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Abstract
Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus.

To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral

neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase

type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II dia-

betes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sil-

denafil significantly increased functional blood vessels and regional blood flow in the sciatic

nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and

myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treat-

ment considerably improved motor and sensory conduction velocities in the sciatic nerve and

peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies

showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhib-

ited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capil-

lary-like tube formation, which were completely reversed by sildenafil. In addition, incubation

of dorsal root ganglia (DRG) neurons with conditioned medium harvested fromMDE under

high glucose levels suppressed neurite outgrowth, where as conditional medium harvested

fromMDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of

DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody

against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite out-

growth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term pe-

ripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular

dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/

Tie2 signaling pathway may play an important role in these restorative processes.

Introduction
Diabetic peripheral neuropathy is a common complication of diabetes. There is a compelling
need to develop therapeutic approaches for diabetic peripheral neuropathy. Although
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numerous reagents have been validated in experimental diabetic peripheral neuropathy, clini-
cal trials show that the majority of them do not achieve clinical benefits for treatment of diabet-
ic peripheral neuropathy [1,2]. Generally, young diabetic animals with an early stage of
peripheral neuropathy are employed in experiments to investigate efficacy of compounds that
are of therapeutic interest, whereas patients with diabetes enrolled in clinical trials often have
advanced peripheral neuropathy; these differences in age and stage of diabetic neuropathy may
contribute to the failure of clinical trials.

Cyclic guanosine monophosphate (cGMP) is generated by cytoplasmic soluble guanylatecy-
clases, and the phosphodiesterase type 5 (PDE5) enzyme is highly specific for hydrolysis of cGMP
[3,4]. Among its functions, cGMP regulates vascular function, axon guidance and synaptic plastici-
ty [5]. Experimental data show that treatment of diabetic peripheral neuropathy with a potent
PDE5 inhibitor, sildenafil, improves blood supply to the sciatic nerve [6,7]. Patients with diabetic
peripheral neuropathy who are treated for erectile dysfunction with sildenafil have reduced symp-
toms of neuropathy [8]. We previously demonstrated that hyperglycemia upregulated PDE5 ex-
pression, and suppression of PDE5 by sildenafil increased cGMP levels and significantly
ameliorated peripheral neuropathy in diabetic mice [9]. However, it is not known whether the ther-
apeutic effect of sildenafil can be achieved in diabetic mice with long term peripheral neuropathy,
because diabetic mice used in our previous study were relatively young, i.e.16 weeks old. To mimic
the clinical situation, in the present study, we treated 36 week old diabetic mice with sildenafil.

Vascular dysfunction is closely coupled with neuronal damage and precedes impairment of
sciatic nerve damage in diabetic peripheral neuropathy [10–12]. The angiopoietins (Ang) and
their receptor Tie-2 regulate vascular stabilization and maturation [13,14]. The Ang/Tie2 sig-
naling pathway promotes neurite outgrowth in cultured dorsal root ganglion (DRG) neurons
[15]. Sildenafil-induced angiogenesis is mediated by Ang1 [16]. However, whether the Ang1/
Tie2 pathway is involved in diabetic peripheral neuropathy has not been fully investigated.

Here, we report that sildenafil ameliorates peripheral neuropathy in diabetic mice at the age
of 36 weeks, and that the Ang1/Tie2 signaling pathway likely underlies the beneficial effects of
sildenafil on neurovascular function in diabetic mice.

Materials and Methods

Ethics Statement
All experimental procedures were carried out in accordance with NIH Guidelines for the Care
and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use
Committee of Henry Ford Hospital (IACUC #1185). Male BKS. Cg-m+/+Leprdb/J (db/db)
mice (Jackson Laboratories) aged 36 weeks were used. Age-matched male heterozygote mice
(db/m), a non-penetrant genotype (Jackson Laboratories), were used as the control animals.

Sildenafil treatment
db/db mice at the age of 36 weeks were treated with sildenafil at a dose of 10 mg/kg (orally ad-
ministered, o.p. Viagra, Pfizer Inc.), every day for 8 weeks (n = 15/group). db/db mice (n = 15/
group) at the same age treated with the same volume of saline were used as a control group.
Age-matched db/m mice treated with sildenafil (10 mg/kg o.p. treated daily, n = 15/group) or
saline (n = 15/group) were used as additional control groups. All mice were sacrificed 8 weeks
after treatment. Doses of sildenafil were selected based on published studies [9].

