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Abstract

Comprehensively sampled phylogenetic trees provide the most compelling foundations for
strong inferences in comparative evolutionary biology. Mismatches are common, however,
between the taxa for which comparative data are available and the taxa sampled by published
phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot
always be adapted immediately for species level comparisons because of discordance, gene
duplication, and other confounding biological processes. A new database, STBase, lets com-
parative biologists quickly retrieve species level phylogenetic hypotheses in response to a
query list of species names. The database consists of 1 million single- and multi-locus data
sets, each with a confidence set of 1000 putative species trees, computed from GenBank se-
quence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid
in the assembly of multi-locus concatenated data sets for species tree construction. First, mul-
tiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can
be combined between loci. Second, impacts of missing data in multi-locus data sets are ame-
liorated by assembling only decisive data sets. Data sets overlapping with the user's query
are ranked using a scheme that depends on user-provided weights for tree quality and for tax-
onomic overlap of the tree with the query. Retrieval times are independent of the size of the
database, typically a few seconds. Tree quality is assessed by a real-time evaluation of boot-
strap support on just the overlapping subtree. Associated sequence alignments, tree files and
metadata can be downloaded for subsequent analysis. STBase provides a tool for compara-
tive biologists interested in exploiting the most relevant sequence data available for the taxa
of interest. It may also serve as a prototype for future species tree oriented databases and as
a resource for assembly of larger species phylogenies from precomputed trees.

Introduction

Phylogenetic trees have greatly altered comparative biology by rearranging the context for
comparison, enhancing statistical power of comparative tests, and broadening taxonomic

PLOS ONE | DOI:10.1371/journal.pone.0117987 February 13,2015

1/17


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0117987&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://STBase.org
http://code.google.com/p/search-tree/
http://www.gnu.org/licenses/gpl.html
http://iplantcollaborative.org

@' PLOS ‘ ONE

STBase

design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

scope [1, 2]. In recent years the demand for phylogenetic trees has been so high that compara-
tive biologists themselves have frequently turned to heuristic or even non-algorithmic methods
for assembling trees comprehensive enough to contain the taxa in which they are interested
(e.g., Pringle et al.’s [3] use of the Phylomatic Project [4]). This reflects one basic impediment
to phylogenetic comparative studies: the mismatch between the set of taxa present in published
or databased phylogenetic trees and the set of taxa for which comparative data are available.
For example, the Royal Botanic Gardens, Kew, maintains a database of morphological and bio-
chemical data on seeds of angiosperms [5], which has been used in comparative analyses such
as Moles et al.’s [6] study of the correlates of seed size variation. Currently, of the 2,572 species
in the angiosperm eudicot clade that have data for the trait “percent oil content,” only some
64% have sequences in GenBank, even though eudicots are arguably one of the best sampled
species-rich taxonomic groups in the tree of life (the overall species level sequence coverage
across described eukaryotes is closer to 10% [7]). Moreover, the eudicots that are represented
in GenBank are not all sequenced for the same set of homologous loci; instead, taxon coverage
is patchy among various loci, so that phylogenetic trees assembled from GenBank sequence are
more limited in their taxon coverage than the count of species in GenBank suggests.

One strategy to overcome this mismatch is assembly of ultra-large, dense phylogenies of
particular clades [8-14], or particular regions of the world [15-18], depending on the biological
question. However, scaling up phylogenetic inference presents numerous computational chal-
lenges [19-22], especially in handling the patchy coverage across multiple sparsely sampled
loci [23-25]. An alternative strategy, which should be useful in the near term, is to assemble a
very large collection of phylogenetic trees of small to medium scale, and optimize the delivery
of these trees via efficient search and retrieval. This is the strategy we have employed here. Mis-
match is reduced by using available sequence data to compute new trees, so users are not limit-
ed to taxon sets from individual published data sets. As larger trees are needed, data sets and/or
trees can be pieced together by other algorithms (see Discussion). One clear advantage of this
is that it allows relatively robust estimation of reliability (yet another computational problem
that does not scale well), and these estimates of reliability can be returned to the user.

In addition to the frequent mismatch between taxon sets of interest and taxon sets that are
in published trees, a second basic impediment to harnessing available phylogenetic trees in
comparative biology is that many are gene trees. More generally, many are “multrees”, that is,
trees having multiple sequences with the same taxon name. This can arise because of multiple
sampling of individuals within a species, multiple alleles at the same locus, or multiple paralogs
in the same gene family. Several tree databases implicitly allow such trees, including TreeBASE
[26] and the PhyLoTA database [27], in addition to genomic databases that literally set out to
archive gene trees instead of species trees (e.g., PEAM [28], TreeFam [29], PhylomeDB [30],
and within Ensembl [31]). However, it is not straightforward to undertake comparative biology
of structure, function, ecology, etc., using multrees, especially those riddled with gene duplica-
tions, losses, or lateral transfer. The construction of species trees from gene trees is an active
area of research, with an extensive and long-standing literature [32-36]. We take an extremely
conservative view of the problem, and implement a method [37] to ameliorate this impedi-
ment, which we hope will at least expose some of the problems that must be resolved in future
database efforts.

