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Abstract

The onset of floral development is a pivotal switch in the life of soybean. Brassinosteroids
(BRs), a group of steroidal phytohormones with essential roles in plant growth and develop-
ment, are associated with flowering induction. Genes involved in BR biosynthesis have
been studied to a great extent in Arabidopsis, but the study of these genes has been limited
in soybean. In this study, four CPD homologs (GmCPDs) catalyzing BR synthesis were iso-
lated from soybean. Transcripts were mainly confined to cotyledons and leaves and were
down-regulated in response to exogenous BR. Bioinformatic analysis showed strong se-
quence and structure similarity between GmCPDs and AtCPD as well as CPDs of other
species. Overexpression of GmCPDs in an Arabidopsis BR-deficient mutant rescued the
phenotype by restoring the biosynthesis pathway, revealing the functional roles of each
GmCPDs in. Except for the rescue of root development, leaf expansion and plant type archi-
tecture, GmCPDs in expression also complemented the late flowering phenotype of Arabi-
dopsis mutants deficient in CPD. Further evidence in soybean plants is that the expression
levels of GmCPDs in are under photoperiod control in Zigongdongdou, a photoperiod-sen-
sitive variety, and show a sudden peak upon floral meristem initiation. Together with in-
creased GmCPDs in expression in the leaves and cotyledons of photoperiod-insensitive
early-maturity soybean, it is clear that GmCPDs in contribute to flowering development and
are essential in the early stages of flowering regulation.

Introduction

Flowering is one of the most important events in the life cycle of plants, with optimal timing
being especially crucial. Therefore, flowering is controlled by numerous interacting endoge-
nous and environmental cues to ensure appropriate conditions for seed production. At least
four signaling pathways have been demonstrated to regulate flowering in concert, involving
length of day (photoperiodism), winter cold (vernalization), regulation by gibberellins (GAs),
and autonomous floral initiation occurring in the absence of any effective environmental sig-
nals [1]. In addition, other factors such as ascorbic acid, ethylene, ambient temperature and
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light quality have been found to be critical in mediating flowering [2-5]. Brassinosteriod is one
of these factors currently awaiting study.

Brassinosteroids (BRs) are a class of plant-specific steroid hormones. The effects of BRs
span multiple physiological processes and responses, including the induction of cell elongation,
xylem differentiation, root development, leaf bending/expansion, senescence and male fertility
[6-8]. In Arabidopsis, most BR-deficient mutants, such as the BR-biosynthetic mutants det2
[9], dwf4 [10] and cpd [11,12], exhibit a delayed flowering time. These mutants over-accumu-
late different BR precursors as a result of the blocked BR-biosynthetic pathway [10,13], indicat-
ing that changes to endogenous BR and BR precursor levels in Arabidopsis affects flowering
time. In addition, BRs have been found to modify the flowering induction networks of Arabi-
dopsis by regulating critical flowering-time genes. The BR-insensitive mutant bril was reported
to significantly delay flowering of the autonomous-pathway mutant Id and fca by elevating
FLC expression [12]. Moreover, bdbrdI-1, a BR-biosynthetic mutant from Brachypodium dis-
tachyon, was found to suppress the expressions of autonomous pathway genes such as FCA,
FY, FLD, FVE and LD [14,15]. Recently, BZRI, a positive regulator in the BR signaling, was
confirmed to regulate FLD expression by directly binding to FLD promoter to mediate flower-
ing [16]. All above raise the possibility that BRs promote flowering through autonomous path-
way. Another BR related gene, CONSTITUTIVE PHOTOMORPHOGENESIS AND
DWARFISM (CPD), can be regulated by light and may modulate flowering through the
photoperiod pathway.

The CPD gene was identified from an Arabidopsis T-DNA insertional mutation that causes
the constitutive photomorphogenesis and dwarfism (cpd) [17]. This gene encodes CYP90A1/
CPD, which belongs to the cytochrome P450 family [17]. CYP90A1/CPD was thought to be an
enzyme that catalyzes C-23 hydroxylation because C23-hydroxylated BR precursors but not
22-hydroxylated cathasterone (CT) rescued the cpd mutant [17]. However, recent evidence has
suggested that the C-23 hydroxylation reaction is catalyzed by CYP90C1 and CYP90D1 [18].
Actually, (225)-22-hydroxycampesterol (22-OHCR) is a favored substrate of CYP90A1/CPD
[19]. It has been demonstrated that CYP90A1/CPD encoded by CPD is a C-3 oxidase that is re-
quired for the conversion of 22-OHCR to (225)-22-hydroxycampest-4-en-3-one (22-OH-4-
en-3-one). The BR biosynthesis network in Arabidopsis proceeds from campesterol (CR) to
brassinolide (BL), which is biologically the most active form of BR [20-22]. The originally pro-
posed BR synthesis route is considered to start at the conversion of CR to campestanol (CN)
[22]. However, the latest study has indicated that these steps are non-essential and that a CN-
independent BR pathway is the main route based on enzyme substrate preferences [19]. In the
CN-independent BR synthesis pathway, CR is first hydroxylated to 22-OHCR, followed by the
oxidation to 22-OH-4-en-3-one. Obviously, CYP90A1/CPD encoded by CPD catalyzes the
early step of the BR biosynthesis pathway, suggesting its pivotal role in BR biosynthesis.

Interestingly, expression of the BR-biosynthetic gene CPD was reported to possess diurnal
rhythmicity with light regulation superimposed upon circadian control [23]. These transcrip-
tional changes are independent of BR feedback regulation but are accompanied by the diurnal
variation of endogenous BR content [23]. Similar to most of the light-responsive genes of GA
synthesis, CPD is under photoreceptor-specific control mainly through phytochrome signaling,
suggesting a mechanism in which light controls physiological functions via BRs [24-27]. The
CIRCADIAN CLOCK ASSOCIATED 1 (CCALl) transcription factor has been shown to medi-
ate circadian control and phytochrome-regulated gene expression [28,29]. As a potential bind-
ing sequence of CCA1, the AAAATCT motif was therefore speculated to be present in CPD
promoters [23]. CCA1I is a major gene involved in the circadian clock. In Arabidopsis, the cir-
cadian clock has dramatic effects on flowering time through the CO-FT photoperiodic flower-
ing pathway modulated by its core CCA1-LHY/TOC1 [30-33]. The interaction between CPD
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and CCAI may hold clues to the causes of the late-flowering phenotype of cpd mutants [12,34].
Furthermore, it has been reported that BR can modulate circadian rhythms and promote the
periodicity of the circadian clock genes CHLOROPHYLL A/B BINDING PROTEIN (CAB2),
COLD AND CIRCADIAN-REGULATED 2 (CCR2) and CCA1 [35]. This interaction is consis-
tent with the observation that the period of CCR2 is prolonged in cpd mutants [35]. Thus, the
above findings suggest that BR regulates flowering time through the circadian clock system, a
crucial mechanism in photoperiod pathway.