Levels of blood glucose, triglyceride, and A1C were measured using an instant check meter
(Roche Diagnostics), CardioChekPA Analyzer and Triglyceride Test Strips (Polymer 285 Tech-
nology system), and A1C Now+ MULTI-TEST A1C SYSTEM, respectively, according to the
manufacturer’s instructions. Blood glucose levels, body weight and functional tests were
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measured before the treatment as a baseline and then every 2 weeks until sacrifice. Triglyceride
and A1C levels were measured prior to the treatment and at the end of the experiment (8
weeks after the initial treatment). Electrophysiological measurements and functional tests were
performed before the treatment and then every 4 weeks until sacrifice. All procedures and anal-
yses were performed by investigators who were blinded to the treatment administered.

Neurophysiological Measurements
Sciatic nerve conduction velocity was assessed with orthodromic recording techniques, as pre-
viously described [9,17]. Briefly, mice were anesthetized with ketamine/xylazine (i.p., 100/10
mg/kg). The stimulating electrodes were plated at the knee and sciatic notch. Trigger single
square wave current pulses were delivered using an isolated pulse stimulator (Model 2100,
A-M Systems). The simultaneous electromyographies were recorded by two sterilized elec-
trodes placed in the dorsum of the foot with a Grass Amplifier (Model P5, Grass Instruments).
During the measurements, animal rectal temperature was maintained at 37 ± 1.0°C using a
feedback controlled water bath. Motor nerve conduction velocity (MCV) and sensory nerve
conduction velocity (SCV) were calculated according to a published study [17].

Measurement of thermal sensitivity
To examine the sensitivity to noxious heat, plantar and tail flick tests were measured using a
thermal stimulation meter (IITC model 336 TG combination tail-flick and paw algesia meter;
IITC Life Science) according to published methods [18]. Briefly, mice were placed within a
plexiglass chamber on a transparent glass surface and allowed to acclimate for at least 20 min.
For plantar test, the meter was activated after placing the stimulator directly beneath the plan-
tar surface of the hind paw. The paw-withdrawal latency in response to the radiant heat (15%
intensity, cut-off time 30 sec) was recorded. For tail-flick test, the meter was set at 40% heating
intensity with a cut-off at 10 sec. For both tests, at least five readings per animal were taken at
15 min intervals, and the average was calculated [19].

Measurement of regional blood flow by laser Doppler flowmetry
Regional blood flow in the sciatic nerve was measured at the end of the experiments (8 weeks after
the treatment) using laser Doppler flowmetry (LDF PeriFlux PF4, Perimed AB) [19,20]. Briefly,
under anesthesia (ketamine/xylazine, i.p., 100/10 mg/kg, JHP Pharmaceuticals LLC.; LLOYD
Inc.), the mouse was mounted on a Kopf stereotaxic apparatus. The left sciatic nerve was exposed
in the mid-thigh region and animal rectal temperature was maintained at 37 ± 1.0°C during the
measurement period using a feedback controlled water bath. Using a micromanipulator, a LDF
probe was placed at the surface of the sciatic nerve and relative flow values expressed as perfusion
units were recorded every 5 minutes for a total of 5 records. Regional blood flow values from db/
mmice were used as baseline values and data are presented as a percentage of baseline values.

Measurement of microvascular perfusion
To examine microvascular perfusion in the sciatic nerve, fluorescein isothiocyanate (FITC)-dextran
(2×106 molecular weight, Sigma; 0.2 ml of 50 mg/ml) was administered intravenously to the mice
10 min before sacrifice [19,21]. Sciatic nerve tissue was rapidly removed and fixed in 2% of parafor-
maldehyde for 2 hours. Whole mount preparation of the nerve tissue was performed and FITC-
dextran perfused vessels in the whole mount were imaged under a 10x objective using a laser-
scanning confocal microscope (Zeiss LSM 510 NLO, Carl Zeiss, Inc.) [19,21]. Thereafter, the nerve
tissue was embedded in OCT compound and cross cryosections (20 μm thickness) were cut.
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Staining myelin sheets
The sciatic nerves were fixed in the 2.5% glutaraldehyde and 0.5% sucrose (Sigma) on PBS buff-
er for 6–8 hours, and then immersed in 2% osmium tetroxide (Sigma) for 2 hours. The speci-
mens were then dehydrated with numerous alcohol passages and embedded in paraffin [22].
Semi-thin transverse sections (2-μm thick) were cut and stained with 1% toluidine blue and
three semi-thin sections per mouse were analyzed.

