short-term forecasts and for long-
term prevention of algal blooms. For example, consecutive days with low air pressure, slight
wind speed and increasing SD and R in summer indicate a higher probability of algal bloom,
which can help water quality management departments to implement
advance countermeasures.

Conclusion

To develop an appropriate biweekly Chl-a predictor for the Yugiao Reservoir, this study first
compared several Chl-a predictors trained using different methods and then examined the fea-
sibility of incorporating meteorological factors for prediction. In addition, a sensitivity analysis
was performed to examine how the Chl-a predictor reacted to changes in each input. The fol-
lowing observations were made:

(1). ANN is a powerful predictive alternative to traditional modeling techniques for Chl-a pre-
diction with Corr values of 0.524-0.880 in the testing period. The BP model yields better
results compared to other ANN models.

(2). Combining the water quality and meteorological data greatly improves the performance
of the Chl-a predictor compared to models using water quality or meteorological data
alone as inputs; the Corr values increased from 0.574-0.686 to 0.880 when both inputs
were combined.

(3). Among the meteorological variables, Chl-a is most sensitive to air pressure, followed by
wind velocity, sunshine duration, total radiation, and air temperature. Chl-a is more
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sensitive to changes in pH compared to other water quality variables such as DO, water
temperature, NO;-N, TP and prior Chl-a values.
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