Soybean is a short-day crop of agricultural and economic importance. Soybean flowering is
largely regulated by photoperiod, with many varieties highly photoperiod-sensitive. Typically,
Zigongdongdou will not initiate flowering until short-day induction; this variety even under-
goes flowering reversion in which the floral meristem developing the floral organs reverts to
produce leaves when the photoperiod is altered from a short day to a long day [36-40]. This
high sensitivity restricts the adaptability of soybean to diverse environmental conditions, limit-
ing the season and region available to many high yield varieties, negatively impacting soybean
production [41]. In addition, the photoperiod sensitivity is diverse among soybean varieties,
leading to multiple maturity periods. Consequently, many varieties with good behavior cannot
be hybridized with each other as a result of asynchronous florescence. Therefore, it has been
long recognized by breeders that controlling flowering time is crucial to ensuring soybean yield
[42].

In the current study, four soybean CPD homologous genes belonging to the BR biosynthesis
pathway are found to be associated with soybean flowering. These GmCPDs are extremely sim-
ilar with AtCPD in sequence and structure and can complement the AtCPD function in Arabi-
dopsis mutants deficient in AtCPD. The expression levels of these GmCPDs all exhibit a
sudden peak upon floral meristem initiation in soybean and are increased in a photoperiod-in-
sensitive soybean variety, suggesting a relationship between BR biosynthesis genes and
floral transition.

Materials and Methods
Plant Growth Conditions

Soybean varieties Williams 82 and Zigongdongdou were grown in a chamber at day/night tem-
peratures of 26/24°C. Zigongdongdou and Heihe27 used for the analysis of GmCPDs expression
in soybean varieties with different photoperiod sensitivities were grown at the temperature of
constant 25°C. Williams 82 plants were cultivated under a short-day condition (12/12 h day/
night cycle). Zigongdongdou and Heihe27 plants were cultivated under either short-day or
long-day (16/8 h day/night cycle) conditions depending on the experiment.

Arabidopsis accessions Col-0 and cpd-91 were grown at 22°C under a long-day condition
(16/8 h day/night cycle) in potting soil or in half strength MS agar plates with 1% (w/v) sucrose.
All plates were axenically cultured and packed with silver papers in the dark treatment.

Brassinosteroid Treatment

In the BR response assay, 5-day-old Williams 82 seedlings were cultivated in Hoagland solution
after germination in soil. BR treatment was undertaken 10 days later by adding 1 uM 2,4-epi-
brassinolide (C28H4806; TCR, Toronto, ON, Canada) to the solution. The treatment lasted
for 2 hours, and the samples were collected every half hour.

In the root inhibition assay, Arabidopsis seeds were planted on vertically oriented plates
containing half-strength MS medium supplemented with 1% sucrose in the absence or pres-
ence of 100 nM 2,4-epibrassinolide (24-epiBL). Root lengths were measured after seedlings
were grown for 10 days.
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Sampling and RNA Isolation

The entire Williams 82 plant was sampled for GmCPDs gene cloning. For tissue-specific ex-
pression analysis, hypocotyls, cotyledons and roots of Williams 82 were collected from 7-day-
old seedlings, and the leaves, stems and shoot apices were collected from 20-day-old adult
plants. The flowers were tagged on the day of anthesis, and the pods were harvested when 0.5-
2 cm long. After BR treatment, the leaves of Williams 82 were collected every half hour and la-
beled 0.5 h (0.5 hour after treatment), 1 h, 1.5 h and 2 h. When the cotyledons of Zigongdong-
dou and Heihe27 opened, SD (short-day), LD (long-day) photoperiod treatments were carried
out. The SD13d-LD (transfer to an LD condition after a 13-day SD treatment) condition was
applied only to Zigongdongdou. Plant leaves were collected every other day until the 25™ day
following photoperiod treatment. Cotyledons were obtained at 3 d (3 days after photoperiod
treatment), 6 d, and 9 d with leaves removed after cotyledon opening.

All samples were a mixture of more than five individual plants and were ground into pow-
der in liquid nitrogen. Total RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad,
CA, USA). The RNA from a whole Arabidopsis plant sample was isolated using the
same method.

Analysis of mMRNA Expression Level by Real-Time PCR

cDNA for PCR was prepared using 1 pg of total RNA with a mixture of random primers. RT-
qPCR analysis was performed on an ABI7900 instrument (Applied Biosystems, Foster City,
CA, USA) using Takara SYBR Premix ExTaq (Takara, Shiga, Japan) for 40 cycles (95°C for 5 s;
60°C for 30 s; 72°C for 30 s). All reactions were carried out at least three times. Quantification
of mRNA level was based on Ct (threshold cycle) values using a comparative Ct (2-AACt)
method [43]. Data are presented as the mean+SD. The specific primers for each gene are
shown in S1 Table.

Vector Construction and Arabidopsis Transformation

The coding regions of GmCPD1, GmCPD2, GmCPD3 and GmCPD4 with additional Xbal and
Sacl restriction sites were PCR-amplified. The Xbal-Sacl flanked GmCPDs fragments were
cloned into the Xbal-Sacl sites of pTF101.1-GFP vector, replacing GFP and generating
pTF101.1-GmCPD1, pTF101.1-GmCPD2, pTF101.1-GmCPD3 and pTF101.1-GmCPD4.
These resulting constructs were verified by sequencing and restriction analysis and trans-
formed into Agrobacterium tumefaciens strain GV3101. The Agrobacterium-mediated flower
infiltration transformation method [44] was used to introduce GmCPDs into cpd-91 Arabidop-
sis mutant plants. T1 generation seeds were harvested and selected on antibiotic-containing
MS plates with 10 mg/L glufosinate ammonium (Sigma, St. Louis, MO, USA). Positive plants
were confirmed by PCR analysis and propagated to obtain the T3 generation.

