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Abstract
The correlation between diet and dental topography is of importance to paleontologists

seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well rep-

resented in the literature, few studies directly compare methods or evaluate dietary signals

conveyed by both upper and lower molars. Here, we address this gap in our knowledge by

comparing the efficacy of three measures of functional morphology for classifying an eco-

logically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category

(e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index de-

rived from linear measurements of molar cutting edges and two indices of crown surface to-

pography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals

were then classified by dietary category using Discriminate Function Analysis. Both upper

and lower molar variables produce high classification rates in assigning individuals to diet

categories, but lower molars are consistently more successful. SQs yield the highest classi-

fication rates. RFI and OR generally perform above chance. Upper molar RFI has a success

rate below the level of chance. Adding molar length enhances the discriminatory power for

all variables. We conclude that upper molar SQs are useful for dietary reconstruction, espe-

cially when combined with body size information. Additionally, we find that among our sam-

ple of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at

signaling dietary differences in absence of body size information. The study demonstrates

new ways for inferring the diets of extinct platyrrhine primates when both upper and lower

molars are available, or, for taxa known only from upper molars. The techniques are useful

in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of

molar morphology with extant platyrrhines.

Introduction
Numerous studies document a general relationship between primate molar occlusal morpholo-
gy and diet, providing a useful way of inferring the diets of extinct species. To date, the bulk of
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this literature has focused on the use of lower molars in dietary reconstruction, with little con-
sideration of the corresponding upper molar morphology. Among primates, measurements of
the relative length of the lower molar shearing crests [1,2,3] and various measures of occlusal
surface relief have been explored as correlates of diet in extant groups [4,5,6,7]. With the excep-
tion of a small data set of strepsirrhine upper molar crest lengths explored by Bajpai et al. [8], it
has not yet been established whether a reliable diet signal may be captured from upper molar
occlusal morphology as well. Furthermore, it is debated whether measures of occlusal relief and
relative lengths of the shearing crests are comparably reliable indicators of diet category [5].
Here, we present a comparison of dietary signals present in occluding pairs of upper and lower
first molars in medium- to large-bodied platyrrhines—a clade of primates for whom the phy-
logeny is well understood—using multiple measures of occlusal morphology (shear quotients
and occlusal surface relief indices). Finding a generalizable method for inferring diets of extinct
platyrrhines from upper as well as lower molars would introduce a previously unutilized source
of information about platyrrhine paleobiology. Also, because Eocene-Oligocene anthropoids
are similar to platyrrhines in body size and molar structure, this data set will provide an added
source for inferring early anthropoid niche structure to that based on lower dental morphology
[9,10].

In the introduction to their 1984 book “Adaptations for Foraging in Nonhuman Primates”
Rodman and Cant [11] call attention to three sorts of adaptations: those for reproduction,
avoidance of predation, and acquisition of food (foraging). Of the three, they note,

“. . . it is the ‘hunt’ and capture of food that seems to select most consistently for organismal
design in primates. . .. Physiological potentials determine the suitability of any food to any
specific forager, and physical structure of the food determines the potential of the forager to
reduce the food to useful form” (page 2).

Consistent with Rodman and Cant’s observation, foraging and dietary specializations play a
fundamental role in theories about the origin of the evolutionary novelties that characterize
primate, anthropoid, and human origins [2,8,10,12,13,14,15,16,17,18,19]. Not surprisingly, the
search for morphological signals of diet in fossils has produced an enormous literature empha-
sizing morphology, tooth wear, enamel structure, and the isotopic and physical properties of
dental materials [20,21,22,23,24,25,26].

Most studies of diet-morphology correspondence emphasize how upper and lower cheek
teeth interact to reduce food size during mastication [27,28]. It is assumed that tooth occlusal
surfaces are subject to natural selection related to chewing efficiency [29] and to the ability of
the teeth to remain functional in the face of chewing forces and attendant wear [30]. Increases
in the surface area of masticated food as a consequence of chewing should increase the rate of
digestion, thereby increasing the rate of energy return [31,32]. Thus, the structural properties
of the food (hardness, ductility, etc.) select for the structural design of the teeth through adapta-
tion for more efficient trituration and maintenance of functionality [33]. At the same time,
tooth structure is selected to optimize the extraction of nutrients from food; foods like sugars
and starches may not have to be chewed finely to achieve an optimal digestibility, whereas
plant or animal structural carbohydrates require extensive oral processing to optimize digest-
ibility [31]. Hard object consumers, for whom food processing and maintenance of dental
function may be a balancing act, can often be differentiated from taxa consuming softer items
through enamel specializations in combination the very low molar relief (e.g., [23]). Addition-
ally, body size must also be taken into consideration owing to its dual association with metabol-
ic needs and food passage time [31,34,35].
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Some work has been done to examine the relationship between dental topography (molar
crest lengths), chewing efficiency (chewed food particle size) and food physical properties.
Sheine and Kay [29,32] report experiments showing that the relative lengths of molar shearing
crests in six strepsirrhine species are related directly to efficiency in increasing food surface
area. Yamashita [36] finds that lower molar crest lengths are correlated with leaf consumption
in five Madagascar lemur species, such that animals consuming a higher proportion of leaves
and materials with higher shear strength (measured as the stress at which the material tears, in
kg/mm2) tend to have longer lower molar shear crests, relative to lower molar area. Likewise,
research by Kay [1,2] has demonstrated that the degree of development of the cutting edges of
the lower molars (measured in three dimensions with a binocular microscope, not as projected
onto the occlusal plane) when corrected for tooth size and expressed as a Shearing Quotient
(SQ) serves as a guide to the diet of extant species. A modification of this approach using Shear-
ing Ratios (SR) used by Strait [3] yields similar results.