Immunohistochemistry
The sciatic nerves were fixed in 4% paraformaldehyde for immunohistochemistry and then
embedded in paraffin according to published protocol [9]. Three cross sections (6-μm-thick)
or three longitudinal sections (6-μm-thick) at 60 μm apart per animal were used [9].

Footpads were fixed in Zamboni’s fixative for 2 hours, washed in PBS and then kept in 30%
sucrose/PBS overnight at 4°C. The samples were embedded in OCT compound and stored at-
80°C. Three longitudinal 20 μm-thick footpad sections from each mouse were prepared.

The following primary antibodies were used: polyclonal rabbit anti-Ang1 (1:2000, Abcam),
monoclonal mouse anti-CD31 antibody (1:500, BD Biosciences), polyclonal rabbit anti-S100
(1:400, Abcam) and polyclonal rabbit anti-protein gene product 9.5 (PGP9.5, 1:1000, MILLI-
PORE). Rabbit or goat IgG was used as a negative control. Sections were counterstained with
40, 6-Diamidino-2-phenylindole (DAPI) (1:5000, Thermo Scientific).

Image acquisition and quantification
Image analysis was performed using a computer imaging analysis system (MicroComputer Im-
aging Device, MCID, Imaging Research Inc.) [23].

To examine microvascular perfusion in the sciatic nerve, three sections at 60 μm intervals from
each mouse were used for further image analysis. The cross sections were digitized under a 20x mi-
croscope objective (Carl Zeiss, Inc.) via a MCID system. The total number of FITC-dextran per-
fused vessels was counted and divided by the total tissue-area to determine vascular density [19].

For analysis of CD31 immunoreactive vascular morphology and perimeter, three cross sec-
tions spaced at 60 μm intervals from each mouse were used. Three fields of the view per section
were randomly imaged under a 20x objective. CD31 immunoreactive vascular perimeters were
measured using MCID system [19].

For morphometric analysis of sciatic nerves, three sections spaced as 60 μm interval for each
staining were used for analysis from each mouse and three fields of the view per section were
randomly imaged under a 100x oil immersion objective (BX40; Olympus Optical Co. Ltd). My-
elinated fiber diameter, axon diameter, and myelin sheath thickness were measured. The g
ratio (the quotient axon diameter/fiber diameter) was calculated to measure the degree of mye-
lination. At least 200 myelinated fibers were measured per animal [9,24].

Intraepidermal nerve fiber profiles were digitized under a 40x objective (Carl Zeiss, Inc.) via
the MCID system. The number of nerve fibers crossing the dermal-epidermal junction were
counted and the density of nerves are expressed as fibers/mm length of section [25].

All analysis was conducted with the examiner who was blinded to the identity of the samples
being studied.

Cell culture
A regular glucose medium (RG) was defined as a medium containing 5 mM glucose, while a
high glucose medium (HG) was referred to as a medium containing 30 mM glucose, which was
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chosen to match glucose levels prevalent in uncontrolled diabetic patients [26]. These glucose
concentrations have been used for the in vitro hyperglycemia experiments by others [27,28].

To examine the effect of sildenafil on endothelial and Schwann cells, Mouse Dermal Micro-
vascular Endothelial Cells (MDE, Cell Biologics Inc.) and Mouse Schwann Cells (MSC, Scien-
Cell Research Laboratories), respectively, were cultured according to the
manufactures’ instructions.

To assess the effect of sildenafil on in vitro angiogenesis, a capillary-like tube assay was used
[29–31]. Briefly, MDE were cultured under regular or high glucose condition in the presence
or absence of sildenafil (300 nM) for 48 hours. MDE (2x104 cells) were cultured on 96-well
plate coated with Matrigel (BD Biosciences) for 5 hours. Total length of tubes was measured in
3 random fields from each well using MCID system [32]. Experiments were independently re-
peated 6 times (n = 6/group).

Conditioned media
To collect conditioned medium fromMDE, 2.5 × 106 cells were plated onto a 100-mm-diame-
ter dish in 10 ml of defined medium. The cells were cultured under the regular or high glucose
condition in the presence or absence of sildenafil (300 nM) for 48 hours and the supernatant
(conditioned medium) was collected. The conditioned media were concentrated 10 times using
10 kD centrifugal filters (Amicom Ultra-15; Nihon Millipore), and frozen at −80°C until use.