Measurements and Statistical Analysis

All seedlings were axenically cultured on medium for light/dark analysis, BR treatment assays
and leaf morphology analysis were scanned using an Epson perfection V700 photo scanner
(Epson, Nagano, Japan). The images were analyzed using WinRHIZO Pro v.2009¢ software
(Regent Instruments, Montreal, QC, Canada). For light/dark analysis, the hypocotyl lengths of
6-day-old seedlings were measured. Similarly, when the seedlings grown on medium with or
without 24-epiBL in the BL treatment assay, the total root lengths of 10-day-old seedlings, hy-
pocotyl length of 6-day-old seedlings and petiole length of 13-day-old seedlings were mea-
sured; the number of lateral roots of 10-day-old seedlings was also counted. For leaf
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morphology analysis, the first true leaves of 13-day-old seedlings were cut off at the bottom of
the petioles and flattened on agar plates for scanning. Traits including petiole length, leaf area,
length and width of the leaf blade were examined. Silique length and plant height were mea-
sured using a millimeter-graduated ruler. All measurements were repeated three times inde-
pendently, and 30-50 seedlings were measured each time. Data are presented as the mean+SD
and were subjected to Student’s t test with a sample size of 30 to determine differences among
the groups.

Results
Cloning and Sequence Analysis of GmCPD genes in Glycine max

Four soybean CPD homologs (GmCPDs) were obtained from the soybean translated NCBI nu-
cleotide database by a BLAST search using the amino acid sequence of Arabidopsis CPD (Gen-
Bank accession No. XP_002873219) as a query. These predicted genes were then assigned
names based on their correspondence with AtCPD. The four potential homologous proteins,
GmCPD1 (GenBank accession No. XP_003545232.1), GmCPD2 (GenBank accession No.
XP_003519393.1), GmCPD3 (GenBank accession No. XP_003552845.1) and GmCPD4 (Gen-
Bank accession No. XP_003538460.1), are predicted to be between 473 and 480 amino acids in
length and all belong to the cytochrome P450 (CYP) family.

The deduced amino acid sequences of the GmCPDs share 82-97% identity with each other
and exhibit high similarity to the Arabidopsis CPD protein, with identities between 79% and
81% (Fig. 1). GmCPD1 has the highest identity of 81% while GmCPD?2 has the lowest. An
alignment of GmCPDs with known CPDs from other species reveals identities of 81-87% for
MtCPD1 of Medicago truncatula, 76-80% for PtCPD of Populus trichocarpa, 75-77% for
CsCPD of Cucumis sativus, and 59-63% for OsCPD1 of monocot Oryza sativa (Fig. 1). It is
suggested that the amino acid sequences of CPDs are highly homologous across all species.

There are generally four structural domains in CPD proteins that exhibit catalytic features.
The proline-rich region was thought to ensure the correct folding and proper orientation of the
CPD protein. Domain A and domain B are involved in the dioxygen and steroid binding re-
quired for catalytic activity. The most characteristic P450 consensus sequence, the heme bind-
ing domain, is responsible for carbon monoxide binding ability [45,46]. As shown in Fig. 1, all
CPDs contain these characteristic domains, and their amino acid sequences are highly con-
served. There are only two amino acid differences between AtCPD and GmCPDs in the pro-
line-rich region, one amino acid difference in domain B and at most two amino acid
differences in the heme-binding domain. As for domain A, AtCPD and GmCPDs share 100%
amino acid sequence identity (Fig. 1). Based on these findings, GmCPDs bear a striking simi-
larity to AtCPD in sequence and structure, a trait that might imply functional similarity.

Phylogenetic analysis was performed using the deduced amino acid sequences of GmCPD
and a range of putative CPDs from higher plants. The tree is clearly divided into two major
clades: one clade corresponds to monocots, while the other clade corresponds to dicots (Fig. 2).
The four GmCPDs all fall in the latter clade (Fig. 2). GmCPD1 and GmCPD2 are clustered to-
gether with Medicago truncatula and Cicer arietinum, while GmCPD3 and GmCPD4 branch
off from the legume sub-clade (Fig. 2). The four GmCPDs all cluster relatively closely with
AtCPD (Fig. 2), indicating that these proteins may have inherited more
ancestral characteristics.

Genomic location of each GmCPD was targeted on physical map of soybean (Glycine max)
genome based on the information on SoyBase (http://www.soybase.org) and Phytozome data-
base (http://phytozome.jgi.doe.gov). They are all located in separate chromosome: GmmCPD1
(Glyma.14g059900), GmCPD2 (Glyma.02g256800), GrnCPD3 (Glyma.18g028300) and
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Fig 1. GmCPD amino acid sequence homology with CPDs from other species. Multiple alignments were performed by the Clustal W2 algorithm. Exact
matches are boxed in black. Four domains found in cytochrome P450s: Proline-rich, Domain A (dioxygen-binding), Domain B (steroid-binding) and heme-
binding are underlined. Arrowheads: Amino acid residues with important function. Accession numbers are as follows: AtCPD (XP_002873219), GmCPD1
(XP_003545232.1), GmCPD2 (XP_003519393.1), GmCPD3 (XP_003552845.1), GmCPD4 (XP_003538460.1), MtCPD1 (XP_003616626), PtCPD
(XP_002311214), CsCPD (XP_004149251), OsCPD1 (NP_001066117).

doi:10.1371/journal.pone.0118476.9001

GmCPD4 (Glyma.11g228900) are located in Gm14 (B2), Gm02 (D1b), Gm18 (G) and Gm11
(B1), respectively (Fig. 3). There were not many SSR markers around GmCPDs. Around
GmCPD1, Sat_177 and Sat_264 are associated with the QTLs of flower number; Satt126 is asso-
ciated with lodging and Sat_287 also relates to seed coat color (Fig. 3). As for GmCPD2,
Satt189, Satt350 and Satt546 are associated with the QTLs of first flower; Satt189 and Satt350
are associated with leaflet shape and leaf area respectively; Satt546 is associated with internode
length; Sat_139, Satt546 and Satt172 are associated with the seed quality trait (Fig. 3). Satt309,
Satt356 and Satt570 locate closely to GmCPD3: Satt309 and Satt356 associated with the QTLs
of pod maturity; Satt356 is linked with internode length; Satt570 is associated with seed protein,
lateral root density and root width (Fig. 3). Around the location of GmCPD4, Satt415 is associ-
ated with the internode length; Satt583 is associated with the length of reproductive stage;
Sat_123 is associated with pod maturity and lodging; Sat_123, Satt583 and Sat_095 are all asso-
ciated with seed weight (Fig. 3). Above all, the four GmCPD homologous are associated with
the QTLs related to main aspects of soybean development.