Recently, a number of techniques employ laser and μCT scanning to produce three-dimen-
sional models of tooth crowns. A variety of different measures to capture the surface topogra-
phy can then be collected. Several indices derived from surface topography have been
demonstrated to correlate with dietary profile in select mammalian groups. These include mea-
sures of occlusal relief (e.g., Occlusal Relief, (OR; [4]), Relief Index (RFI; [7]), Orientation
Patch Count (OPC; [37]), and Dirichlet Normal Surface Energy (DNSE; [6]). Relief indices
(RFI and OR) represent the ratio of the three-dimensional surface area to the two-dimensional
tooth cross-sectional area. The greater the occlusal relief, the higher the values of these indices
[38]. Originally developed to study tooth wear, measures of molar relief (RFI and OR) have
been applied to the study of surface topography of unworn teeth to search for diet-morphology
correlates in euarchontan mammals [7], strepsirrhines [5], platyrrhines [5,39], and hominoids
[4]. Unlike measurements of relative molar shear (SQ), no laboratory or field studies have ex-
amined whether mechanical food properties and/or food shape are correlated and functionally
related to the three-dimensional dental topographic variables.

Simple proxies of tooth function and dental topographic methods each have strengths and
weaknesses [6,7,39]. All techniques are sensitive to dental wear as would be expected from sim-
ple examination of the gross effects of tooth shape as teeth wear. Therefore, study samples usu-
ally include specimens that have little wear. Phylogenetic effects also must be considered in
interspecific comparative analyses on a large number of species, to account for the likelihood
that a part of the shared similarity between closely related species may be due to shared descent
[7]. Inter-individual error in measurement has been considered a further potential drawback of
shearing measurements because the technique is based on recognition of landmarks that often
are difficult to identify precisely. Equally, however, surface topographic methods are not entire-
ly landmark-free because the observer must choose how to ‘crop’ the tooth crown from the
root and determine the type and degree of smoothing algorithms to apply to the surface prior
to analysis.

Finally, we recognize an overarching problem of each of these current approaches is quanti-
fying diet as a categorical variable to compare with molar structure. If we are evaluating the sta-
tistical ‘success’ of assigning a species to a particular diet category using a particular measure of
molar morphology, we need to feel confident that the within-group variability is less than the
between-group variability in the diet categories, for example that items within each dietary cat-
egory have broadly similar structural properties [36]. The state of our current knowledge does
not permit this except in a handful of cases.

Bearing in mind the above caveats and uncertainties we analyze occluding upper and lower
molar structure in a sample of platyrrhines, with intent to evaluate the feasible use of upper
molars in diet reconstruction, and to compare the efficacy of three methods of dietary

Platyrrhine Molar Morphology and Diet

PLOS ONE | DOI:10.1371/journal.pone.0118732 March 4, 2015 3 / 22



inference—RFI, OR and SQ. Our dataset consists of thirteen species of medium to large-bodied
NewWorld monkeys. The phylogeny of the group is well known (see Materials) allowing us to
measure and control for phylogenetic effects in the data. Large samples are used when calculat-
ing each index for the associated upper and lower molars of the same individual specimens.
Previous evaluations of these measures focused on lower molars, whereas our new dataset in-
cludes measurements of both the lower teeth and the upper teeth with which they occlude.

We pose two questions: Controlling for sample size and phylogenetic effects, how efficiently
do RFI, OR, and SQ of the lower and upper teeth correctly assign individuals and species to die-
tary categories? And, how do these measurements used together and in various combinations
affect the accuracy of the assignments?

Materials and Methods

Data collection
The study sample consists of the upper and lower first molars of thirteen species of platyrrhine
primates (an average of 7 specimens per species) covering a range of body sizes and dietary
profiles (Table 1). All specimens used in this study were collected by mammalogists and are
housed in systematic collections in the United States and Brazil. A full list of the specimens
(with museum attribution) is found in S1 Table. No animals were sacrificed for the purposes of
this study. Representatives from all three extant platyrrhine families were included; however,
members of the subfamily Callitrichinae (marmosets and tamarins) were excluded. Due to the
uniformly small size of callitrichines, the scanning tools we employed for surface analyses lack
sufficient precision for these species to be accurately measured. Furthermore, early platyrrhine
and catarrhine fossils—the target species for dietary reconstruction by these methods—demon-
strate body sizes more consistent with extant non-callitrichine platyrrhines [19,40,41,42,43,44].
The sample was restricted to individuals with no more than minimal tooth wear. As a wear cri-
terion, a specimen was rejected if the enamel was perforated to the dentine beyond the cusp
tips (a simple circular exposure of dentine at cusp tips was acceptable but a ribbon of dentine
exposure along a crest led to rejection). Specimens were also rejected when postmortem defects
and breakage were encountered. Dietary information reported here is based on mean annual

Table 1. Platyrrhine sample with dietary profile.