In this paper we describe a new database of precomputed phylogenetic trees of eukaryotes,
STBase (“Species Tree Database”), optimized for use by comparative biologists. In it we deposit
one billion pre-computed phylogenies built from one million single- and multi-locus datasets
assembled from GenBank. Selection of taxa and loci for data set assembly is guided by recent
theory on optimal multigene data set construction [23, 24] and treatment of multrees [37]. We
join this with a scalable search engine that accepts lists of taxon names (genera, species, or
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subspecific) and efficiently returns a ranked list of trees, the subtrees that overlap with the taxa
of interest, and support values.

Construction and Content
Overview

The goal of STBase is to provide a tool that accepts a user’s query list of taxon names and re-
turns a ranked list of good “hits” to a database of phylogenetic trees. A “hit,” meant to be analo-
gous to BLAST searches [38], occurs when the search engine finds a data set that contains a
minimum number of the query taxa. STBase does not accommodate fuzzy searches at this
time; taxon names must be spelled the same as in GenBank taxonomy. Each “hit” has an associ-
ated set of 1000 trees created by bootstrap analysis. Subtrees, with confidence estimates, are cre-
ated by pruning each bootstrap tree to the taxa of interest; the majority rule consensus of

these bootstrap subtrees is then returned to the user. To quantify what “good hit” means, we
construct a scoring function that increases with the quality of the tree and the amount of taxo-
nomic overlap between the tree and the query. We assume that tree quality can be character-
ized by including a confidence set of trees in the database, computed, for example, by
bootstrapping (as here) or by sampling the posterior distribution [1]. Let A be the query list,
and / be a user-supplied preference indicating the relative importance of tree quality vs. taxon
overlap. For any tree, T, let L(T) be the taxa in the tree, T | A be the subtree restricted to just
the query taxa, and L(T | A) be the taxa shared between the query and the tree. Then define

w (L(T | A)) to be an increasing function of this overlap. Let q (T | A) be some increasing func-
tion of the quality of the subtree. The score of a “hit” on (precomputed) tree T for query list A
is then

S = w(L(T|A))+h x q(T]|A).

Defining the score in this way allows the user to seek trees that overlap more extensively with
their query list of taxa (as the scalar h approaches 0) or to prefer subtrees that have high quality
as indicated by their bootstrap values (as & increases). On average, we expect larger trees to be
less well supported [39]; intermediate values of & will return trees that may present a compro-
mise between the two extremes of larger trees vs. better trees. The quality score, q (T | A), is cal-
culated by multiplying the average bootstrap support (for nodes above 50%) by the proportion
of resolved nodes in the majority rule consensus tree. The overlap function, w (L(T | A)), is the
number of overlapping taxa divided by the number of query taxa that are in the database (rath-
er than the larger set of query taxa that might include taxa not found in GenBank at all). To en-
sure the score is comparable and therefore useful in ranking the results, we normalize the score
to range from 0 to 100 by multiplying the overlap function by 100 and by dividing the result by
1+ h (h is a positive number; the user interface has a slider bar allowing selection between 0.01
and 10.0 with a default value of 1.0). Consider, for example, a user-supplied input list of 200
taxon names, all of which are found in GenBank (note that taxon names missing from Gen-
Bank do not affect the ranking of the results). Suppose the database contains a large tree of
1200 taxa that shares 80 of the names on the query list, that the majority rule consensus tree
(MRT) of 1000 bootstrapped trees, pruned to those 80 taxa (see below for details on pruning),
is fully resolved and has an average bootstrap value of 70%, and the user has selected an h value
of 0.5. The normalized score for this tree: S = ((80/200) x 100 + 0.5 x 70) / (1 + 0.5) = 50. Even
though thousands of trees may be returned from any given query, their scores are calculated on
the fly, so that as the user changes A, the ranking of trees is adjusted immediately.

