
RESEARCH ARTICLE

Minutia Tensor Matrix: A New Strategy for
Fingerprint Matching
Xiang Fu¤*, Jufu Feng¤

Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, School of Electronics
Engineering and Computer Science, Peking University, Beijing, China

¤ Current address: Room 2112, Science Building 2, Peking University, Haidian District, Beijing, China
* fuxiangpku@163.com

Abstract
Establishing correspondences between two minutia sets is a fundamental issue in finger-

print recognition. This paper proposes a new tensor matching strategy. First, the concept of

minutia tensor matrix (simplified asMTM) is proposed. It describes the first-order features

and second-order features of a matching pair. In theMTM, the diagonal elements indicate

similarities of minutia pairs and non-diagonal elements indicate pairwise compatibilities be-

tween minutia pairs. Correct minutia pairs are likely to establish both large similarities and

large compatibilities, so they form a dense sub-block. Minutia matching is then formulated

as recovering the dense sub-block in theMTM. This is a new tensor matching strategy for

fingerprint recognition. Second, as fingerprint images show both local rigidity and global

nonlinearity, we design two different kinds ofMTMs: localMTM and globalMTM. Mean-

while, a two-level matching algorithm is proposed. For local matching level, the localMTM
is constructed and a novel local similarity calculation strategy is proposed. It makes full use

of local rigidity in fingerprints. For global matching level, the globalMTM is constructed to

calculate similarities of entire minutia sets. It makes full use of global compatibility in finger-

prints. Proposed method has stronger description ability and better robustness to noise and

nonlinearity. Experiments conducted on Fingerprint Verification Competition databases

(FVC2002 and FVC2004) demonstrate the effectiveness and the efficiency.

Introduction
Fingerprint matching is a classical and hot topic in computer vision and pattern recognition
[1]. Researchers have set up a series of special fingerprint verification competition databases
[2] [3]. Establishing correspondences between fingerprint minutia sets is a fundamental issue
in fingerprint recognition. It is challenging to find perfect correspondences for fingerprints due
to various reasons: non-linear distortion, partial overlap, noise and so on.

Many minutia-based fingerprint matching papers have been published these years. They
can be mainly classified into two categories. The first category of these papers is to exact more
matching features besides minutia locations and orientations. Jain et al. used pores and ridge
contours besides minutia points and proposed a three-level (level 1: pattern, level 2 minutia
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points and level 3: pores and ridge contours) matching strategy [4]. Liu et al. proposed the mi-
nutiae phase difference feature to describe the minutiae [5]. Choi et al. incorporated ridge fea-
tures with minutiae and achieved good results [6]. Izadi et al. introduced cylinder quality
measure into minutia cylinder-code based fingerprint matching [7]. Wen et al. applied a set of
global level minutia dependent features, including minutia qualities and the area of overlapping
regions [8]. Thuy et al. increased the ridge-valley structure features and improved the classical
Thin-Plate-Spline deformation model [9], and they proposed the local Thin-Plate-Spline to
deal with non-linear distorted fingerprints [10]. In summary, these papers are trying to seek for
more matching features to improve the effectiveness.

The other category of these papers just uses the minutia features and tries to construct more
complex structures or to find more efficient algorithms. Since only the minutia features are
used, this category of approaches faces greater challenges. Previous pioneers have achieved big
progress. Ratha et al. proposed a local similarity calculation algorithm for local matching [11].
Chen et al. constructed the minutia topological structure to increase the tolerance for noise
[12]. Chikkerur et al. proposed K-PLET structures and a graph-based representation for minu-
tia matching [13]. Xu et al. grew minutia triangle structures into a growing area and then per-
formed the global match by fusing them[14]. Cappelli et al. proposed a novel representation
based on 3D cylinder structures, called Minutia Cylinder-Code [15]. Medina-Pérez et al. im-
proved fingerprint verification by using minutia triplets [16]. In summary, minutia topologic
structures constructed in local areas are considered to be less impacted by nonlinear distortion
and noise. However, as the radius of minutia structures is not big, it limits the use of global mi-
nutia information. Based on this consideration, some researchers try to introduce global infor-
mation into the matching process. Tea et al. presented an approach based on convex hull to
deal with incomplete or partial fingerprints [17]. Feng et al. proposed the compatibility of local
minutia pairs and adopted a relaxation iterative process [18]. Cao et al. applied compatibility
to local minutia star-structures and achieved better results [19]. All these papers are trying
to construct more complex minutia topologic structures or seek for more efficient
matching strategies.

Establishing correspondences between two feature sets is a fundamental issue in computer
vision and pattern recognition [20]. Horaud et al. proposed a graph matching framework and
formulated point matching as recovering the maximal cliques in the correspondence graph
[21]. Duchenne et al. proposed the affinity tensors to describe high-order affinities between
each feature pairs [22]. First-order tensor describes similarities of each feature pair. Second-
order tensor describes compatibilities between each two feature pairs. Leordeanu et al. pro-
posed a spectral technique for correspondence problems using pairwise constraints [23]. They
recovered the matching relationship based on spectral matching methods, by using the princi-
pal eigenvector of adjacency matrix and imposing the one-to-one mapping constraints. This
notion can be introduced into minutia matching.

Based on these insights, we propose a tensor matching strategy. We construct the minutia
tensor matrix (simplified asMTM) for fingerprint minutiae. It unifies both the first-order fea-
tures and the second-order features. The diagonal elements inMTM indicate similarities of
each minutia pair and other elements indicate pairwise compatibilities between minutia pairs.
Correct minutia pairs are more likely to establish both large similarities within them and large
compatibilities among them, thus they form a dense sub-block. Incorrect pairs establish links
with the other pairs accidentally, so they are unlikely to belong to dense sub-blocks (The defini-
tion of dense sub-block can be seen in section 2.1). Minutia matching is formulated as recover-
ing the main dense sub-block in theMTM.