Species N Body Mass(grams) Primary Dietary Components Diet Category Diet References

Alouatta palliata 7 6250 Leaves, fruit Folivore [46,47]

Alouatta seniculus 5 5950 Leaves, fruit Folivore [48,49,50]

Aotus vociferans 9 703 Fruit Frugivore [51,52]

Ateles geoffroyi 9 7535 Fruit Frugivore [53,54,55,56]

Brachyteles arachnoides 9 8840 Leaves, fruit Folivore [57,58,59]

Cacajao calvus 10 3165 Hard objects, fruit Hard object feeder [60]

Callicebus caligatus 2 880 Fruit Frugivore [61,62]

Callicebus cupreus 8 1070 Fruit Frugivore [61,62]

Cebus capucinus 9 3160 Fruit Frugivore [53,54]

Chiropotes santanas 8 2740 Hard objects, fruit Hard object feeder [63,64,65,66]

Lagothrix lagotricha 9 7150 Fruit Frugivore [62,67,68,69,70]

Pithecia irrorata 9 2160 Hard objects, fruit Hard object feeder [71]

Saimiri boliviensis 9 811 Fruit, insects Frugivore Genus-level information: [62,72,73]

See Allen and Kay [46] for detailed dietary information; body mass (in grams) is the average of males and females, from Smith and Jungers [74].

doi:10.1371/journal.pone.0118732.t001
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diet taken from the literature (see description in Analysis section) [45]. We calculated SQ and
RFI for both the upper and lower first molars of each individual. These two dental measure-
ments have previously been applied to lower molars and demonstrated to be useful for differ-
entiating primates by diet. A third measure, (OR), was taken only for the lower first molar but
not the first upper molar for reasons described in the methods section. Measurements of SQ
were taken on high-precision epoxy casts while RFI and OR were calculated from laser scan
models of the same casts.

Shearing Quotient (SQ)
The lengths of shearing crests 1 through 6 and mesiodistal tooth length were measured for
both upper and lower first molars (Fig. 1A,B) under a binocular microscope fitted with a reticle
eyepiece at 12x or 25x magnification (depending on the size of the tooth). All measurements
were taken in reticle units and converted to millimeters. ‘Total shear’ was calculated as the sum
of shear crest lengths 1 through 6. Crest measurements were repeated by three observers (KLA,
LAG, and RFK). Inter-observer error in the sum of shearing crests and tooth length was less
than 5%.

Three-dimensional dental relief: Relief Index (RFI) and Occlusal Relief
(OR)
Entire maxillary and mandibular post-canine tooth rows were molded, cast, and laser surface
scanned following a protocol outlined in Cooke [39].

Relief Index (RFI), a measure of the overall relief of a tooth crown, was calculated following
Boyer [7] as ln(

p
TSA/

p
PSA) where TSA is the total surface area of the enamel crown cropped

along the cemento-enamel junction (CEJ) and PSA (projected surface area) is the two-dimen-
sional surface of the projection of the outline of the molar oriented in the occlusal view (Fig. 2).
This procedure was completed for both upper and lower first molars. To examine the degree of
intra-observer error that occurred during the cropping procedure one molar specimen was
cropped ten times on several different days. Error was found to be less than 2% (S2 Table).

Occlusal Relief (OR) [4], was calculated as a ratio in which the numerator is the three-di-
mensional surface area of the occlusal surface tooth cropped from the lowest point in the talo-
nid basin, and the denominator is the two dimensional planometric surface area of the occlusal
table (Fig. 2). To determine the lowest point in the talonid basin, we passed a plane through the
tooth parallel to the occlusal plane (x, z plane) using the “intersect a plane” function in Geoma-
gic Studio 2012 (Geomagic, Inc.). The plane was lowered until it intersected only with the low-
est point in the basin. The tooth was then cropped below this plane. OR was developed by
M’Kirera and Ungar [4] for use on lower molars. The upper molars in our sample displayed
considerable variation in cingulum development, which created difficulty in establishing a con-
sistent cropping procedure. As such, we limited the use of OR in this study to the lower molars.
RFI and OR were measured and calculated by SBC.

For both the upper and lower molars, Log10 TSA scales isometrically with Log10 PSA (i.e.,
the slope does not significantly differ from 1.0), so we followed the previous literature [4,7] in
representing both as ratios rather than residuals. Lower molar TSA scales isometrically with
molar length (slope = 2.0), whereas the upper molar TSAs scale with slight negative isometry
(slope = 1.78, 95% CI for slope = 1.72 to 1.84).

Analysis
Closely related species may be expected to be more similar morphologically, owing to a greater
degree of shared evolutionary history. A high degree of phylogenetic signal, or covariance
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Fig 1. ) SEM image of the occlusal surface of the right first maxillary (on the left) and first mandibular
(on the right) molars of Saimiri sciureus (USNM 546762, Para, Brazil). a Crests 1–6 are shown. b) Saimiri
sciureus (USNM 546762), oblique medial view (above) of right M1–2 and oblique lateral view (below) of P4-M3.
The leading edges of eight functional crests are labeled, as are the wear surfaces distal to them. We
measured crest lengths 1–6; crests 7 and 8 (associated with the margins of the hypocone and trigonid basin)
were not measured. Numbering system of the crests follows Kay [102].

doi:10.1371/journal.pone.0118732.g001
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Fig 2. Laser-scan generated image of Saimiri boliviensis (AMNH 255858) first molars demonstrating
calculations for surface relief measures. See text for calculations. a) and b) oblique lateral view of lower
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between the species data and their phylogenetic relationships, may violate the assumption of
independence of data points inherent in traditional correlation analyses [75,76]. We tested for
the effects of phylogenetic signal in our variables by calculating Pagel’s lambda (λ) in the ‘gei-
ger’ package for the statistical program ‘R’ [77]. Three fully resolved platyrrhine phylogenies
with associated branch lengths were used, representing variable arrangements at the subfamily
level: the maximum parsimony and maximum likelihood trees from Opazo [78] and the platyr-
rhine phylogeny from Perelman et al. [79].