Expression Patterns of GmCPDs in Soybean

Tissue-specific expression patterns of GmCPDs in soybean were systematically determined
using RT-qPCR. These four GmCPDs are widely expressed in plant tissues but display different
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Fig 2. Phylogenetic tree of CPD proteins by neighbor-joining method using MEGA 5.02 software. Accession numbers are as follows: AtCPD
(XP_002873219), GmCPD1 (XP_003545232.1), GmCPD2 (XP_003519393.1), GmCPD3 (XP_003552845.1), GmCPD4 (XP_003538460.1), MtCPD1
(XP_003616626), MtCPD2(XP_003600878), CaCPD(XP_004490985), CsCPD (XP_004149251), FvCPD (XP_004307639), PtCPD (XP_002311214),

VVCPD (XP_002270553), 0sCPD1 (NP_001066117), OsCPD2 (NP_001065721), BdCPD (XP_003578946), SICPD (XP_004978643), SbCPD
(XP_002450249), ZmCPD (NP_001140596).

doi:10.1371/journal.pone.0118476.g002
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Fig 3. The genomic location of four GmCPDs on soybean physical map. Distance along the vertical bars
indicates the physical distance reported in the Soybase and Phytozome database. The SSR markers near to
GmCPD:s location were also labeled on the corresponding positions of chromosome.

doi:10.1371/journal.pone.0118476.9003
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Fig 4. GmCPDs expression patterns in soybean. (A) Tissue-specific expression patterns of GmCPDs in
soybean. The sampling time of each tissue is described in section 4 of the Materials and Methods (B)
Inducible expression of four GmCPD genes in the soybean leaves under BR treatment. The relative
expression levels are normalized to GmG6PDH (GenBank accession No. XM_003547631). The data
represent the mean + SD of three independent experiments.

doi:10.1371/journal.pone.0118476.9004

patterns. Although GmCPD1, GmCPD2 and GmCPD4 all showed higher expression levels in
cotyledons and leaves, GmCPD2 and GmCPD4 had the highest level in cotyledons while
GmCPDI had the highest level in leaves (Fig. 4A). These results are consistent with the expres-
sion pattern of CPD in Arabidopsis [47]. However, GmCPD3 is an exception, exhibiting the
highest mRNA accumulation in young pods but very low concentrations in other tissues
(Fig. 4A). In addition, GmCPD4 as well as GmCPD1 and GmCPD2 showed relatively high lev-
els in young pods (Fig. 4A). These results are consistent with the important roles proposed for
BRs in processes such as fruit development and ripening [48,49].

The BR sensitivity of GmCPDs was also tested in soybean. William 82 adult plants were
treated with 24-epiBL, and the leaf samples were collected every half hour. As shown in the
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RT-qPCR results, the expression levels of the four GmCPDs fluctuated, but overall the expres-
sion levels tended to decrease. The expression patterns of GmCPDI and GmCPD2 were nearly
equivalent but distinct from GmCPD3 and GmCPD4 (Fig. 4B). Following BR treatment, a sud-
den increase of GmCPDI and GmCPD2 expression reached a maximum 0.5 h after treatment
was initiated. GmCPD1 and GmCPD2 expression then sharply decreased, reaching a minimum
approximately 1 h after treatment was started and subsequently increasing slightly to a plateau
(Fig. 4B). In contrast, the expression levels of GmCPD3 and GmCPD4 rapidly decreased follow-
ing BR treatment, reaching a minimum at 1 h and then leveling off (Fig. 4B). The above results
indicate a highly sensitive response of GmCPDs to exogenous BR. Taken together with previous
studies that show that CPD is feedback-inhibited by BR [13,47,50], our results corroborate the
importance of GmCPDs in BR biosynthesis.

Complementation of an Arabidopsis CPD-Deficient Mutant phenotype
by GmCPDs Expression

To test whether the GmCPDs can function in BR biosynthesis, the coding sequences of
GmCPDI, GmCPD2, GmCPD3 and GmCPD4 were placed under the control of a 35S constitu-
tive promoter and introduced into a cpd-91 mutant [13] of Arabidopsis. The goal was to evalu-
ate whether the transgenes complement the mutant phenotype. Adult plants of cpd-91, a
CYP90A1/CPD-deficient mutant, are small and dwarfed with rounded curled leaves. In con-
trast, the transgenic GmCPDI1, GmCPD2, GmCPD3 and GmCPD4 cpd-91 mutant lines were all
similar to the wild type in size, showing a rescue of the cpd-91 mutant adult phenotypes

(Fig. 5A). The RT-PCR results revealed that GmCPD genes can only be detected in the corre-
sponding transgenic plants, indicating complementation by GmCPDs overexpression (Fig. 5B).

The leaf phenotypes of the transgenic lines all bear little resemblance to the ¢pd-91 mutant, in-
stead resembling the wild type phenotype (Fig. 6A). In a quantitative comparison, the mutant re-
tained minimum values of petiole length (Fig. 6B), leaf area (Fig. 6C) and length-width ratio
(Fig. 6D). The transgenic GmCPD1, GmCPD2, GmCPD3 and GmCPD4 cpd-91 lines were all sim-
ilar to the wild type and were significantly different (P < 0.01) from the mutant (Fig. 6B-D).

Without the CYP90A/CPD gene, the morphological change in the roots was quite signifi-
cant in the cpd-91 mutant, with a small root length and undeveloped lateral roots (Fig. 7A-C).
Conversely, all transgenic lines exhibited developed root systems that were similar to the wild
type plants (Fig. 7A). Student’s t-tests indicated a significant difference (P < 0.01) between the
transgenic lines and the mutant plants in root length and lateral root number (Fig. 7B-C).