Our previous papers tried to apply the tensor idea to fingerprint matching [24] [25]. We ap-
plied the spectral matching strategy to fingerprint global matching [24]. The disadvantage was
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that it was only applied to global matching, while other strategies were still required for local
matching. We proposed extended clique models to deal with local matching and global match-
ing [25]. The disadvantage is that the local matching process is time-consuming. Meanwhile,
local matching is not associated with global matching. This paper is innovative on the basis of
previous papers. First, the tensor strategy is used in local matching for the first time. Second, by
use of the proposed “MTM”, local matching and global matching are unified into an
integrated framework.

Main contributions of this paper are: First, the proposedMTM unifies both similarities
and compatibilities appropriately. Second, minutia matching is formulated as recovering the
dense sub-block in theMTM. Optimal matching relationship corresponds to the dense sub-
matrix in theMTM. It gives a clear mathematical meaning for “optimal matched pairs”.
Third, spectral matching methods are then used for recovering the dense block. It is effi-
cient and effective, which can be seen in the following experiments. Forth, twoMTMs with
different constraints are constructed, which makes use of local rigidity and global compati-
bility, respectively. In the local matching level, we build the local minutia topologic
structures and construct localMTM for each minutia structure pair. Calculating similarities of
minutia pairs corresponds to recovering the dense sub-block in the localMTM. In the global
matching level, we construct the globalMTM for entire minutia sets. Calculating similarities of
minutia sets corresponds to recovering the dense sub-block in the globalMTM. Proposed ap-
proach has stronger description ability and better robustness to non-linear deformation
and noise.

Materials and Methods

2.1 Problem formulation
Suppose there are two fingerprint minutia sets P and P', with Np and Np' minutiae, respectively.
We define two attributed graphs GP = (V,E,A) for minutia set P and GP' = (V',E',A') for minutia
set P'. Each edge e = ij 2 E in GP is assigned an attribute Aij, which is the distance vector be-
tween minutia i and minutia j in P. We represent node attributes as special edge attributes, i.e.
Aii for node i. So it is with P'. Let SA(ii', jj') indicate the similarity score between attributes Aij

and A'i'j'. We want to find a mapping that best preserves the attributes of nodes and edges be-
tween attributed graphs GP and GP'. Equivalently, we seek for a set of correct minutia pairs
M = (ii',jj',kk'. . .) so as to maximize the matching score, defined as:

Me ¼ arg max

M

X
ii0 ;jj0 2M

SAðii
0
; jj
0 Þ ð1Þ

High-order tensors are constructed to represent high-order affinities [22]. Inspired by this
notion, we propose the minutia tensor matrix (MTM). It is proposed based on these consider-
ations: First-order tensor matrix describes similarities of each minutia pair. Second-order ten-
sor matrix describes compatibilities between each two minutia pairs. For fingerprint minutia
sets P and P', each minutia pair (i, i') is assigned an similarity attribute T1 (i, i') and each two
minutia pairs (ii', jj') is assigned a compatibility attribute T2 (ii', jj'). (Calculation of T1 (i, i')
and T2 (ii', jj') can be seen in section 2.3 and 2.4). Thus we can build the first-order tensor ma-
trix T1 and the second-order tensor matrix T2. Here we don’t use tensor matrixes with three or
more orders as the computation is unacceptable. After that we fuse T1 and T2 into a fused
high-order tensor matrix TF, which is also the proposedMTM. The fusion rule is shown in the
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formula:

TFðii0; jj0Þ ¼
0 if ði ¼ j and i0 6¼ j0Þ or ði 6¼ j and i0 ¼ j0Þ

T1ði; i0Þ if i ¼ i0 and j ¼ j0

l � T2ðii0; jj0Þ else

ð2Þ

8><
>:

Where T1 is the first-order tensor matrix, whose element T1 (i, i') describes the similarity of mi-
nutia pair (i, i'). T2 is the second-order tensor matrix, whose element T2 (ii', jj') describes com-
patibility between (i, i') and (j, j'). The fused tensor matrix TF (MTM) is a two-dimensional
matrix with (Np × Np') × (Np × Np') elements. It unifies both similarities and compatibilities
among minutia pairs. When the condition (i = i' and j = j') holds, minutia pairs (i, i') and (j, j')
are the same pair, thus T1 (i, i') = T1 (j, j'). As minutia matching is one-to-one matching, minu-
tia i in Pmapped to both minutia i' and j' in P' is impossible. When (i = j and i' 6¼ j') or (i 6¼ j
and i' = j') holds, T2 (ii', jj') is 0.We use this priori knowledge to prune and can get a very sparse
MTM. The parameter λ is a weighting factor. As T1 and T2 have different dimensions, we use λ
to adjust the values. It is set manually. TF is a symmetric matrix as TF (ii', jj').

As shown in Fig. 1, for two minutia sets P and P', we can build the correspondence graph
GPP'. In graph GPP', the dense subgraph GA is the biggest strong-connected subgraph in GPP',
whose nodes have strong links with all the other nodes. Correct minutia pairs are likely to es-
tablish links among each other and thus form a strongly connected subgraph, which is also the
dense subgraph. Incorrect pairs establish links with the other pairs only accidentally. Minutia
matching can be formulated as seeking for the dense subgraph in the correspondence graph.

The correspondence graph GPP' corresponds to theMTM TF. In TF, the dense sub-block TD

is the biggest sub-matrix in TF, whose elements in all the rows and all the columns have big val-
ues. The element values in the dense sub-block TD should be greater than a certain threshold.
As shown in Fig. 1, for minutia sets P and P', we can build theMTM TF of the correspondence
graph GPP'. Correct pairs are likely to establish elements with big values among each other and
thus form a strongly connected cluster, which is also the dense sub-block TD. Minutia matching
corresponds to recovering the dense sub-block.

Equivalently, we seek for a set of correct matching pairsM = (ii', jj', kk'. . .), so as to maxi-
mize theMTM score, defined as:

Me ¼ argmax

M

X
ii0 2M;jj0 2M

TFðii
0
; jj
0 Þ ð3Þ

The main idea is illustrated in Fig. 1. The optimization problem (3) can be solved by spectral
matching method, which will be discussed in section 2.2.