Because the sum of the shear crests does not scale isometrically with molar length, the use of
a ratio (sum shear/tooth length) fails to properly account for body size effects. Instead, SQs
were calculated as the residual sum of the shear lengths using mesiodistal tooth length as a
proxy for size. SQs are calculated in the following way: Using the ‘caper’ package for ‘R’ [80], a
phylogenetically-corrected least-squares regression (PGLS) line was fitted to the Log10 species
means of upper and lower first molar lengths (on the abscissa) and Log10 summed first molar
shear (on the ordinate) of species means. The derived linear equation was used to generate an
‘expected’ shearing crest length from molar length of each included individual or taxon. First,
expected and observed variables were converted to real space. The expected value was then sub-
tracted from the observed value for each taxon, and divided by the expected value. The resul-
tant (SQ value) is expressed here as a percentage.

Allen and Kay [46], synthesize the available behavioral data concerning platyrrhine diet
composition, based on recorded feeding times and/or number of feeding bouts per food type
[45]. In our analyses, taxa were categorized into feeding groups—frugivore, folivore, and hard
object feeder—based on these feeding records. Species for which the mean annual percentage
of the recorded feeding bouts/feeding time devoted to consuming leaves exceeded 50% were
designated as “folivores”. Species in which fruit is the primary ingested component are catego-
rized as “frugivores”. Species described in the literature as consuming a substantial amount of
hard seeds and nuts in their diet are categorized as “hard object feeders”. Table 1 summarizes
the primary diet components and assigned diet categories of each species. The SQ regression
slopes described above were fit to frugivorous taxa alone. To visualize the distribution of values
across different taxa and different dietary groups, SQ, RFI, and OR were plotted in standard
box-and-whiskers plots in JMP Pro 10.0.2 for Mac, SAS Institute Inc. (Fig. 3A-E), and Kruskal-
Wallis tests were computed to look for differences among species and diet categories. Because
SQ values (residuals from the PGLS line) were found to contain a phylogenetic signal (λ = 1.0),
a phylogenetic ANOVA was computed to test for differences among diet groups using the
“phytools” package in “R” [81]. OR and RFI lambda values do not significantly differ (p>0.05)
from 0 (OR: λ = 0.4, M1 RFI: λ = 0, M1 RFI: λ = 0), so traditional non-parametric statistical
techniques were used. (The power to detect phylogenetic signal drops dramatically at small
sample sizes (n< 20 species) [82], so there may, in fact be an undetected phylogenetic signal, a
possibility that should be tested whenever samples are sufficiently large.) We applied post-hoc
multiple pair-wise comparisons (Wilcoxon Rank Sum) to test for significant differences in SQ,
RFI, and OR among diet categories. Significance criteria were determined using a Bonferroni
correction [83].

We employ discriminant function analyses (DFA) to examine the success rate of classifying
individual platyrrhine specimens by diet from upper and lower first molar SQ and RFI, and
lower molar OR. These analyses were conducted in SPSS Version 21.0 (SPSS, Inc.). M1 length

first molar showing cropping at the talonid basin (a) and cemento-enamel junction (b, CEJ); c) upper (top row)
and lower (bottom row) first molar in occlusal view with planometric surface area projection depicted to
the right.

doi:10.1371/journal.pone.0118732.g002
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and M1 length were included as proxies for size. DFAs were conducted by entering indepen-
dent variables together with all prior probabilities equal to avoid sampling bias as a result of
unequal number of individuals assigned to each dietary category. Results were cross validated
using “leave one out classification”. Cross-validated classification rates are reported here. Addi-
tionally, the data are partitioned so that the classification success rates using all variables can be
examined. The relationship among individual data points and group means are visualized in a

Fig 3. Box-and-whisker plots showing ranges of individual values for Diet-1 (3 group comparisons). a) upper molar SQ, b) upper molar RFI, c) lower
molar SQ, d) lower molar RFI, e) lower molar OR.

doi:10.1371/journal.pone.0118732.g003
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plot of scores in canonical space, illustrating the axis of variation that provides the best differ-
entiation among group means.

Results
Table 2 presents species means and standard deviations for all dental indexes. Box plots dem-
onstrating distributions of molar indices by diet group are presented in Fig. 3.

Shearing Quotient (SQ)
Results for SQ equations and residual distributions are consistent across all three phylogenies,
indicating that the results are robust to deviations in family-level branching patterns. In the ab-
sence of differences we present only the results for the Perelman et al. [79] tree, which depicts
Pitheciidae as the basal crown platyrrhine clade and Aotus as the first branch from the Cebidae.
The family level branching patterns for this phylogeny are in concordance with data provided
by Alu insertions, which are considered to have very low rates of homoplasy [84]. Among frugi-
vores in our sample, the sum of the shear crests scale with negative allometry on tooth length
for both the upper molars (log10 sum of M1 shearing crests = 0.44614 + 0.73751 � log10 M1

length; R-square = 0.72, p = 0.0006) and lower molars (log10 sum of M1 shearing crests =
0.29713 + 0.91435 � log10 M1 length; R-square = 0.97, p = 0.0003) in the PGLS regressions.

Frugivorous platyrrhine species are distributed around the grand mean for the total dataset,
as expected from the method by which SQ is calculated (Table 2, Fig. 3A, C). For both the
upper and lower first molars, SQ values for folivores occupy the upper end of the platyrrhine
range, indicating a higher sum of shear crest lengths relative to tooth length than in frugivores,
while hard object feeders occupy the low end of the sample distribution, indicating less molar
shearing than in frugivores. The distributions of the upper molar SQ overlap considerably
among the three diet categories, largely owing to the broad spread of values within the frugi-
vore group. In particular, Ateles, has the highest M1 SQ values for the frugivores in our sample.
Lower molar SQ values provide a greater degree of separation among diet groups owing to a
more restricted frugivore range, although some specimens of Ateles still fall within the folivore
range. For the upper and lower molars, folivore and hard object feeding categories occupy en-
tirely separate ranges, with the exception of two individuals of Cacajao, whose upper molar SQ
overlaps with frugivore SQs.