The most obvious complementation of the mutant is the rescue of dwarfness. Similar to
other BR mutants, cpd-91 mutant is severely dwarfed. In contrast, the plant height of every
transgenic line was remarkably higher (P < 0.01) than that of the mutant and very similar to
that of the wild type (Fig. 7F).

The silique size of mutants is very small, only an average of 0.2 cm long and about twenty per-
cent the length of Col-0 siliques (Fig. 7D, E). Each transgenic line was extremely distinct (P <
0.01) from the non-transformed mutant in silique size and resembled the wild type (Fig. 7E).

In conclusion, all four GmCPDs are functional and essential in leaf, root and plant
type development.

GmCPD Homologs Restore BR Biosynthesis in Arabidopsis cpd-91
mutants
To further confirm that the rescue of the cpd-91 mutant phenotype is due to a restored BR bio-

synthesis pathway via GmCPDs transformation, we tested the BR responses of complemented
Arabidopsis compared with untransformed cpd-91 and wild type Col-0.
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GmCPD1

GmCPD2

GmCPD3

GmCPD4

AtACTIN2

Fig 5. Four GmCPDs complement the phenotype of an Arabidopsis CPD-deficient mutant. (A)
Phenotype comparison of adult plants. Bar = 10 mm; Col-0: wild type plants; cpd-97: CPD-deficient mutant;
GmCPD1: 35S::GmCPD1; GmCPD2: 35S::GmCPD2; GmCPD3: 35S::GmCPD3; GmCPD4: 35S::GmCPDA4;
(B) RT-PCR analysis to detect GmCPD genes using specific primers described in S1 Table with AtACTIN2
(GenBank accession No. AT3G18780) as a reference gene.

doi:10.1371/journal.pone.0118476.9005
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Fig 6. Comparison of leaf phenotype between the wild type (Col-0), CPD-deficient mutant (cpd-97) and transgenic plants. (A) Detailed leaf
morphologies of 13-day-old Arabidopsis plants, Bar = 10 mm; (B-D) Statistical analysis of leaf measurements: the petiole length (B), leaf area (C) and length-
width ratio (D). The data represents the mean + SD of three independent experiments. The asterisks indicate significant differences compared to the cpd-971
mutant (**, P < 0.01 by the t-test).

doi:10.1371/journal.pone.0118476.g006

6-day-old seedlings grown in light and darkness were screened for hypocotyl elongation
during skotomorphogenesis and photomorphogenesis. In the dark, cpd-91 mutant seedlings
underwent constitutive photomorphogenesis, exhibiting short hypocotyls and open cotyledons
(Fig. 8A, C). In contrast, the transgenic lines and wild type exhibited longer hypocotyls and
closed apical hooks (Fig. 8A, C). When grown in the light, cpd-91 mutant seedlings exhibited
shorter hypocotyls than the wild type (Fig. 8B, D). This mutant phenotype was complemented
by all four transgenes (Fig. 8B, D). Student’s t-tests indicate a significant difference (P < 0.01)
in hypocotyl length between the transgenic lines and the mutant plants in both the light and
darkness (Fig. 8C, D).

In the root growth inhibition assay, 10-day-old complemented Arabidopsis, cpd-91 mutants
and the wild type were grown on 1/2 MS medium containing 100 nM 2,4-epibrassinolide (24-
epiBL). All seedlings showed shortened roots in response to 24-epiBL but behaved differently
in root shortening (Fig. 9A-D). The transgenic lines and the wild type displayed greater short-
ening than cpd-91 plants (Fig. 9D), indicating a stronger response to BR.

Additionally, under the treatment of 100 nM 24-epiBL, all the seedlings exhibited elongated
hypocotyl and shortened petiole (Fig. 9E-H). Compared to transgenic lines and Col-0

PLOS ONE | DOI:10.1371/journal.pone.0118476 March 3,2015 11/25
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Fig 7. Phenotype comparison of root, silique and plant height between the wild type (Col-0), CPD-deficient mutant (cpd-97) and transgenic plants.
(A) Root phenotype of 13-day-old Arabidopsis plants. Col-0: wild type plants, cpd-97: CPD-deficient mutant, GmCPD1: 35S::GmCPD1, GmCPD2: 35S::
GmCPD2, GmCPDG3: 35S::GmCPD3, GmCPD4: 35S::GmCPD4, Bar = 10 mm; (B and C) Total root length (B) and the lateral root number (C) of plants
shown in A; (D) Silique morphology comparison. Bar = 10 mm; (E and F) Measurement and statistical analysis of the silique length (E) and plant height (F).
The data represents the mean * SD of three independent experiments. The asterisks indicate significant differences compared to the cpd-97 mutant

(**, P <0.01 by the t-test).

doi:10.1371/journal.pone.0118476.9007

Arabidopsis, cpd-91 mutant showed the shortest length of hypocotyl and petiole both in BL
treatment and normal conditions (Fig. 9E, G). The transgenic lines resembled the wild type
and displayed greater hypocotyl elongation and petiole shortening than cpd-91 mutant
(Fig. 9F, H).
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Fig 8. GmCPDs restore hypocotyl elongation of CPD-deficient Arabidopsis mutants in both light and
darkness. (A and B) Morphologies of the five-day-old seedlings grown in darkness (A) and light (B). Col-0:
wild type plants, cpd-91: CPD-deficient mutant, GmCPD1: 35S::GmCPD1, GmCPD2: 35S::GmCPD2,
GmCPD3: 35S::GmCPD3, GmCPD4: 35S::GmCPD4, Bar = 10 mm; (C and D) Average hypocotyl length of
seedlings in darkness (C) and light (D). The data represents the mean + SD of three independent
experiments. The asterisks indicate significant differences compared to the cpd-97 mutant (* *, P < 0.01 by
the t-test).

doi:10.1371/journal.pone.0118476.9008

Therefore, physiological response phenotypes of mutant plants are complemented by
GmCPDs expression, suggesting a restored BR biosynthesis pathway in transgenic lines. This
result further demonstrates that the CPD homologous genes in soybean, GmCPDI, GmCPD2,
GmCPD3 and GmCPD4, are functional in the BR pathway.