2.2 Spectral matching methods
Formula (3) yields to the following binary optimization problem:

me ¼ arg
max

m
ðmTTFmÞ;m 2 f0; 1gpq; s:t: m1 � 1 and mT1 � 1 ð4Þ

The optimal solution ~m is the binary vector that maximizes themTTFm score.m is a row-
wise vectored replica of theMTM TF. It can be derived by using the principal eigenvector of TF

and imposing the one-to-one mapping constraints, which is proposed in [23].
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Here we make some improvements. Firstly we prune the elements with small similarities or
low compatibilities. Secondly we relax both the mapping constraints and the integral con-
straints onm, so that its elements can take real values in [1]. Thirdly we don’t initializem0 (the
initialization value ofm) randomly like [23], we use some priori knowledge. As minutia pairs
with big local structural similarities are more likely to have large compatibilities, we initialize

Fig 1. Illustration of the main idea in our method. The fingerprint images are from FVC2004 DB1 27–3 and 27–5. For clarity, only a small subset of minutia
pairs are shown. Candidate minutia pairs shown in (a) form the correspondence graph in (b) and the minutia tense matrix (MTM) in (c). Genuine minutia pairs
corresponds to the dense subgraph of correspondence graph, and also the dense block ofMTM. Minutia matching is formulated as recovering the dense
sub-block in theMTM. It can be solved by the spectral correspondence methods.

doi:10.1371/journal.pone.0118910.g001
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m0 by normalized first-order tensor matrix T1. It converges much faster using this strategy.

m0ði; i0Þ ¼ T1ði; i0Þ ¼ T1ði; i0Þ=
X

i

X
i0
T1ði; i0Þ ð5Þ

We can derivem� by computing the leading eigenvalue of TF, using Algorithm 1.

Algorithm 1 Spectral relaxation iterations.
Input: minutia tensor matrix TF
Output: m�, the main eigenvector of TF
1 initializem� ¼ m0 ¼ �T1

2 repeat
3 #m�  TFm�;
4# m�  1

jjm�jj2 m
�;

5 until convergence;

Indeed, each step of the iteration algorithm requires only O (z) operations, where z is the
number of non-zero elements of the matrix. Also, typically, in our situation, the algorithm con-
verges in a few dozen steps.

Given the continuous solutionm�, we can rewrite it in a Np × Np' matrix form and discretize
m� by a greedy approach and derive the optimal solution~m. Because of the existence of partial
overlapping, only a subset of size NS�min(Np, Np') can be matched. Here we set them� ele-
ments whose value is smaller than the pre-set threshold δ to zero. The parameter δ is set manu-
ally. Meanwhile, minutia matching is one-to-one matching, minutia i in Pmapped to both
minutia i' and j' in Q is impossible. We add this compatibility constraint during the iteration
process. It is summarized as Algorithm 2.

Algorithm 2 Greedy approach for discretization.
Input: continuous matrix m�

Output: binary matrix ~m
1 initialize ~m ¼ 0
2 set m� (i,j) = 0, 8i, 8j, m�(i,j)< δ

3 repeat
4 # find the maximal element m�(i,j)
5 # set~mði; jÞ ¼ 1, 8k, set m�(i,k) = 0,m�(k,j) = 0
6 until m� = 0;

The matching constraints (m1� 1 and mT 1� 1) are ignored in the spectral relaxation step
and then are induced during the discretization step. Corrected matched pairs can be gained
and similarities of minutia sets can be evaluated. We can get the number Nm of matched pairs.

After that we adjust the similarity score with the number of matched pairs. Take minutia
sets P and P' for example, the similarity SPP' is calculated using the following formula:

SPP0 ¼ Me � N2
m=ðNp � Np0 Þ ð6Þ

Sii' measures the similarity of matched pairs ii'. ~M indicates the maximum value of the opti-
mization problem shown in formula (3). Nm indicates the number of matched pairs, and Np

and Np' indicate the minutia number of P and P'.
In practice, we use the tensor matching strategy both in local matching level and global

matching level. There are some differences in these two levels. We will give detailed descrip-
tions in section 2.3 and 2.4.
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2.3 Local minutia tensor matrix (Local MTM)
Local minutia topologic structure (simplified as LMTS) is firstly introduced in [12]. A typical
LMTS is constructed from a center minutia and a list of neighboring minutiae in a specified
area. Fingerprint images show rigidity within the range of LMTS. Each LMTS can be seen as a
small minutia set. Here we propose the localMTM for minutia structures and design a novel
strategy to calculate similarities of LMTS pairs.

As shown in Fig. 2, minutia a and i, j, k form a minutia topologic structure La, minutia a'
and i', j', k' form a minutia topologic structure La'.

According to the coordinates and orientations of minutiae in La, we calculate the distance
vector �v between each two minutiae within La, so it is with La'. Each candidate minutia pair (i, i')
is assigned a local similarity attribute LT1 (i,i') and each two minutia pairs (ii', jj') is assigned a
local compatibility attribute LT2 (ii', jj'). They can be calculated in the following formula:

LT1ði; i0Þ ¼ Sii0 ¼ a � e�a0 �Dð�vai;�va0 i0 Þ ð7Þ

LT2ðii0; jj0Þ ¼ Cii0;jj0 ¼ b � e�b0 �Dð�v ij;�v i0 j0 Þ ð8Þ

Where �vai is the distance vector between minutia a and minutia i. �va0 i0 ; �vij; �vi0 j0have similar

meanings. HereDð�vpi; �vp0 i0 Þ ¼ jj�vpi
��vp0 i0 jj1. D (,) measures the 1-norm distance of vectors �vpi

and�vp0 i0 . Sii' indidates the similarity of minutia pair (i, i'). Cii',jj' indidates the compatibility be-

tween pairs (i, i') and (j, j'). α, α', β, β' are positive parameters. They are set manually.
We calculate all the similarities of minutia pairs in LT1 and all the compatibilities of each

two minutia pairs in LT2. Thus, we can construct the local first-order tensor matrix LT1 and
the local second-order tensor matrix LT2. The local fused tensor matrix LTF (localMTM) can

Fig 2. Illustration of local minutia tensor matrix. The fingerprint images are captured from FVC2004 DB1
6–2 and 6–5. Minutia pairs within two local minutia topologic structures shown in (a) form the local
correspondence graph in (b) and the local minutia tense matrix (local MTM) in (c). Correct pairs corresponds
to the dense subgraph of local correspondence graph, and also the dense block of local MTM. Minutia
matching is formulated as recovering the dense sub-block in the local MTM.

doi:10.1371/journal.pone.0118910.g002
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be constructed using the method proposed in formula (2). Calculating similarities of La and L'a
is formulated as recovering the dense sub-block in the local minutia tensor matrix LTF.