Distributions of indices by diet are summarized in Table 3. A phylogenetic ANOVA on
species means indicates significant differences among groups (M1: p = 0.005, M1: p< 0.001).
Post-hoc pair-wise comparisons on individual data points indicate highly significant differences
among all diet categories (p =<0.0001; Bonferroni significance criterion: p� 0.016) for both
upper and lower molar SQ (Table 4).

Relief Index (RFI)
Compared to SQ, both upper and lower molar RFIs show greater overlap of species means
among the different dietary groups (species data in Table 2, group data in Table 3; Fig. 3B, D).
Although means differ among groups, the ranges of individual specimens within each group
overlap substantially. Upper molar RFI group ranges overlap completely. Statistically signifi-
cant differences exist between the hard object feeders and both the frugivore and folivore distri-
butions but not between frugivores and folivores (Kruskal-Wallis pairwise test with a
Bonferroni correction criterion (p<0.017).

For lower molars, the folivore mean RFI and maximum individual values exceed those for fru-
givores, while hard object feeders have the lowest mean and maximum values (Table 3). All three
groups have similar minimum values for each diet category (folivore = 0.48, frugivore = 0.47,
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hard object = 0.47). A Kruskal-Wallis test shows significant differences in hard object feeders
versus frugivores and folivores but not between frugivores and folivores (Table 4).

Occlusal Relief (OR, lower molars only)
The results for M1 OR (Tables 3 and 4) mirror those of the lower molar SQs, with significant
differences among means for diet groups (Kruskal-Wallis test: p< 0.0001, post-hoc pair-wise
comparisons: p< 0.0167 for all groups) (Fig. 3E). Folivores have the highest OR values, hard
object feeders have the lowest values, and frugivores are clustered around the grand mean of
the total dataset. Despite the significant difference in means between frugivores and folivores,
these groups show considerable overlap in distribution of individual values.

Discriminant function analyses
Summary of the results of the DFA analyses are given in Table 5 and S2 Table. Initially each
variable was treated separately to determine its success rate in classifying individual specimens.
Lower molar SQ is most effective with 82.5% of individuals correctly classified by dietary

Table 2. Species means and standard deviations (SD) for dental indexes.

UM1 OR UM1 RFI Lm1 RFI UM1 SQ Lm1 SQ

Species Mean SD Mean SD Mean SD Mean SD Mean SD

Alouatta palliata 1.72 0.06 0.46 0.07 0.5 0.02 35.72 2.1 12.54 8.6

Alouatta seniculus 1.82 0.12 0.47 0.03 0.55 0.04 34.71 6.19 25.87 7.73

Aotus vociferans 1.73 0.09 0.45 0.03 0.54 0.02 0.18 6.67 5.11 4.07

Ateles geoffroyi 1.7 0.07 0.52 0.02 0.53 0.02 18.46 12.24 0.17 3.25

Brachyteles arachnoides 1.84 0.13 0.48 0.02 0.57 0.02 33.52 8.04 22.83 8.65

Cacajao calvus 1.51 0.1 0.5 0.02 0.51 0.02 -5.75 16.34 -12.01 5.43

Callicebus discolor 1.61 0.06 0.45 0.03 0.54 0.02 -9.25 4.7 0.307 2.6

Callicebus moloch 1.65 0.04 0.46 0.02 0.53 0.01 -6.95 4.26 -3.04 4.79

Cebus capucinus 1.59 0.11 0.45 0.03 0.51 0.03 -11.74 3.98 -6.86 6.82

Chiropotes satanas 1.46 0.08 0.48 0.02 0.49 0.01 -15.4 7.37 -13.8 4.3

Lagothrix lagotricha 1.69 0.1 0.47 0.02 0.53 0.02 11.45 19.12 4.53 4.7

Pithecia irrorata 1.53 0.13 0.48 0.03 0.51 0.02 -16.67 3.28 -14.15 6.6

Saimiri boliviensis 1.85 0.09 0.47 0.01 0.53 0.02 4.82 6.28 -1.22 -5.68

Sample sizes are listed in Table 1.

doi:10.1371/journal.pone.0118732.t002

Table 3. Sample parameters for M1 and M1 occlusal variables grouped by diet.

Diet Category M1 OR M1 RFI M1 RFI M1 SQ M1 SQ

Mean 95% Conf.
Int.

Mean 95% Conf.
Int.

Mean 95% Conf.
Int.

Mean 95% Conf. Int. Mean 95% Conf. Int.

leaves 1.8 1.85 1.74 0.47 0.49 0.45 0.54 0.56 0.52 34.54 37.26 31.81 20.04 24.58 15.67

fruit 1.7 1.73 1.67 0.47 0.48 0.46 0.53 0.53 0.52 2.27 6.17 -1.62 0.09 1.75 -1.56

hard objects 1.5 1.54 1.46 0.49 0.5 0.48 0.51 0.52 0.5 -12.25 -7.63 -16.87 -13.25 -11.104 -15.57

Values for 95% Conf. Int. indicate the upper and lower bounds of the 95% confidence interval for the diet grouping. See text for additional abbreviations.

doi:10.1371/journal.pone.0118732.t003
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category, followed by lower molar length (60.2%), lower molar OR (57.3%), and lower molar
RFI (44.7%). For all of the variables, classification rates increase substantially with the inclusion
of body size information (M1 mesio-distal length). Highest classification rates occur when all
lower molar variables—including molar length—are considered together (89.3%).