Primary culture of DRG neurons and evaluation of neurite outgrowth: DRG neurons were
harvested from 18–20 week old male db/m mice. Cultures were prepared according to a previ-
ously described procedure with some modifications [33]. Briefly, DRGs were removed and
stripped of meninges, and dissociated by a combination of Ca2+- and Mg2+- free Hanks balance
salt solution (HBSS) containing 0.125% trypsin and 0.1% collagenase—A digestion for 30 min,
then mechanically triturated for ~20 times. Isolated DRG neurons were cultured in Neuroba-
sal-A medium (Invitrogen), 5 mM glucose, 2% B-27, 1% Pen/Strep/Neo, and 1%GlutamAX,
and 10 nM uridine and 10 nM 5-flurodeoxyuridine.

To evaluate the effects of conditional medium harvested from endothelial cells treated with
sildenafil on neurite outgrowth, DRG neurons were plated at 2,000 cells/well in a 24 well-plate,
containing coverslips coated by laminin in DRG culture medium with one-tenth the endotheli-
al cells conditioned medium. After 3 days in culture, DRG neurons were immunofluorescently
stained with antibodies against neurofilament heavy-chain (NFH, 1:1000, Covance). NFH im-
munoreactive neurites of 20 individual DRG neurons per coverslip were imaged under a 20x
objective. The neurite length of each neuron was measured using MCID system [34]. The aver-
age length of neurite outgrowth was calculated. Data are presented as ratio to control. Experi-
ments were independently repeated 6 times (n = 6/group).

Schwann cell migration
To examine the effect of endothelial cells treated with sildenafil on migration of Schwann cells,
a modified Boyden’s chamber assay was employed, as described previously [35]. Briefly, the
polycarbonate filter (8-μm pore size) (Neuro Probe, Inc.) was coated by 50 μg/ml fibronectin
(Chemicon) and 0.1% gelatin (Sigma) and placed between upper and lower chambers.
Schwann cells (5x104 cells per well) were placed in the upper chamber in the presence or ab-
sence of a neutralizing antibody against Tie2, and the lower chamber was filled with endothelial
cell conditioned medium. The chamber was incubated for 5 hours at 37°C and 5% CO2. Mi-
grating cells caught in the membrane were then stained using hematoxylin and eosin (Anatech
Ltd). The numbers of cells that migrated through the filter were counted in 5 fields of view
under a 40X objective. Experiments were independently repeated 6 times (n = 6/group).

Sildenafil Ameliorates Long Term Diabetic Neuropathy

PLOS ONE | DOI:10.1371/journal.pone.0118134 February 17, 2015 5 / 15



Western blot analysis
Western blot was performed according to published methods [36]. Briefly, equal amounts of pro-
teins were loaded on 10% SDS-polyacrylamide gel. After electrophoresis, the proteins were trans-
ferred to nitrocellulose membranes, and the blots were subsequently probed with the following
antibodies: polyclonal rabbit anti-Ang1 (1:1000, Abcam). For detection, horseradish peroxidase-
conjugated secondary antibodies were used (1:2000) followed by enhanced chemiluminescence de-
velopment (Pierce). Normalization of results was ensured by running parallel Western blot with
β-actin antibody. The optical density was quantified using an image processing and analysis pro-
gram (Scion Image). Experiments were independently repeated 6 times (n = 6/group).

Statistical analysis
For functional tests, data were evaluated for normality. Ranked data or nonparametric ap-
proach will be considered if the data are not normally distributed. The repeated measure analy-
sis of variance (ANOVA) was considered with dependent factor of time and independent
factor of groups. The analysis started testing for group by time interaction, followed by the test-
ing the main effect of group and subgroup analyses. Two-sample t-test or analysis of variance
(ANOVA) was used to study the group difference on LDF, immunostaining, biochemistry,
Western blot, and tube formation analysis, respectively. The data are presented as mean ± SE.
A value of p<0.05 was taken as significant.

Results

Sildenafil improves neurological outcome in diabetic mice with long-term
diabetic neuropathy
Treatment of male db/db mice at age 16 weeks with sildenafil is effective in ameliorating pe-
ripheral neuropathy [9]. To examine the therapeutic effect of sildenafil on db/db mice with
long-term peripheral neuropathy, sildenafil was administered at a dose of 10 mg/kg to male
db/db mice at middle age of 36 weeks, and treated daily for 8 consecutive weeks, and the mice
were sacrificed at age 44 weeks. We found that sildenafil treatment significantly improved dia-
betes—reduced motor and sensory conducting velocity (MCV and SCV) in the sciatic nerve
measured by electrophysiological tests (Fig. 1A, B). The thermal latency with plantar test and
tail flick test revealed that sildenafil markedly improved sensory function starting at 6 weeks
after treatment compared with saline-treated db/db mice (Fig. 1C, D). Treatment of the db/db
mouse with sildenafil did not significantly alter blood glucose levels, A1C, triglyceride and ani-
mal body weight (Table 1, 2 and 3). These data indicate that sildenafil improves neurological
function even in middle aged mice with long-term diabetic peripheral neuropathy.