LMe ¼ arg max

LM

X
ii0 2LM;jj0 2LM

LTFðii
0
; jj
0 Þ ð9Þ

In experiments, we make some pruning after building the localMTM. Suppose there are
two minutia topologic structures La,La', with na, na' minutiae, respectively. Because of the one-
to-one mapping constraint, only subsets of size ns�min (na, na') can be matched. We retain
nr = 3 � min (na, na') candidate minutia pairs with the maximal similarity values. The pruned
localMTM has only nr � nr elements, which is much smaller than the original scale (na � na') �
(na, � na'). Then the optimal matching pairs within LMTS can be gained through spectral
methods proposed in section 2.2.The spectral iteration process is very fast. It usually will con-
verge in several iterations.

After relaxation and discretization, we can gain the optimal matched pairs and the number
nm of matched pairs. After that we adjust the similarity score with the number of matched
pairs. The similarity of LMTS pairs La and La' can be calculated using the following formula.

SLaLa0 ¼ LMe � n2
m=ðna � na0 Þ ð10Þ

~LM indicates the maximal score of the localMTM LTF. nm indicates the number of matched
pairs within (La, La'), and na indicates the number within LMTS La, na' has a similar meaning.

2.4 Global minutia tensor matrix (Global MTM)
The whole minutia set can be seen as a large global minutia topologic structure and the local
minutia topologic structures (LMTSs) are basic matching units. Fingerprint images show non-
linearity in the global range. Minutia pairs far apart may not look so compatible. Here we pro-
pose the globalMTM for minutia sets and design a novel strategy to calculate similarities
of fingerprints.

As shown in Fig. 3, La,Lb,Lc,Ld are four minutia structures in minutia set P, La',Lb',Lc',Ld' are
four minutia structures in minutia set P'. For clarity, only a small subset of the candidate LMTS
pairs is shown. LMTS pair (La,La') is assigned a global similarity attribute GT1 (La, La') and
each two minutia pairs (LaLa',LbLb') is assigned a global compatibility attribute GT2(LaLa',
LbLb').

Fingerprint images show nonlinearity in the global range. Minutia pairs far apart may not
look so compatible. We lower the compatibility threshold and take nonlinearity into account.
The first-order tensor GT1(La,La') can be evaluated using the structural similarity SLaLa0

gained

in section 2.2. According to the coordinates and orientations of LMTS center minutiae, we can
calculate the distance vector �v between each two center minutiae, such as�vab; �va0 b0 . The compat-
ibility GT2(LaLa',LbLb') can be evaluated using the two pairs of center minutiae (aa', bb'). They
can be calculated in the following formula:

GT1ðLa; L
0
aÞ ¼ SLaLa0

ð11Þ

GT2ðLaLa0 ; LbLb0 Þ ¼ CLaLa0 ;LbLb0
¼ Caa0 ;bb0 ¼ g � e�g0 �Dð�vab ;�va0b0 Þ ð12Þ

Where SLaLa0
indidates the similarity of LMTS pair (La, La') gained in section 2.3. �vabis the dis-

tance vector between center minutiae a and b. �va0 b0has a similar meaning. Caa',bb' indidates the
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compatibility between pairs (a, a') and (b, b'). γ, γ' are positive parameters. They are
set manually.

We calculate all the similarities of LMTS pairs in LT1 and all the compatibilities of each two
LMTS pairs in LT2. Thus, we can construct the global first-order tensor matrix GT1 and the
local second-order tensor matrix GT2. The global fused tensor matrix GTF (globalMTM) can
be constructed using the method proposed in formula (2). Calculating the similarity of minutia

Fig 3. Illustration of global minutia tensor matrix. The fingerprint images are from FVC2004 DB1 27–3 and 27–5. For clarity, only four minutia structure
pairs are shown. Candidate structure pairs shown in (a) form the global correspondence graph in (b) and the global minutia tense matrix (global MTM) in (c).
Correct structure pairs corresponds to the dense subgraph of global correspondence graph, and also the dense block of global MTM. Minutia matching is
formulated as recovering the dense sub-block in the global MTM.

doi:10.1371/journal.pone.0118910.g003
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sets P and P' is formulated as recovering the dense sub-block in the global minutia tensor ma-
trix GTF.

GMe ¼ argmax

GM

X
LaL
0
a2GM;LbL

0
b
2GM

GTFðLaLa0 ; LbLb0 Þ ð13Þ

In experiments, we make some pruning after building the globalMTM. Suppose there are
two minutia sets P and P', with Np and Np' minutiae, respectively. Because of the one-to-one
mapping constraint, only subsets of size NS�min (Np, Np') can be matched. We retain
Nr = 3 � min (Np,Np') candidate minutia pairs with the maximal similarity values. The pruned
globalMTM can be gained. It has only Nr

� Nr elements, which is much smaller than the origi-
nal scale (Np

� Np') � (Np
� Np'). Then the optimal LMTS pairs can be gained through spectral

methods proposed in section 2.2.The spectral iteration process is very fast. It usually will con-
verge in several iterations.