Of the dietary groups, frugivores had the lowest classification rates. For lower molar SQ, er-
rors occur predominantly with Cebus capucinus specimens classified as hard object feeders. In
fact, if species group means are used, only Cebus capucinus is misclassified. This is unsurprising
as some species of this genus do consume hard objects (e.g., C. apella), though C. capucinus
does not make these food types a major component of its diet. Additionally, two Ateles geoffroyi
and two Lagothrix lagotricha are misclassified as folivores. For the two indices of topography,
errors are less patterned and in the case of RFI, correct classification rates are only slightly
higher than random (in a classification scheme with three categories, an individual would have
a random chance of 33.3% of being correctly classified vs. our classification rate of 44.7%).

Upper molar analyses largely mirror those of lower molars, but have lower classification
rates. SQ classifies 68.9% of individuals correctly by diet and RFI classifies 47.6% correctly. The
addition of upper molar length improves both rates to 69.9%; when SQ, RFI, and molar length
are used together the classification rate is 82.5%. For upper molar SQ, major errors in classifica-
tion again occur most frequently within the frugivores. All specimens of C. capucinus and all
but one specimen of Callicebus cupreus are classified as hard object feeders. A. geoffroyi and L.
lagotricha individuals are both frequently misclassified as folivores. While these errors mirror
results for lower molars they occur more frequently.

Classification rates are the highest when all upper and lower molar variables are considered
together (93.2%) (Fig. 4). Three of 54 frugivorous individuals are misclassified as hard object

Table 4. Results of post-hoc multiple pair-wise comparisons between tooth indices (Wilcoxon each pair) segregated by diet categories.

Diet Category p-value Wilcoxon each pair

Group 1 Group 2 M1 OR M1 RFI M1 RFI M1 SQ M1 SQ

frugivore folivore 0.0034 * 0.8235 0.2453 <0.0001 * <0.0001 *

hard object folivore <0.0001 * 0.0126 * 0.0079 * <0.0001 * <0.0001 *

hard object frugivore <0.0001 * 0.007 * <0.0001 * <0.0001 * <0.0001 *

* denotes statistical significance of p-value using Bonferroni significance criterion for 3 groups (p< 0.0167).

doi:10.1371/journal.pone.0118732.t004

Table 5. Summary of correct classification rates for discriminant function analyses using upper
molar (M1), lower molar (M1), and upper and lower molar occlusal variables combined.

Variables M1 M1 M1 + M1

molar length 60.2 60.2

SQ 68.9 82.5 88.3

SQ + molar length 69.9 87.4 90.3

OR 57.3

OR + molar length 79.6

RFI 47.6 44.7 51.5

RFI + molar length 69.9 69.9 81.6

All variables 82.6 89.3 93.2

Values represent percentage of correctly classified specimens.

doi:10.1371/journal.pone.0118732.t005
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feeders and one specimen of hard object feeder (of 27) as a frugivore; of the twenty specimens
of folivores, one Alouatta palliata is misclassified as a frugivore. In our sample, the combina-
tion of upper and lower SQ with molar length returns a classification rate of 90.3%. Some L.
lagotricha individuals classify as folivores, and a few C. capucinus specimens misclassify as
hard object feeders.

Upper and lower molar RFI together with molar lengths return a classification rate of 81.6%
with major errors occurring when several different individual frugivore specimens were mis-
classified as hard object feeders. This occurs most often for A. geoffroyi and Saimiri boliviensis.
Without the inclusion of molar lengths, classification rates remain high using SQs of upper
and lower molars (88.3%), but classification rates using RFI alone decrease to 51.5%. Indeed,
comparison of RFI success rates on upper and lower molars with or without molar length
shows that the correct classification rates for RFI and molar length are largely being driven by
molar length. Ultimately, as long as molar length is included as one of the variables, most com-
binations of upper and lower molar variables achieve high rates of classification.

Using species means rather than individual specimens, the three lower tooth indices taken
together correctly classify all but one of our 13 species to a diet group (93%), the single excep-
tion being frugivorous Cebus capucinus, classified as a hard object feeder. The same overall
classification rate is achieved using SQ alone (93%), whereas, the success rate for OR alone mis-
classifies four of 13 species with most of the errors being misclassification of frugivores as either
folivores or hard object feeders. RFI performs less well than either of the other lower molar in-
dices, missing 5 of 13 (almost 40%).

Again, when using species means rather than individual specimens, the two upper tooth in-
dices taken together correctly classify all 13 species (100%). Using upper SQ alone, the success
rate is 85%, with two frugivorous taxa misclassified as hard object feeders: Cebus capucinus and

Fig 4. Plot of a discriminant function analysis including M1 length, RFI, OR, and phylogenetically corrected SQ and M1 RFI and phylogenetically
corrected SQ. 93.6% of variance is accounted for by discriminant function 1 and 6.4% by function 2. Polygons are drawn to include all individual specimens.

doi:10.1371/journal.pone.0118732.g004
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Callicebus cupreus. The success rate for upper molar RFI performs less well than either of the
other lower molar indices, successfully assigning 10 of 13 taxa (76.2%).

Discussion
Understanding the relationship between dental morphology and behavior in extant primate
species has been a key component for reconstructing the dietary niche of extinct species. Our
study examines the occlusal morphology of platyrrhine upper and lower molars, separately and
together, in relation to diet, controlling for phylogenetic effects. Several indices designed to
capture occlusal morphology (SQ, RFI, and OR) are applied to upper and lower molars of the
same individuals among taxa in a restricted taxonomic clade with a highly resolved phylogeny.