Sildenafil improves neurovascular function
Moreover, we found that treatment of middle aged diabetic mice with sildenafil significantly
increased local blood flow in the sciatic nerve, as measured by LDF (Fig. 2O). In parallel with
blood flow results, analysis of FITC-perfused blood vessels in 3D images acquired from whole
mount of the sciatic nerve revealed that diabetes induced substantial reduction of FITC-
perfused blood vessels compared to that in non-diabetic mice, whereas treatment of diabetic
mice with sildenafil significantly increased the number of FITC-dextran perfused vessels
(Fig. 2A to D). In addition, treatment of diabetic mice with sildenafil increased microvascular
density and vascular perimeters (Fig. 2E to N). Collectively, these data indicate that sildenafil
improves blood vascular perfusion in the sciatic nerves of diabetic mice.
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To examine whether the sildenafil-improved blood perfusion affects the sciatic nerves,
intraepidernal nerve fiber density on plantar skin tissue was measured. Diabetic mice exhibited
robust reduction of nerve fibers, which is consistent with findings from skin biopsy sample
from diabetic patients showing that reduction of blood vessels is closely associated with axonal
degeneration [10]. Sildenafil substantially increased nerve fiber density in diabetic mice com-
pared to saline treatment (Fig. 3A to E). Analysis of myelinated axons of the sciatic nerve
showed that sildenafil considerably augmented myelin thickness and the g ratio, but did not
significantly alter axon diameters compared to saline treatment (table 4). These data indicate
that sildenafil-improved vascular perfusion is associated with enhancement of axonal myelina-
tion and skin nerve fiber density.

Fig 1. Sildenafil improves neurological function in db/db mice. Treatment of male db/db mice with
sildenafil improves neurological function measured by MCV (A), SCV (B), Plantar test (C) and Tail flick test
(D). *p<0.05, **p<0.01 versus the non-diabetic mouse (dm) and #p<0.05, ##p<0.01 versus the diabetic
mouse (db) treated with saline, respectively. n = 10/group.

doi:10.1371/journal.pone.0118134.g001
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The Ang1/Tie2 signaling pathway mediates the beneficial effect of
sildenafil on neurovascular function
To examine molecular mechanisms underlying the effect of sildenafil on neurovascular func-
tion, we performed in vitro experiments. Use of a capillary-like tube formation assay, an in
vitro angiogenesis assay, we first examined the effect of sildenafil on endothelial cells. Com-
pared to regular glucose conditions, high glucose conditions considerably reduced endothelial
cells to form capillary tubes, whereas sildenafil reversed high glucose-reduced capillary tube
formation (Fig. 4A to D and I). These data indicate that sildenafil can overcome the effect of
high glucose induced endothelial cell dysfunction.

We then examined whether alteration of endothelial cell function by high glucose and sil-
denafil affects DRG neurons and Schwann cells. DRG neurons were cultured with conditional
medium harvested from endothelial cells under regular glucose, high glucose, or high glucose
with sildenafil, and neurite outgrowth were measured. Compared to the regular glucose condi-
tional medium, the high glucose conditional medium substantially reduced neurite outgrowth,
while the conditional medium from high glucose with sildenafil did not block neurite out-
growth (Fig. 4E to H and J). In addition, the high glucose conditional medium suppressed
Schwann cell migration compared to the regular glucose conditional medium (Fig. 4K). Inhibi-
tion of Schwann cell migration was not detected under the high glucose with sildenafil condi-
tional medium (Fig. 4K). These data suggest that soluble factors secreted by endothelial cells in
conditional medium affect functions of DRG neurons and Schwann cells.

Table 1. Effect of sildenafil on body weight.

Body Weight (g)

Groups 0 w 2 w 4 w 6 w 8 w

dm-saline 36.0±0.9 35.0±1.1 35.0±0.9 34.3±1.1 33.4±1.09

dm-sil 36.2±1.2 36.3±0.9 36.5±0.9 36.4±0.8 35.1±0.8

db-saline 49.0±3.2* 42.5±3.2* 42.1±3.5* 42.0±3.5* 45.4±3.2*

db-sil 51.8±2.4* 49.8±2.7* 46.7±2.3* 45.6±2.2* 47.0±1.9*

Values are mean±SE.