GmCPDs Are Involved in Floral Regulation of Arabidopsis

The above results show the phenotypic rescue of Arabidopsis CPD-deficient mutant by
GmCPDs expression. In addition to rescuing morphology, overexpression of GmCPDs also
complemented the delayed flowering of the cpd-91 mutant. The observation that the cpd-91
mutant flowered approximately 10 days later than the Col-0 wild type is in agreement with pre-
vious observations (Fig. 10A, B). The transgenic plants transformed with any of the four
GmCPD homologs all bloomed simultaneously with the wild type plant, much earlier than the
cpd-91 plants (Fig. 10A, B).

In order to investigate the roles of CPD in flowering regulation, the expression pattern of
flowering integrating gene, Flowering Locus T (FT), was examined in the transgenic plants
compared with non-transformed cpd-91 and Col-0 wild-types (Fig. 10C). AtFT acts as floral in-
tegrator of all four flowering pathways [51]. The AtFT product, which can move in long dis-
tance through the phloem to initiate flowering at the shoot apex, is a main determinant of the
timing of flowering [52]. In our results, all the groups exhibited similar expression pattern that
AtFT gene maintained at a very low level in the vegetative stage and expressed highly when
flowered (Fig. 10C). Except for that the 355::GmCPD2 transgenic line showed similar level of
AtFT expression to the wild type, the other three transgenic lines expressed diversely but all
higher than ¢pd-91 mutants (Fig. 10C).

In addition, the expression pattern of AfCPD gene during flowering was also examined in
Arabidopsis leaves that were collected in three developmental stages: vegetative growth (two-
week-old), flowering initiation and flowering period (one week after beginning flowering). It is
showed that the AtCPD transcripts were more abundant in vegetative stage, but decreased dur-
ing flowering (Fig. 10D).

The Potential Roles of GmCPDs in Soybean Flowering Regulation

To further study the roles of GmCPDs in flowering, GmCPDs transcript levels were tested in
soybean, a typical short-day plant that can undergo flowering reversion. In a previous study by
our lab, 13 days of SD treatment before transfer to an LD condition are enough for flowering
reversion to occur in soybean var. Zigongdongdou. Based on this observation, an effective flow-
ering reversion system was established. In this system, three developmental states, flowering,
continuous vegetative growth and flowering reversion, can be observed in Zigongdongdou
plants under different photoperiods (SD, LD, 13SD-LD). Genes related to photoperiodism and
flower development are preferentially studied in this system. Accordingly, leaf samples were
collected in each photoperiod, and the relative expression levels of GmCPDs were analyzed to
investigate the potential roles of GmCPDs in flowering.
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Fig 9. The variation in the length of root, hypocotyl and petiole showing different brassinosteroid (BR) responses in the wild type (Col-0), CPD-
deficient mutant (cpd-917) and transgenic Arabidopsis plants. (A and B) Phenotypes of the wild type, CPD-deficient mutant and transgenic plants in half-
strength MS medium supplemented with (B) or without 100 nM 24-epiBL (A). Col-0: wild type plants, cpd-97: CPD-deficient mutant, GmCPD1: 35S::
GmCPD1, GmCPD2: 35S::GmCPD2, GmCPD3: 35S::GmCPD3, GmCPD4: 35S::GmCPD4. Bar = 10 mm; (C) Measurements of the total root length of the
seedlings in the root inhibition assay; (D) Root length shortening after BR treatment; (E) Hypocotyl length of 6-day-old seedling in medium with or without 24-
epiBL; (F) The elongation of hypocotyl after BR treatment; (G) Petiole length of 13-day-old seedling with or without BR treatment; (H) Petiole length
shortening after BR treatment. The data represents the mean + SD of three independent experiments. The asterisks indicate significant differences
compared to the cpd-97 mutant (* *, P < 0.01 by the t-test).

doi:10.1371/journal.pone.0118476.g009

As shown in the results, all GmCPDs have the same expression pattern: expression was
maintained at a much lower level in the LD condition (Fig. 11A-D). Conversely, when treated
in SD, GmCPDs expression levels were gradually elevated at first. Once SD treatment reached
the 13" day, GmCPDs levels sharply increased to a maximum, then decreased suddenly under
both the SD and LD conditions (Fig. 11A-D). Obviously, these results suggest that GmCPDs ex-
pression is under photoperiod control and is upregulated by SD, a day length that induces flow-
ering. Interestingly, the expression quantity of GmCPDs on the 13™ day is around tenfold that
of the 9™ day and from nineteen to forty-five times that of the 19 day (Fig. 11A-D). The peak
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Fig 10. Complementation of late-flowering phenotype, expression pattern during flowering and effects on flowering related gene were indicated
the roles of CPD in Arabidopsis flowering. (A and B) Flowering time analysis among wild type (Col-0), CPD-deficient mutant (cpd-97) and transgenic
Arabidopsis plants. Comparison of the days to flowering (A) and the rosette leaf number (B) at anthesis; (C) The expression pattern of Arabidaopsis
FLOWERING LOCUS T (AtFT) in vegetative stage and flowering period; (D) The expression pattern of AtCPD during flowering. 1, 2 and 3 represent three
developmental stages. 1: vegetative stage, two weeks after emergence; 2: flowering initiation, the time that inflorescence-bud just emerged; 3: flowering
period, one week after flowering.

doi:10.1371/journal.pone.0118476.g010
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three independent experiments.

doi:10.1371/journal.pone.0118476.9011

on the 13" day is so sharp that we cannot help but wonder what happens on this day. It was
found in a previous study that the apical meristem of Zigongdongdou begins to initiate floral
primordia on the 13" day of SD treatment [39]. The above results suggest a certain relationship
between GmCPDs and floral initiation through the photoperiod pathway.
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When plants were grown in LD after SD induction, the expression of GimCPDs all decreased
but still higher than that of plants grown in either continuous LD or SD (Fig. 11A-D). This re-
sult was not consistent with the expression pattern of GmFT2a, an integrator in photoperiod
pathway. The expression of GmFT2a maintained in a rather low level in either LD or vegetative
stage and raised around the 13™ day in SD when flowering initiated (Fig. 11E). When returned
to the LD condition, GmFT2a expression decreased to the same level of that in the continuous
LD treatment (Fig. 11E). Unlike GmFT2a, the expression of GmCPDs had additive effect that
the SD effects could be accumulated when turned into LD condition, suggesting the distinct
roles of GmCPDs in flowering regulation.