Early efforts to infer diet from molar morphology concentrated on allocation of an extinct
species into one of several dietary categories [1,16]. But if only one or two specimens of the ex-
tinct species are measurable, we cannot establish that the individual values reasonably approxi-
mate species means. In such a case, the most conservative approach is to compare the single
value with the ranges of extant values. Here, we use DFA to assess the success rate for assigning
a single specimen to a particular diet group [5,6,7,39] and to look at success rates for species
means of the indices.

An important outcome of this study is the demonstrated significance of using both upper
and lower molar data to ‘predict’ dietary behavior in extant species. When training the predic-
tive model using all variables for upper and lower molar concurrently, the predictive power ex-
ceeds 90%, even for individual specimens. When possible, we recommend a combination of
both upper and lower molar measurements for ‘retrodicting’ the behavior of extinct platyrrhine
species. However, when only the upper or the lower first molar is available, predictive success
rates remain at*85% for individuals and even higher for samples that are sufficient to calcu-
late the species mean with reasonable accuracy. Moreover, the ‘success rate’ exceeds 85% using
linear measurements alone. Thus, the more expensive and technologically labor-intensive sur-
face methods do not provide greater accuracy than the simple linear methods.

The findings of this study open the way for more precise interpretation of early platyrrhine
evolution. The list of extinct platyrrhine taxa that have both lower and upper molars available,
but for which only lower molars have been used in dietary assements, includes Late Oligocene
Branisella [85,86], Early Miocene Dolichocebus [87,88],Mazzonicebus [89], Carlocebus, Soria-
cebus, and middle Miocene Lagonimico [90], Cebupithecia, Neosaimiri [91], Stirtonia [92], and
Mohanamico [93,94]. Added to this are taxa for which there are only upper teeth and conse-
quently, have been excluded from efforts to make dietary reconstructions: Early Miocene Chili-
cebus [40] and “Kilikaike” [95].

Upper versus lower molar dietary signal
Considered either as individual specimens or as species means, indices of lower molar occlusal
morphology generally outperform the same measures from the associated upper molars in as-
signing species and individuals to a commonly used scheme of diet categories. The lower suc-
cess rate of the upper molar in diet discrimination is largely due to the greater variability of
upper molar indices, compared to those of the associated lower molars. Upper molar shear
quotient and topographic variables show greater overlap in values among diet categories than
do those for the lower molars, resulting in a somewhat greater degree of uncertainty in diet re-
construction. For example, the coefficients of variation for the upper molar SQs are roughly
twice those of the lower molars for the frugivore and hard object feeding categories (SI: DFA
classification errors). This variation may indicate a relaxed constraint on upper molar shearing
in these species, and/or reflect a great deal of variability in the secondary source of nutrition for
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these species. For example, the frugivorous Cebus capucinusmay include hard objects (seeds,
nuts) in its diet, while Ateles supplements its frugivory with young leaves [45].

It is also possible that the greater variability in upper molar topography may reflect phyloge-
netic effects. For instance, the frugivorous Ateles has a lower molar shear quotient in the middle
of the frugivore range, but a high upper molar shear quotient more in line with that of its close
atelid relatives, the more folivorous Brachyteles and Alouatta. Nevertheless, upper molar shear
quotients do show significant differences among all diet pairings, and a discriminant function
analysis of individual specimens for all upper molar measures returns high classification rates.
These results indicate that upper molar occlusal morphology is useful for dietary reconstruc-
tion, especially when combined with size information (i.e., molar length).

Topographic versus shear crest measures
Topographic surface measurements of molar relief (e.g., RFI, OR) have been argued to be a
three-dimensional version of shearing quotient [38], however, our results show that the incor-
poration of additional information about surface anatomy does not necessarily replicate SQ re-
sults, nor does it dramatically improve the predictive signal for dietary reconstruction. In our
study sample, RFI underperformed both SQ and OR for lower molars and SQ for upper molars.
RFI was initially designed to quantify morphological differences among dental relief of
markedly different morphologies—primates versus other eurachontans [7]. While it has
proved useful for that purpose, RFI is not successful here in capturing minor variations in func-
tionally relevant occlusal relief (e.g., shear) within this more phylogenetically circumscribed
dataset. Several reasons may account for this discrepancy. RFI describes the relative occlusal
surface area of the tooth, a measurement that will be affected by several factors in addition to
molar shear, including hypsodonty [5], the presence of accessory cusps and associated crests,
as well as other non-occulsal parts of the tooth—sidewall curvature, increasing molar breadth
as one nears the CEJ [96], and the presence or absence of a cingulum [39]. Many of these fea-
tures could in themselves be understood as functionally relevant, compensating for the me-
chanical demands of food processing, such as resisting dental attrition, or arresting crack
propagation. However, feature distribution related to dietary or even non-dietary factors (grit
ingested with food, for example) is as yet unclear and may cloud the signal captured by tradi-
tional two-dimensional shear measurements.