*p<0.01 versus dm-saline group. n = 10/group. W = week, 0 w represents before the treatment, while other numbers indicate after the treatment. dm =

non-diabetic mouse; db = diabetic mouse; sil = sildenafil.

doi:10.1371/journal.pone.0118134.t001

Table 2. Effect of sildenafil on blood glucose.

Blood glucose(g/dl)

Groups 0 w 2 w 4 w 6 w 8 w

dm-saline 151±9.7 132±4.1 125±7.8 127±8.5 153±7.8

dm-sil 140±4.6 137±4.1 132±5.4 148±5.2 163±10.6

db-saline 556±14.0* 548±17.1* 551±12.1* 525±20.1* 515±47.6*

db-sil 537±22.7* 579±9.9* 509±36.7* 479±31.6* 555±26.1*

Values are mean±SE.

*p<0.01 versus dm-saline group. n = 10/group. W = week, 0 w represents before the treatment, while other numbers indicate after the treatment. dm =

non-diabetic mouse; db = diabetic mouse; sil = sildenafil.

doi:10.1371/journal.pone.0118134.t002
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Ang1 is an endothelial cell secreted soluble protein, and has been shown to enhance neurite
growth of neurons [15]. Using an ELISA, Ang1 levels were measured in medium harvested
from endothelial cells cultured under different conditions. The presence of Ang1 proteins was
detected in the regular glucose medium, whereas Ang1 protein levels were significantly reduced
in high glucose medium (Fig. 4L). However, endothelial cells treated with sildenafil under high
glucose conditions secreted Ang1 proteins at the level comparable to the regular glucose medi-
um (Fig. 4L). These data suggest that Ang1 plays a role in mediating the effect of sildenafil-
treated endothelial cells on DRG neurons and Schwann cells. Accordingly, we blocked the
Ang1 receptor, Tie2, with a neutralizing antibody against Tie2. In the presence of the neutral-
ized antibody against Tie2, the effect of sildenafil on neurite outgrowth and Schwann cell mi-
gration under high glucose conditional medium harvested from endothelial cells was abolished
(Fig. 4J, K). Moreover, Western blot analysis of sciatic nerve tissue revealed that diabetic mice
had a significant reduction of Ang1 proteins compared to non-diabetic mice, while diabetic
mice treated with sildenafil had Ang1 proteins comparable to non-diabetic mice (Fig. 5G).
Double immunofluorescent staining showed that endothelial cells and Schwann cells in the sci-
atic nerve tissue were Ang1 positive (Fig. 5A to F). Interestingly, cultured Schwann cells also
expressed Ang1 (Fig. 5H). Sildenafil attenuated high glucose reduced Ang1 level measured by
ELISA (Fig. 5H). Collectively, our data indicate the Ang1/Tie2 signaling pathway activated by
sildenafil mediates improvement of neurovascular function in diabetic peripheral neuropathy.

Discussion
In the present study, we provide evidence that the sildenafil treatment improves neurological out-
come even in middle age diabetic mice with long term peripheral neuropathy. Enhancement of pe-
ripheral neurovascular function by sildenafil likely contributes to amelioration of peripheral
neuropathy, while the Ang1/Tie2 signaling pathway maymediate the therapeutic effect of sildenafil.

Diabetic neuropathy progresses from initial functional to late structural changes [2]. Diabet-
ic db/db mice develop peripheral neuropathy characterized by slowed sciatic nerve conduction
velocity at age of 14 weeks, while morphometric changes including myelinated and unmyelin-
ated axons occur approximately at age of 20 weeks [37], which resemble patients with diabetic
peripheral neuropathy [38]. Therapies targeting neurovascular function have been shown to re-
store nerve function in experimental diabetic peripheral neuropathy [17,39]. Treatment of dia-
betic peripheral neuropathy with sildenafil improves blood supply to the sciatic nerve and
functional recovery [6,40]. Data from a case report study showed that patients with diabetes
treated with sildenafil for erectile dysfunction exhibit amelioration of peripheral neuropathy
[8]. We previously demonstrated that treatment of db/db mice at age of 16 weeks with

Table 3. Effect of sildenafil on AIC and Triglyceride.