After relaxation and discretization, we can gain the optimal matched pairs and the number
Nm of matched pairs. After that we adjust the similarity score with matched pairs. As isolated
minutiae or those minutiae in the border of fingerprint images have few surrounding minutiae,
they may be removed at the step of constructing LMTSs. It is necessary to regain the lost
matches. We use the moving least squares (MLS) model proposed in [26] to regain lost genuine
minutia pairs. First, the parameters ofMLS deformation are estimated from the matched minu-
tia pairs. Then the estimated parameters are used to transform the model minutia set to the tar-
get minutia set. Third, a tolerance box is adopted to scan each minutia. When two minutiae
from different fingerprints drop into the same tolerance box, they are judged as matched. For
fingerprints from the same finger, many genuine minutia pairs can be retrieved. For finger-
prints from different fingers, few minutiae can be regained as the randomness of minutiae’s po-
sitions. In this way we can get the final matched pairs.

Here we design a new scoring strategy to get the final matching scores. We adopt the convex
hull strategy proposed in [17] to adjust the final similarity score. The convex hull can be gained
and the number of unmatched points within the convex hull can be calculated. The evaluation
strategy is based on convex hull and can be represented as follows:

SPP0 ¼ GMe � N2
m=ððNm þmpÞ � ðNm þmp0 ÞÞ ð14Þ

~GM indicates the maximal score of the globalMTM GTF. Nm indicates the number of matched
points, andmp indicates the number of unmatched points within the convex hull in minutia set
P andmp' indicates the number of unmatched points within the convex hull in minutia set P'.
It is more reasonable to adopt this new score evaluation strategy.

Algorithm
In this section, we describe our proposed algorithm in detail. It mainly contains the following
parts: initialization, local matching and global matching.

Initialization
Suppose there are two minutia sets P and P', with Np and Np' minutiae, respectively. For each
minutia i in P, we construct the LMTS with i as the center minutia and a list of neighboring mi-
nutiae in the circular area. In this way, Np LMTSs in P can be constructed. We take the same
operations in P' and Np' LMTSs can be constructed, too. According to the coordinates and ori-
entations of minutiae, we calculate all the distance vectors �vij; ð8i 2 P; j 2 PÞ within minutia P
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and all the distance vectors �vi0 j0 ; ð8i0 2 P
0
; j
0 2 P

0 Þ within minutia P'. We calculate all the simi-

larities of minutia pairs (i, i'), 8i 2 P, 8i' 2 P' using the formula (7). Meanwhile, we calculate all
the compatibilities of each two pairs (ii', jj'), 8i,j 2 P, 8i', j' 2 P' using the formula (8). In this
way, we can gain Np × Np' similarities and (Np × Np') × (Np × Np') compatibilities in all.

Local matching
For minutia sets P and P', with Np and Np' minutiae, we construct Np and Np' LMTSs, respec-
tively, thus we gain Np × Np' LMTS pairs. For each LMTS pair from 1 to Np × Np', we conduct a
local matching operation.

The local matching operation contains three steps:
(a) Building the localMTM: For the LMTS pair (La, La'), we select the corresponding minu-

tia pairs within La and La'. (The similarities and compatibilities have been calculated in the ini-
tialization step and we just need to select them.) We build the local first-order tensor matrix
LT1 and the local second-order tensor matrix LT2. Next we construct the localMTM LTF using
formula (2).

(b) Spectral matching: Calculating the similarity of LMTS pair (La, La') yields to the optimi-
zation problem shown in formula (9). We use the spectral matching methods proposed in sec-

tion 2.2 to deal with it. The maximal value ~LM and optimal matching pairs can be gained.

(c) Scoring: After gaining the maximal ~LM and the optimal matching pairs, we calculate the
similarity SLaLa0

of LMTS pair (La, La') using formula (10).

After Np × Np' local matching operations, we can gain all the similarities of candidate
LMTS pairs.

Global matching
(a) Building the globalMTM: After gaining the similarities of all candidate LMTS pairs, we can
build the global first-order tensor matrix GT1. For each two LMTS pairs (LaLa', LbLb'), we evalu-
ate their compatibility through their center minutiae (aa', bb'). The calculation function can be
seen in formula (12). In this way, (Np × Np') × (Np × Np') LMTS compatibilities can be calculat-
ed and the global second-order tensor matrix GT2 can be built. Next we construct the global
MTMGTF with (Np × Np') × (Np × Np') elements using formula (2).

(b) Spectral matching: Calculating the similarity of minutia sets P and P' yields to the opti-
mization problem shown in formula (13). We use the spectral matching methods proposed in

section 2.2 to deal with it. The maximal value ~GM and the optimal LMTS pairs can be gained.

(c) Regaining: After calculating the maximal value ~GM and the optimal LMTS pairs, we re-
gain lost genuine pairs using theMLS strategy. In this way the final matched pairs can be gained.

(d) Scoring: After gaining the maximal value ~GM and the final matched pairs. We adopt the
convex hull strategy to adjust the final similarity score. We calculate the entire similarity SPP' of
minutia sets P and P' using formula (14).

The novel fingerprint matching algorithm is summarized as algorithm 3.

Algorithm 3 High-order tensors matching algorithm.
Input: Two fingerprint minutia sets P and P', with Np and Np' minutiae,
respectively.
Output: The entire similarity SPP' of minutia sets P and P'
1 Initialization:

constructing local minutia topologic structures:
Np and Np'structures, respectively.

calculating similarities and compatibilities of all minutia pairs:
Np × Np' similarities and (Np × Np')×(Np × Np') compatibilities.