Many aspects of molar tooth structure picked up by topographic methods may be unrelated
to chewing efficiency, as defined by how finely a food is chewed before swallowing with atten-
dant benefits for digestibility. For example, the presence of cingula (low shelves on the crowns
of many primate teeth) may be protective, deflecting food particles away from the gingiva [97],
or they may reinforce the crown enamel against crack propagation and structural failure [22].
In either event, cingula are not functionally important for trituration, at least until wear is ex-
treme. Another signal that would be picked up by dental topographic studies is enamel crenula-
tion. The crenulated occlusal surface of Pongo or Chiropotesmolars may be a functional design
for the routine consumption of relatively tough and hard foods [23,98,99], but relates more to
resistance against crack propagation than to masticatory efficiency. Thus, many surface fea-
tures picked up by dental topographic analyses may well be unrelated to the primary function
of reduction of food particle size before swallowing, and in some cases may be correlated effects
of enamel structure or thickness. Although these features may convey information on dietary
evolution, surface relief measures such as RFI and OPC fail to distinguish surface features like
enamel crenulation or cingula from those provided by shearing blades used in trituration. As a
result, a surface relief index of a flat tooth containing many crenulations may resemble that of a
smoothly curved tooth with multiple shearing blades. Reducing topographic complexity down
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to a single index would in such a case fail to distinguish two very different adaptive strategies
for coping with mastication of food particles requiring fundamentally dissimilar
mechanical demands.

In this study, OR yields a somewhat clearer signal than RFI, possibly owing to the elimina-
tion of some of the variability in sidewall morphologies, as the tooth is cropped at the lowest
point in the basin rather than at the CEJ. This cropping procedure, while feasible and perhaps
more appropriate for studies of platyrrhines, is not always possible across a broad range of taxa
given the very deep basins seen in some species [7]. Additionally, this method was developed
for lower molars; given the greater morphological variability in upper molars, developing a re-
peatable cropping procedure for these teeth has eluded us. For example, in Saimiri, cropping at
the low portion of the basin may include the some cingulum in some specimens and not
in others.

A recent study by Winchester et al. [5] analyzed lower molar shape of platyrrhines. For each
individual specimen they calculated a set of relief indices (e. g., RFI, OPC [37]) and linear vari-
ables equivalent to SQ. Winchester et al. reported a higher classification success rate using den-
tal relief indices than using SQs for discrimination among most of their broad dietary
categories. Unlike in many previous studies and the data for lower molars reported here, their
version of SQ, which used M2 and sampled different but overlapping set of crests, failed to sep-
arate platyrrhine folivores from frugivores. In a recently published commentary, Boyer et al.
[100] re-analyzed the shearing crest data of Winchester et al., concluding that that the most sa-
lient reason for differences between their results and those of prior studies (and also this study)
are attributable principally to the tooth position examined: they used the lower second molar
whereas ours and all previous studies or platyrrhines used the lower first molar. We speculate
that the different findings for the two teeth have to do with the overall biomechanics of the
platyrrhine masticatory system. Platyrrhines have a tendency to reduce the size of the molar
battery from back to front. Callitrichines have lost the M3/3 in most cases but even large bodied
3-molared platyrrhines show an allometric trend toward M3/3 reduction that extends mesially
to encompass the M2/2. Thus, M2/2 size is negatively allometric relative to M1/1. Bearing this in
mind, we used M1/1 anticipating future research on smaller-bodied platyrrhines like callithri-
chines with third molar loss and extreme second molar reduction.

Body size and diet
Body size has a relatively predictable association with broad diet categories due to metabolic
demands of food acquisition and processing [101]. Larger-bodied mammals require less caloric
input per gram of body mass than do much smaller mammals. Owing to the absolute quantity
of resources required for sustenance, a larger-bodied mammal is unlikely to be able to meet its
nutritional demands for protein by eating non-social insects, while a small-bodied mammal
(generally, below 500g) may be able to do so. The dataset used herein does not include the
smallest bodied and most insectivorous primate species, nevertheless, as expected, we find that
molar length on its own goes a long way towards predicting the broad dietary regime of a plat-
yrrhine primate. We found that the addition of body size information (molar length) improves
the DFA success rate for assigning individual specimens to diet categories for all variables;
however, the classification rates for RFI by itself, in particular, are quite low without associated
body size information. This is not surprising given the broad degree of overlap in RFI values
among diet categories for both the upper and lower molars. Thus, for our broadly based sample
of middle- to large-bodied platyrrhines, we do not find RFI to be particularly useful for assign-
ing species to dietary categories, as they do not provide much information above that
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demonstrated by molar length alone. We do, however, recommend the consideration of body
size as an informative variable in dietary reconstructions.

Conclusions

1) We explored the ability of dental indices on the lower and upper first molars in medium to
large-bodied platyrrhines to differentiate among diet classes. Three diet categories were pro-
posed: frugivore”, “folivore”, and “hard object feeder”.

2) When controlling for sample size and phylogenetic effects, M1 SQ most accurately allocates
individual specimens and species to the dietary categories “frugivore”, “folivore”, and “hard
object feeder”. First molar RFI and OR, are less successful in DFA analyses. We interpret
this result as stemming from the fact that RFI and OR incorporate added functional ele-
ments of tooth design, such as those that prolong functional lifespan in the face of enamel
wear (e.g., crown height), or protect the gingival and reduce the likelihood that teeth will
fracture (cingulum development). These added elements might not correspond to the im-
mediate functional aspects of mechanical preparation—breaking up food so as to increase
its surface area and speed digestive processes by enzyme and microbial action.

3) Upper first molar indices, particularly SQ, also contain significant dietary information.
However, the accuracy of the assignment of individuals or species to diet categories is
poorer in general than accuracy achieved by corresponding measures on the lower molars.

4) When both upper and lower indices are considered together with tooth length, we achieve a
93% success rate in allocation of individuals to three-diet category scheme and 92.2% to the
four-diet scheme. Species are correctly allocated to diet groups 100% of the time.

5) The results of this study open the way for improved accuracy in inferring the diets of extinct
platyrrhines for which both upper and lower molars are available, or, for taxa known only
from upper molars. As well, it offers a new window into the dietary behavior of Eocene and
Oligocene stem anthropoids and early catarrhines.
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