Since there was no obvious effect on the pattern of AtFT expression in the absence of CPD
(Fig. 10C) and expression patterns between GmFT2a and GmCPDs in flowering reversion were
different (Fig. 11A-E), it might imply that no direct interaction between GmFT2a and
GmCPDs. To text this, the expression of GmCPDs expression was examined in GmFT2a trans-
genic soybean and compared with the non-transformed Zigongdongdou (Fig. 11F). The pub-
lished data by our lab [53] have showed that one line of GmFT2a transgenic Zigongdongdou
flowered approximately 20 days after emergence under non-inductive LD conditions. The ex-
pression level of GmCPDs in this line was found to be maintained in a quite low level and even
decreased compared to the wild type on the occasion that GmFT2a expressed extremely high
(Fig. 11F). Therefore, the involvement of GmCPDs in flowering regulation may not be linked
to the direct interaction with GmFT2a.

GmCPDs Expression in Soybean Varieties with Different Photoperiod
Sensitivities

Soybean varieties are diverse in photoperiod sensitivity. Zigongdongdou is a photoperiod-sensi-
tive late-flowering variety that only flowers under the SD condition. In contrast, the photoperi-
od-insensitive early-flowering variety Heihe27 blooms approximately 25-27 days after
emergence under both LD and SD conditions [54]. As it is shown in Fig. 12A, at the 36™ days
after emergence, Heihe 27 had already set pods while Zigongdongdou still underwent vegetative
growth under the LD condition. These two typical varieties were chosen to evaluate the expres-
sion pattern of GmCPDs in soybean varieties with different photoperiod sensitivities.

We screened leaf samples from Zigongdongdou and Heihe27 after various days of LD treat-
ment. In the 5, 7' and 9™ day after LD treatment (5 d, 7 d and 9 d), all GmCPD genes were
expressed at very low levels in Zigongdongdou but at extremely high levels in Heihe27 (Fig. 12).
After the 11™ day, the transcript levels of GmCPDs were remarkably upregulated in Zigong-
dongdou but slightly decreased and maintained in Heihe27 (Fig. 12). The expression patterns
of GmCPD1, GmCPD2 and GmCPD4 were nearly the same; the expression levels of these
GmCPDs were obviously higher in Heihe27 than Zigongdongdou from day 5 to day 11 d. From
day 13 to day 19, the expression levels in Zigongdongdou were increased and higher than
Heihe27, in which the levels were downregulated. At day 25, Heihe27 had higher expression
levels compared to Zigongdongdou (Fig. 12A, B and D). As for the GmCPD3 gene, the expres-
sion levels in Heihe27 were always higher than Zigongdongdou except for day 15. GmCPD3 was
most highly expressed in Heihe27 at day 19 (Fig. 12C). However, the expressions of GrCPDs
in Zigongdongdou under the LD condition in this experiment (Fig. 12) have differences with
the results shown in Fig. 11A-D. This may due to the different culture temperature (described
in section of Material and Methods) and sampling time. The leaf samples in this experiment
were collected in the morning, while the samples in Fig. 11 were collected in the afternoon.
Since genes usually have different expression levels during the day, the results in the two exper-
iments are not comparable. We only analyzed the expression differences of GnCPDs among
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doi:10.1371/journal.pone.0118476.g012
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Fig 13. Comparison of GmCPDs expression in the cotyledons of Zigongdongdou and Heihe27, two soybean varieties with distinct photoperiod
sensitivities. Relative expression levels of GmCPD1 (A), GmCPD2 (B), GmCPD3 (C) and GmCPD4 (D) were analyzed by qRT-PCR on the 3" day (3 d), 6"
day (6 d) and 9™ day (9 d) after cotyledon opening under the LD condition. Relative expression levels are normalized to GmG6PDH (GenBank accession No.
XM_003547631). The data represent the mean + SD of three independent experiments, and asterisks indicate significant differences compared to the
Zigongdongdou plants (**, P < 0.01 by the t-test).

doi:10.1371/journal.pone.0118476.g013

Zigongdongdou and Heihe 27 in this experiment that carried out in the same condition and
sampled at the same time every day.

Leaves and cotyledons are the two main tissues in which GmCPDs are expressed (Fig. 4A).
Therefore, cotyledons were also collected from Zigongdongdou and Heihe27 on the 3, 6™ and
9th days after LD treatment. GmCPDI1, GmCPD2 and GmCPD4 had similar expression pat-
terns: their expression levels tended to decreased with time in Zigongdongdou but increased in
Heihe27. Although levels in Zigongdongdou were higher on the 3" day compared to Heihe27,
the levels were much lower on the 6™ and 9" days (Fig. 13A, B and D). The expression pattern
of GmCPD3 was rather special: the expression levels of GmCPD3 in both Zigongdongdou and
Heihe27 decreased each day, but the gene was still expressed more highly in Heihe27 compared
to Zigongdongdou (Fig. 13C).

Regardless of whether leaves or cotyledons were measured, all GmCPDs exhibited more vig-
orous expression (much higher level) in Heihe27 compared to Zigongdongdou, especially in the
early days of LD treatment. The flowering of Heihe27 is less regulated by photoperiod and can
be initiated by the LD non-inducible day length. Compared to the strict short day flowering va-
riety Zigongdongdou, the expression of GmCPDs is increased in Heihe27. In our opinion,
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differences in florescence between varieties is not only determined by the flowering regulation
pathway but also by how each variety has been prepared for flowering; such preparation is af-
fected by many factors, which may include GmCPDs.

Discussion
BR Intermediate Products Catalyzed by GmCPD Move Long Distances

In the tissue-specific expression assay, the observation that GmCPDs are expressed mainly in
cotyledons and leaves (Fig. 4A) is consistent with the expression pattern of CPD in Arabidopsis
[47] but does not coincide with the distribution pattern of bioactive BR [55,56]. The bioactive
BR levels in vegetative tissues are much lower [30,56,57], with the highest levels generally oc-
curring in reproductive organs [48,49,56,58], where BR can easily perform its intended func-
tion due to its lack of transport [30,55]. It has also been reported that the transcript levels of
most BR biosynthesis genes are generally higher in tissues with high BR levels [48,49,57,59];
CPD obviously is an exception. Because CYP90A/CPD encoded by the CPD gene catalyzes an
early step of BR synthesis [19], long-distance movements are required for BR intermediate
products to finish synthesis where untransported bioactive BR are accumulated. With this as-
sumption, the paradox that GmCPDs transcript levels are not higher in tissues with high BR
levels is readily explained.