Minutia Tensor Matrix for Fingerprint Matching
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2 Local matching: calculating LMTS similarities
repeat: from 1 to Np × Np'
calculating similarity of LMTS pairs for LMTS pairs (La,La')
building the local first-order tensor LT1 and the local second-order

tensor LT2
constructing the local minutia tensor matrix LTF
spectral matching for ~LM and matched pairs
calculating the similarity SLaLa0

of LMTS pair (La,La')

until all candidate LMTS pairs are calculated.
3 Global matching: calculating entire similarity

building the global first-order tensor GT1and the global second-order
tensor GT2

constructing the global minutia tensor matrix GTF

spectral matching for ~GM and matched pairs
regaining lost genuine minutia pairs using MLS model
constructing the convex hulls of minutia sets P and P'.
calculating the entire similarity SPP' of minutia sets P and P'

Results

4.1 Fingerprint Database
Comparative experiments are conducted on the International Fingerprint Verification Compe-
tition (simplified as FVC) databases: FVC2002 and FVC2004 databases. FVC2002 contains four
different sub-databases and each database has 800 fingerprints (100 fingers and 8 impressions
per finger) [2]. For each sub-database, each two impressions per finger are tested and there are
2800 true matches. The first impressions of each two fingers are tested and there are 4950 fake
matches. We conduct 7750 matches in all. It is the same with FVC2004 [3]. They are interna-
tional competition databases for fingerprint verification algorithms, which are open to all re-
searchers (FVC2002 can be downloaded in http://bias.csr.unibo.it/fvc2002/ and FVC2004 can
be downloaded in http://bias.csr.unibo.it/fvc2004/). The image quality of FVC2002 is good,
while the image quality of FVC2004 is relatively bad. It contains much noise and nonlinearity.

For each algorithm and for each dataset, the following performance indicators are consid-
ered: Equal-Error-Rate (simplified as EER); False Match Rate (simplified as FMR); False Non
Match Rate (simplified as FNMR); the lowest FNMR for FMR� 0.1% (simplified as FMR-
1000), average time for per match (simplified as Time) and the corresponding receiver operat-
ing characteristic curves (simplified as ROC cures). These experiments run on Intel i5–760
(2.80 GHz) processor (single-thread) and 32-bit Windows 7 systems.

4.2 Experiments
The matrix scale of local MTM plays an important role for local matching. It is directly affected
by the radius of LMTS. Here we make a special experiment on FVC2004-DB1 to test the influ-
ence. We use the proposed matching algorithm and vary the radius size from 30 pixels to 160
pixels. We observe the relationship between EER, average time and the LMTS radius. Fig. 4
shows the results. The radius ranges from 30 pixels to 160 pixels. The average time increases
with the radius length as the matrix scale ofMTM is directly affected by the radius of LMTS.
EER decreases at first and then increases with the radius. It is because that fingerprints show ri-
gidity in local areas and nonlinearity in global areas.

In the following experiments, we set each parameter the same value for all algorithms. The
LMTS radius is set to 80 pixels. The matrix fusion parameter λ in formula (2) is set to 0.1. The
minimal similarity threshold δ in section 2.2 is set to e-4. The local similarity parameters α, α'
in formula (7) is set to 1, 0.5, respectively. The local compatibility parameters β, β' in formula
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(8) is set to 2, 0.33, respectively. The global compatibility parameters γ, γ' in formula (12) is set
to 2, 0.2, respectively.

Comparative experiments are conducted on FVC2002 and FVC2004 databases. In order to
demonstrate the effectiveness of the new algorithm, some other matching algorithms are used,
including the efficient minutia-based fingerprint matching algorithm (simplified as EMF) [8],
the local structural similarity algorithm (simplified as LSS) [11], the local topologic structure al-
gorithm (simplified as LTS) [12], the grow and fuse algorithm (simplified as GF) [14], the mi-
nutia cylinder-code algorithm (simplified asMCC) [15], the minutiae triplets algorithm
(simplified asMT) [16] and the local structure compatibility algorithm (simplified as LSC)
[18]. Here we use only minutia features (coordinates and orientations) for every algorithm. We
do not use other matching features such as qualities or ridges to ensure the
comparison effectiveness.

The proposed algorithm has two levels: localMTMmatching and globalMTMmatching.
We make validation for each level, respectively.

4.2.1 Validation of local MTM. Local MTM is proposed to calculate the similarity of
LMTSs. In order to test the effectiveness of the local matching part, we do a special group of ex-
periments on FVC databases. Four different methods for measuring LMTS are used: the local
matching part of LSS (simplified as local LSS) [11], the local matching part of LTS (simplified
as local LTS) [12], the local matching part ofMCC (simplified as local MCC) [15] and the pro-
posed localMTM. We choose the four algorithms for local matching as all of them have the
step of local matching. Local LSS used a matching strategy based on graph representation.
Local LTS used a longest common subsequence strategy to calculate the similarity of two
LMTSs. Local MCC proposed a novel representation based on 3D data structures. For local
MTM, we only use the local matching part proposed in section 2.3.

Fig 4. Curves of EER and Timewith the growth of structural radius on FVC2004-DB1.

doi:10.1371/journal.pone.0118910.g004
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In order to ensure the comparison effectiveness of these four methods, we use the four dif-
ferent methods to measure similarities of LMTS pairs, and then using the same post-processing
operations. After gaining the similarity matrix of LMTS pairs, we discard the different post-
processing operations of these original algorithms and use the same discretization operation
proposed in algorithm 2 to gain the optimal matching pairs. The final scores are simply evalu-
ated using the same convex hull strategy, which is shown in the following formula.

SPP0 ¼
X

matched
SLL0 �

N2
m

ðNm þmpÞ � ðNm þmp0 Þ
ð15Þ

In this formula SLL' indicates the similarity of LMTS pair (L, L'), Nm indicates the number of
matched pairs.mp indicates the number of unmatched points within the convex hull in minutia
set P andmp' indicates the number of unmatched points within the convex hull in minutia
set P'.

For each algorithm and for each dataset, the performance indicator of EER and Time is con-
sidered. EER Results on FVC2002 and FVC2004 are shown in the Table 1. The experimental re-
sults show that our local MTM algorithm is close to well-known algorithmMCC in the EER
indicator. It has promising performances in terms of both the EER and FMR-1000. Meanwhile,
Time results on FVC2004-DB1 is shown in Table 2. We can see that the proposed local MTM is
better than other algorithms in the Time indicator. Specially, the proposed local MTM is much
better than local MCC, as we don’t need to construct minutia structures as complex as local
MCC.