AIC Triglyceride

Groups 0 w 8 w 0 w 8 w

dm-saline 4.3±0.06 4.2±0.05 58.2±2.8 51.0±1.0

dm-sil 4.4±0.06 4.3±0.07 50.2±0.2 52.89±1.5

db-saline 11.1±0.55* 10.6±0.44* 78.3±4.7* 84.5±8.0*

db-sil 10.4±0.31* 10.1±0.61* 72.8±4.7* 87.3±6.0*

Values are mean±SE.

*p<0.01 versus dm-saline group. n = 10/group. W = week, 0 w represents before the treatment, while other

numbers indicate after the treatment. dm = non-diabetic mouse; db = diabetic mouse; sil = sildenafil.

doi:10.1371/journal.pone.0118134.t003
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sildenafil significantly improves neurological function [9]. The present study confirms and ex-
tends our previous findings by showing that the treatment of diabetic mice with sildenafil start-
ing at age of 36 weeks substantially increased functional vascular density and regional blood
flow in the sciatic nerve, and improved sciatic nerve conduction velocities and sensory func-
tion, although, significant improvement of sensory function was not observed until 6 weeks
after the initial treatment. The present findings suggest that sildenafil could have potential clin-
ical application for patients with long term diabetic peripheral neuropathy because patients
with diabetes enrolled in clinical trials often have advanced peripheral neuropathy [2].

Vascular dysfunction leads to nerve damage [10,12]. Neurovascular dysfunction including
axonal atrophy and segmental demyelination is a major cause of diabetic peripheral neuropa-
thy [41]. Clinically, skin biopsy is widely used to evaluate intraepidermal nerve fibers for diag-
nosis of neuropathy [42]. The present study showed that db/db mice at age 44 weeks exhibited
substantial reduction of intraepidermal nerve fiber density and decreases of axon diameter and
myelin thickness in the sciatic nerve. Sildenafil-improved vascular function was closely associ-
ated with increases in intraepidermal nerve fiber density and sciatic nerve myelin thickness,
but failed to show improvement in axon atrophy. Moreover, our in vitro data indicate that

Fig 2. Sildenafil improves neurovascular function in the sciatic nerve. Panels A to L show FITC-dextran
perfused vessels from whole mounted (A to D) and cross sections (E to H) of the sciatic nerve, and CD31
immunoreactive blood vessels at the cross section (I and L) of the sciatic nerve from a representative non-
diabetic mouse (dm) treated with saline (A,E and I), dm mouse treated with sildenafil (dm+sil, B,F and J),
diabetic mouse (db) treated with saline (C,G and K) and db mouse treated with sildenafil (db+sil, D,H and L).
Panels M to O show quantitative data of density of FITC-dextran perfused vessels in cross section (M, n = 5/
group), CD31 immunoreactive vascular perimeters (N, n = 10/group), and percentage changes of blood flow
in the sciatic nerve with a reference of dmmice at 100% (O, n = 10/group). *p<0.05 and #p<0.05 versus the
saline treated non-diabetic mouse (dm) and diabetic mouse (db), respectively. Bar = 100 μm.

doi:10.1371/journal.pone.0118134.g002
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endothelial cells activated by sildenafil suppress the inhibitory effect induced by high glucose
on DRG neurite outgrowth and Schwann cell migration. Collectively, our data support that en-
hancement of vascular function facilitates axonal regeneration and remyelination [10].

Compared to the treatment of diabetic mice with sildenafil starting at age of 16 weeks [9],
sildenafil initiating at animal age of 36 weeks did not robustly augment axon diameter of sciatic
nerves. Although we do not know exact causes to the failure to regenerate atrophied axons by
sildenafil, we speculate that the success of axonal remodeling process may be dependent on the
intensity of damage and therapy duration. Axonal damage induced by diabetes may be irre-
versible at age of 36 weeks. In addition, an eight week course of treatment may not be sufficient
to document a significant increase in the axonal diameter of the sciatic nerve and middle aged

Fig 3. Sildenafil increases axonal remodeling in db/dbmice. Panels A to D show PGP 9.5
immunoreactive epidermal nerve fibers (red, arrows) in the plantar skin from a representative non-diabetic
mouse treated with saline (dm, A), non-diabetic mouse treated with sildenafil (dm+sil, B), diabetic mouse
treated with saline (db, C) and diabetic mouse treated with sildenafil (db+sil, D). Panel E shows quantitative
data. Panels F to I show semi-thin toluidine blue-stained cross sections of sciatic nerves from a
representative non-diabetic mouse (F), non-diabetic mouse treated with sildenafil (G), diabetic mouse treated
with saline (H), and diabetic mouse treated with sildenafil (I). Values are mean±SE. *p<0.05, **p<0.01
versus non-diabetic mouse (dm) treated with saline and #p<0.05, ##p<0.01 versus diabetic mouse (db)
treated with saline. n = 10/group. Bar in D = 10 μm and Bar in I = 20 μm.

doi:10.1371/journal.pone.0118134.g003

Table 4. Effect of sildenafil on histomorphometric parameters of sciatic nerves.