However, long-distance transformation is so costly that we wonder if the higher expression
of GmCPDs in vegetative tissues holds further meanings. One possibility is because CPD is
under light-dependent diurnal regulation primarily mediated by phytochrome signaling [23],
leaves and cotyledons, where phytochrome collects, are preferred. In addition, recent work has
revealed that BR plays a controlling role in the assembly and function of the photosynthetic ap-
paratus. Moreover, severe thermal instability of oxygen yields has been observed in cpd mu-
tants [60], suggesting the potential role of CPD in photosynthesis. All of these intriguing
hypotheses are worthy of further investigation.

Universality and Characteristics of GmCPDs Compared with AtCPD

The homologous sequences of CPD in soybean have not been isolated until the current study.
Strong similarities were found between GmCPDs and AtCPD in many aspects. First, GmCPDs
and AtCPD bear high identities in amino acid sequence and structure. Second, GmCPD1,
GmCPD2 and GmCPD4 were most highly expressed in leaves and cotyledons, consistent with
the AtCPD expression pattern. Most importantly, transformation of GmCPD genes into an
Arabidopsis CPD-deficient mutant restored the BR biosynthesis pathway and complemented
the mutant phenotype with respect to root development, leaf expansion, plant type architecture
and flowering regulation, suggesting functional similarity between GmCPDs and AtCPD.

In addition, GmCPDs exhibit some special characteristics in soybean. One is that GmCPD3
only expresses highly in the young pods of soybean plants. The other is the potential role of
GmCPDs in soybean flowering regulation. We scanned the entire developmental stage of soy-
bean in a flowering reversion system and found that GmCPDs were under photoperiod control.
The highest GmCPD transcript levels were observed on the 13™ day under SD treatment, when
the floral meristem initiated. Additionally, GmCPDs expressed distinctly in soybean varieties
with different photoperiod sensitivities, with insensitive varieties exhibiting higher expression
levels especially in the early stages of development. The late flowering phenotype of the cpd
mutant indicated an essential role of CPD in flowering regulation, but the expression patterns
of GmCPDs in soybean suggested a contributing role of GmCPDs in the early stages of
flowering development.
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Furthermore, all the four GmCPDs may perform individual roles and cooperate to regulate
flowering. The genomic locations of GmCPD1 and GmCPD2 were associated to the QTLs of
flower number and the time of the first flower (Fig. 3). Taken into account that GmCPD2 with
the lowest identity of AtCPD was not influenced in the transcription level by highly expressed
GmFT2a while other GmCPD homologs decreased in expression (Fig. 11F), GmCPD1 with the
highest identity to AtCPD is more likely to play the major role in flowering regulation. Addi-
tionally, analysis of SSR markers around GmCPD3 and GmCPD4 suggested their association
with QTLs of pod maturity and seed quality traits (Fig. 3). This result, taken together with
GmCPD3 specifically expressing in young pods (Fig. 4A), was rather indicated that GmCPD3
and GmCPD4 may involve in post-flowering development and fruit ripping. Considering their
behavior in flowering regulation, GmCPD3 and GmCPD4 are possible to contribute in the
whole reproductive stage. Especially GmCPD4, bearing similar pattern with GmCPD1 and
GmCPD2 in flowering regulation, may be the most versatile among this GmCPD genes.

GmCPDs Act as Participants in Flowering Regulation

Our study confirmed previous observations that cpd mutants exhibit a prolonged vegetative
phase and delayed flowering (Fig. 10A, B) [12,34]. This phenotype can be rescued by overex-
pression of any of the GmCPDs we isolated (Fig. 10 A, B). It is therefore clear that GmCPDs are
associated with flowering. CPD has been reported to interact with genes involved in the circadi-
an clock [23,35], the upstream of FT in photoperiod pathway. However, in the analysis of AtFT
expression in wild type, cpd-91 mutant and mutant with GmCPDs transformation, no obvious
difference in expression pattern was found (Fig. 10C). In Col-0 Arabidopsis, the expression
level of AtCPD was higher in vegetative stages and decreased after flowering (Fig. 10D). There-
fore, GmCPDs may participate in flowering induction. Considering that there was no evidence
of changes in flowering time when exogenous BR was applied, thus, GmCPD is not the trigger
of flowering, acting as a participant rather than a decider.

This hypothesis was illustrated by our analysis of GmCPD expression patterns in a flowering
reversion system (Fig. 11). The striking observations were that expression of GmCPDs is under
photoperiod control and is upregulated sharply on the 13" day of SD treatment. The 13" day
of SD treatment (13SD) is rather special. In a previous study by our lab, Xiaomei Li et al inves-
tigated the morphological and anatomical changes that occur during flowering reversion of
Zigongdongdou [39]. At day 13 under SD condition, the apical meristem began to initiate floral
primordia inside the newly formed bracts. Before day 13, the apical meristem retained its vege-
tative status, and the floral primordia only appeared in the axils of newly formed trifoliolates.
The same result also shown by Cunxiang Wu et al (Fig. 9) and Hongbo Sun et al (Fig. 6)
[40,53]; although the lateral floral meristems appeared at SD7, inflorescence differentiation was
initiated at the shoot apices at SD13, indicated by the formation of floral meristems and pri-
mordia. Logically, these results highlight the potential role of GmCPDs in the floral transition
of apical meristem.

One possible explanation of the delayed flowering in cpd mutants is that floral meristem for-
mation is retarded in the absence of the CPD gene, resulting in prolonged flower development
manifested as a flowering time delay. How CPD participates in floral meristem initiation has
not been reported up to now, but the highest level of endogenous BRs and the highest expres-
sion of the BR-biosynthesis genes, DWF4, BR6ox1 and BR60x2, have been observed in the api-
cal shoots of Arabidopsis [57]. The effects of BR in cell elongation and cell wall modification is
reported to be of vital importance for shoot apical meristem (SAM) function and inflorescence
architecture in rice[61]. Further study on the relationship between CPD and the shoot apex
meristem switch is needed. The new roles of CPD in plant development await uncovering.
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