4.2.2 Validation of global MTM. From the experiments for local matching we can see,
MCC and the proposed localMTM are two better methods for measuring similarities of
LMTSs pairs. They can be used to calculate the structural similarity for global matching. Take
global MTM into consideration, we design two combined algorithms: local MCC + global
MTM, and local MTM + global MTM. We compare these two algorithms with some other algo-
rithms, including EMF [8], LSS [11], LTS [12], GF [14],MCC [15],MT [16] and LSC [18]. EMF
applied a set of global level minutia dependent features including qualities and the area of over-
lapping regions. Here we use only the area of overlapping regions for fairness. LSS used a
matching technique based on graph representation and then an expanding strategy based on
distances. LTS proposed a novel matching algorithm based on local topologic structures and
then used a novel method to compute the similarity. GF proposed a robust matching approach
based on the growing and fusing of local structures.MCC proposed a novel representation
based on 3D data structures.MT proposed a novel fingerprint matching algorithm named
M3gl. LSC proposed the concept of compatibility to the minutiae triangle structures and
adopted a relaxation process for global adjustment. In order to ensure the comparison effec-
tiveness of these four methods, the radius of minutia structures is set to 80 pixels equally.

Table 1. EER results on FVC database for local matching.

D1 D2 D3 D4 D*1 D*2 D*3 D*4

local LSS 3.54 4.28 5.21 3.21 9.38 12.56 9.54 7.91

local LTS 2.36 2.68 3.34 2.34 8.16 10.81 8.34 6.21

local MCC 1.47 1.82 1.89 1.65 6.25 8.54 6.32 5.32

local MTM 1.46 2.25 2.47 1.34 5.36 8.97 6.29 5.15

Local LSS, local LTS, local MCC and local MTM are four algorithms for local matching. D1, D2, D3 and D4 are four sub-databases of FVC2002. D*1,
D*2, D*3 and D*4 are four sub-databases of FVC2004.

doi:10.1371/journal.pone.0118910.t001
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For each algorithm and for each dataset, the performance indicators of EER, FMR-1000,
Time are considered. Results on FVC2002 and FVC2004 are shown in the Table 3 and Table 4.
The corresponding ROC curves for FVC2004-DB1 are shown in Fig. 5.

We can get two conclusions: First, the combined two algorithms based on global MTM out-
performs the other algorithms. Second, the algorithm based on local MTM and global MTM
has the best results. It has promising performances in terms of both the EER, FMR-1000 and
Time. Fig. 6 shows a true match with much noise and large nonlinearity. Thanks to the strong
robustness of new method, many true matches are still found and they are judged as matched.

Table 2. Time on FVC2004-DB1 for local matching.

local LSS local LTS local MCC local MTM

Time 0.62 0.88 2.41 0.57

Local LSS, local LTS, local MCC and local MTM are four algorithms for local matching. This table shows

the average matching time (ms) for per match on FVC2004-DB1.

doi:10.1371/journal.pone.0118910.t002

Table 3. Comparative results on FVC2002 database for global matching.

D1-E D1-F D2-E D2-F D3-E D3-F D4-E D4-F

EMF 0.94 2.12 0.86 2.37 1.35 4.78 0.78 2.88

LSS 2.07 4.98 2.89 6.85 3.91 9.28 1.87 4.76

LTS 1.85 3.23 2.33 5.21 3.12 8.22 1.63 3.77

MT 1.10 2.30 1.30 1.90 3.10 7.50 2.40 5.60

MCC 0.58 1.02 0.67 1.93 1.17 3.53 0.31 2.24

LSC 2.54 5.14 3.76 8.46 3.15 5.27 1.98 4.54

GF 1.08 1.27 1.32 1.94 2.15 5.31 0.62 2.31

MCC+MTM 0.42 0.69 0.85 1.95 1.27 3.23 0.21 0.94

MTM+MTM 0.57 0.98 0.71 1.92 1.08 3.87 0.19 1.89

EMF, LSS, LTS, MT, MCC, LSC, GF, MCC + MTM, MTM + MTM are nine algorithms for global matching. D1, D2, D3 and D4 are four sub-databases of

FVC2002. D1-E indicates the EER indicator for FVC2002 DB1. D1-F indicates the FMR-1000 indicator for FVC2002 DB1.

doi:10.1371/journal.pone.0118910.t003

Table 4. Comparative results on FVC2004 database for global matching.

D*1-E D*1-F D*2-E D*2-F D*3-E D*3-F D*4-E D*4-F

EMF 5.33 15.83 6.72 15.02 4.23 8.85 3.29 7.69

LSS 6.23 17.01 6.81 17.21 6.09 15.21 5.32 11.87

LTS 5.88 16.32 5.99 11.72 4.82 8.92 3.38 8.26

MT 6.30 19.30 6.20 13.60 6.10 14.40 3.00 6.90

MCC 4.30 9.84 5.37 9.26 2.55 6.08 1.69 5.98

LSC 9.02 17.69 10.31 25.24 5.25 9.23 6.87 12.37

GF 4.21 8.824 4.91 9.21 3.22 8.38 3.91 6.34

MCC+MTM 3.77 9.12 5.94 11.13 2.25 5.65 1.59 4.11

MTM+MTM 3.13 7.54 3.62 7.914 2.17 5.39 1.62 5.48

EMF, LSS, LTS, MT, MCC, LSC, GF, MCC + MTM, MTM + MTM are nine algorithms for global matching. D*1, D*2, D*3and D*4 are four sub-databases

of FVC2004. D*1-E indicates the EER indicator for FVC2004 DB1. D*1-F indicates the FMR-1000 indicator for FVC2004 DB1.

doi:10.1371/journal.pone.0118910.t004
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For FVC2004-DB1, there are 800 fingerprints. Each two impressions per finger are tested
and there are 2800 true matches. The first impressions of each two fingers are tested and there
are 4950 fake matches. The average matching time for FVC2004-DB1 is shown in Table 5. The
result shows that our algorithm is significantly efficient. It is reasonable as both local MTM and
global MTM run very fast. We don’t need to construct minutia structures as complex asMCC.