Property Dm Db

+saline +sildenafil +saline +sildenafil

Fiber diameter(μm) 8.98±0.11 9.03±0.11 7.96±0.13** 8.34±0.07#

Axon diameter(μm) 5.65±0.06 5.66±0.08 5.25±0.1** 5.14±0.04

Myelin thickness(μm) 1.67±0.05 1.68±0.04 1.35±0.05** 1.60±0.03##

G ratio 0.63±0.01 0.62±0.01 0.66±0.01* 0.62±0.01##

Values are mean±SE.

*p<0.05,

**p<0.01 versus dm-saline group and

#p<0.05,

##p<0.01 versus db-saline group. n = 10/group. W = week, 0 w represents before the treatment, while other numbers indicate after the treatment. dm =

non-diabetic mouse; db = diabetic mouse; sil = sildenafil.

doi:10.1371/journal.pone.0118134.t004
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diabetic mice with long term neuropathy may decrease in their ability to respond to sildenafil
treatment. Preclinical and clinical studies have demonstrated that the late phases of diabetic
neuropathy are poorly reversible, and early intervention is an important determinant of out-
come in diabetic neuropathy [2].

Impairment of the Ang/Tie2 signaling pathway contributes to development of diabete-in-
duced vascular dysfunction [43]. Ang1 not only regulates vascular function, but also directly
promotes neurite outgrowth in DRG neurons [15]. Our in vivo and in vitro data suggest that
the Ang/Tie2 signaling pathway mediates sildenafil-improved neurovascular function. We first
demonstrated that hyperglycemia considerably reduced Ang1 levels in endothelial cells and
Schwann cells, which is consistent with published studies showing that hyperglycemia de-
creases Ang1 levels in the animal model of diabetic myocardial infarction [44]. In addition, the
present study showed that sildenafil upregulated Ang1 expression in endothelial and Schwann
cells under hyperglycemia condition, while Ang1 secreted by sildenafil-activated endothelial
cells enhanced neurite outgrowth of DRG neurons. More importantly, blockage of Ang/Tie2
signaling attenuated therapeutic effect of sildenafil on endothelial cells, Schwann cells and
DRG neurons under hyperglycemia condition. These data support a view that the Ang/Tie2
signaling pathway mediates common cues that govern vascular and nervous systems.

In summary, our data demonstrate that treatment of middle age male diabetic mice with sil-
denafil is effective to ameliorate peripheral neuropathy by improvement of peripheral neuro-
vascular function. The Ang1/Tie2 signaling pathway plays an important role in these
processes. These findings provide new insights into mechanisms underlying the neurological

Fig 4. Sildenafil induces in vitro angiogenesis, DRG neurite outgrowth and Schwann cell migration.
Representative microscopic images (A to D) and quantitative data (I) show capillary-like tube formation of
endothelial cells under regular glucose (RG), high glucose (HG), high glucose with sildenafil (HG+sil, 300
nM), and high glucose with sildenafil in the presence of a neutralizing antibody against Tie2 (+Tie2, 5 μg/ml).
Panels E to H show NFH immunoreactive DRG neuron cultured in conditional medium derived from
endothelial cells treated with regular glucose (RG), high glucose (HG), high glucose with sildenafil (HG+sil,
300 nM), and high glucose with sildenafil in the presence of a neutralizing antibody against Tie2 (+Tie2, 5 μg/
ml). Panels J and K show quantitative data of neurite outgrowth from DRG neurons and the percentage of
Schwann cell migration under different conditions listed above. Panel L shows ELISA data of Ang1 levels in
conditional medium harvested from endothelial cells cultured with regular glucose (RG), high glucose (HG),
high glucose with sildenafil (+sil, 300 nM). *p<0.05 versus regular glucose (RG), and #p<0.05 versus high
glucose (HG), respectively. n = 6/group. Bar in D = 50 μm and Bar in H = 20 μm.

doi:10.1371/journal.pone.0118134.g004
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dysfunction of long term diabetic peripheral neuropathy and may lead to the development of a
sildenafil therapy for long term diabetic peripheral neuropathy.
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