4.2.3 Comparative Experiments with our previous papers. As we have described in the
introduction part, this paper is innovative on the basis of two previous papers [24] [25]. We

Fig 5. ROC curves on FVC2004-DB1 for global matching.

doi:10.1371/journal.pone.0118910.g005

Fig 6. A true match from FVC2004-DB1 4–2 and 4–3.

doi:10.1371/journal.pone.0118910.g006

Minutia Tensor Matrix for Fingerprint Matching

PLOS ONE | DOI:10.1371/journal.pone.0118910 March 30, 2015 16 / 19



firstly applied the spectral matching strategy (simplified as SM) to global matching [24]. The
spectral method was only applied to global matching, while other strategies were still required
in local matching. Afterwards, we proposed the extended clique models (simplified as ECM) to
deal with local matching and global matching [25].The process in local matching is time-
consuming. Meanwhile, local matching is not associated with global matching. This paper first-
ly unifies local matching and global matching into an integrated framework. We design local
MTM for local matching and globalMTM for global matching, respectively. It is efficient in
both levels. We conduct a group of experiments for the previous SM, ECM algorithms and the
proposedMTM algorithm.

Results on FVC2002 and FVC2004 are shown in Table 6 and Table 7. The experimental re-
sults show that our local MTM algorithm has the best performances in terms of both the EER
and Time. The ECM algorithm has promising effectiveness, but low efficiency.

Discussion

5.1 Effectiveness of this method
The proposed algorithm, including local MTM and global MTM, has promising effectiveness.
It fully takes fingerprint characteristic into consideration. The local MTM is proposed to de-
scribe local rigidity. It contains similarities and compatibilities of minutia pairs within LMTSs.
The global MTM is proposed to deal with global nonlinearity. It contains similarities and com-
patibilities of LMTS pairs within two minutia sets. For true minutia pairs, most of them have
both high similarities and high compatibilities, thus they will be judged as matched. Some of

Table 5. Time on FVC2004-DB1 for global matching.

EMF LSS LTS MT MCC LSC GF MCC+MTM MTM+MTM

Time 1.87 1.09 1.23 3.26 4.12 1.63 2.37 3.46 1.02

EMF, LSS, LTS, MT, MCC, LSC, GF, MCC + MTM, MTM + MTM are nine algorithms for global matching. This table shows the average matching time

(ms) for per match on FVC2004-DB1.

doi:10.1371/journal.pone.0118910.t005

Table 6. Comparative results between MTM and previous papers.

D1 D2 D3 D4 D*1 D*2 D*3 D*4

SM 1.02 0.98 1.85 0.57 5.97 6.98 3.67 4.39

ECM 0.68 0.67 1.28 0.20 3.33 3.98 2.88 2.21

MTM 0.57 0.71 1.08 0.19 3.13 3.62 2.17 1.62

SM, ECM and MTM are three algorithms for fingerprint matching. D1, D2, D3 and D4 are four sub-databases of FVC2002. D*1, D*2, D*3and D*4 are

four sub-databases of FVC2004.

doi:10.1371/journal.pone.0118910.t006

Table 7. Time betweenMTM and previous papers.

SM ECM MTM

Time 2.75 1.93 1.02

SM, ECM and MTM are three algorithms for fingerprint matching. This table shows the average matching

time (ms) for per match on FVC2004-DB1.

doi:10.1371/journal.pone.0118910.t007
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them may have high similarities and low compatibilities due to the nonlinearity, they will still
be selected in the global MTM and judged as matched. Some of them may have low similarities
and high compatibilities due to the sparseness or noise, they will be excluded at the local
matching step firstly and then regained at the global matching step. True minutia pairs with
both low similarities and low compatibilities are unsolvable. They may be regained through
other matching features, such as ridges.

5.2 Efficiency of this algorithm
The proposed algorithm has promising efficiency. Minutia matching is formulated as seeking
for the dense sub-block in the corresponding tensor matrix. Fingerprint matching is divided
into two levels: local matching and global matching. In each level it contains two steps: building
the tensor matrix and spectral iteration. We make some pruning when building the tensor ma-
trixes. The pruned tensor matrix is much smaller than original matrix. The time for building
tensor matrixes is acceptable. Meanwhile, the spectral relaxation is very fast, it usually con-
verges in 20 iterations. Suppose there are two minutia sets P and P', with Np and Np' minutiae,
respectively, this algorithms contains these operations: Np × Np' times of local spectral optimi-
zation at the local matching step, one time of global spectral optimization at the global match-
ing step, aMLS expanding operation and a convex hull operation. Each operation runs
very fast.

5.3 Future work
As we have described in section 4.1, true minutia pairs with both low similarities and low com-
patibilities are unsolvable. They may be regained through other matching features, such as
qualities and ridges. Our future work shall focus on: (1) adding new matching features, such as
phase difference feature, ridges; (2) taking minutia quality into consideration. We will try to
add other features into our algorithm framework.

Conclusions
In this paper, we propose the novel tensor strategy for fingerprint matching. First, the concept
of minutia tensor matrix is proposed. It unifies both the first-order features and the second-
order features appropriately. Second, correct minutia pairs correspond to the dense sub-block
in theMTM. Minutia matching is formulated as recovering the main dense sub-block. Spectral
matching methods are then used for recovering the dense sub-block. It is efficient and effective.
Third, two different kinds ofMTMs are constructed. The localMTM is constructed to calculate
similarities of LMTS pairs. It makes use of local rigidity. The globalMTM is constructed to cal-
culate entire similarity. It takes global nonlinearity into consideration.

In summary, this paper proposes a novel structural similarity calculation and a novel ap-
proach for fingerprint recognition. It makes better use of similarities and compatibilities. It has
stronger description ability and better robustness to nonlinearity and noise. Experimental re-
sults demonstrate the effectively and accuracy of our algorithm.
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