PLOS ONE | DOI:10.1371/journal.pone.0117987 February 13,2015 3/17



@ PLOS | one

STBase

Reduced
clusters

(—\;\

Biclique
data sets

(—\%

Bootstrap
trees

Singly lab
trees

Quasi

biclique data
\__sets

iy

Bootstrap
trees

Tree Construction

Single-locus data sets. Fig. 1 illustrates our tree construction pipeline. Single-locus nucleotide
data sets (Table 1) were assembled from GenBank rel. 184 largely according to the PhyLoTA
pipeline described elsewhere [27]. Briefly, data sets were constructed from sequences within
size-limited eukaryotic taxonomic groups (“hub groups”). Each hub group was selected such
that the total number of sequences from all of its members would not exceed 35,000 (excluding
model organisms; cf. [27] for details). Membership in the group was determined by the NCBI
taxonomy. This approach resulted in a set of 517 taxonomic groups that corresponded in prac-
tice very roughly to the rank of Linnean orders. Within each hub group, clusters of homologous
sequences were identified by all-against-all BLAST searches and single-linkage clustering using
50% minimal overlap requirements. This operation was then repeated for each descendant
group of the hub group in the NCBI hierarchy, inducing a set of parent-child relationships
among clusters. From an original pool of 5,798,234 sequences among 413,628 distinct taxa, a
set of 343,888 taxa was retained in 160,801 phylogenetically informative clusters (i.e., clusters
with four or more taxa). The largest cluster has 20,125 sequences, the mean cluster size is 69.8,
and there are 133 clusters with > 5,000 sequences.

Many (69%) of these clusters included at least one taxon ID multiple times; such taxonomi-
cally redundant sequences could be due to sampling of multiple individuals, or they could

Single locus
clusters

eled Optimal Bootstrap

trees trees

ST-Base source trees'
confidence sets

Fig 1. Pipeline for tree construction. Single-locus clusters are assembled from GenBank nucleotide data following procedures in Phylota [27]. One
thousand fast parsimony bootstrap trees are reconstructed and stored in the database. Maximum likelihood trees are reconstructed and are used to guide
sequence selection for the singly-labeled trees (see text for full description). Reduced clusters are assembled into various multi-locus data sets, each of
which results in one thousand bootstrap trees, deposited in the database.

doi:10.1371/journal.pone.0117987.9001
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Table 1. Summary statistics for the three kinds of data sets.

Number of Loci Taxa' Data set size? Mean support (fraction of
data sets (mean and range) (mean and range) (mean and range) resolved nodes on MRT)

Single-locus 160,8013 1 (1-1) 63.1 (4-8767) 63.1 (4-8767) 0.51

clusters

Bicliques 762,529 9.8 (2-91) 15.6 (4-510) 142.3 (8-1526) 0.84

Decisive quasi- 67,103 12.4 (2-386) 27.8 (5-1406) * 234.7 (10-9516) 0.68

bicliques

Total database 990,433 8.5 (1-386) 24.1 (4-8767) 135.7 (4-9516) 0.79

"We require a minimum of four taxa in a data set, required for potentially informative relationships in an unrooted tree.

2Product of number of loci and number of taxa.

30f these, 111,433 were multrees. Some 11,358 data sets had fewer than 4 taxa after multree reduction, so only 149,443 were used to build multi-locus

data sets.

“Because we require four taxa for minimal potential phylogenetic informativeness, a decisive quasi-biclique data set, which has some entries missing,
must have a minimum of five taxa (else it would be a biclique, proper).

doi:10.1371/journal.pone.0117987.t001

represent multiple alleles or even paralogous loci. Taxon names occurring more than once in a
data set can be referred to as “multaxa”, and the trees from such data sets are “multrees” [40].
We exploited a recently described multree reduction algorithm [37] to extract from each of
these multrees a singly labeled “reduced” tree that is guaranteed to retain the maximum
amount of conflict-free species-level information (Fig. 2). In brief, the algorithm evaluates
quartets (an edge, or branch, separating two pairs of taxa), and finds those that are not in con-
flict with other quartets on the same set of taxa. The effect of the algorithm is to remove con-
flicted edges and any taxa that participate in no conflict-free quartets (Figs. 2, 3; see [37] for
formal description). This is a conservative procedure that limits the number of false positive
species relationships. Importantly, it is robust to the biological reasons for the presence of mul-
tiple sequences. They may arise through gene duplication (Fig. 3C), population sampling

(Fig. 3D), or even misidentification (see also [35] for a comparable algorithm aimed specifically
at trees with gene duplications only). The algorithm is built in to the user interface. For all
single-locus trees with multiple terminals for at least one taxon, the user can retrieve either the
original multree for further analysis, e.g., to distinguish paralogous from orthologous se-
quences, or the singly labeled tree, to obtain the maximum amount of species-level information
contained in that particular tree.

Multi-locus datasets. Assembly of multi-locus concatenated data sets (“supermatrices”) is
problematic when one or more of the data sets have multaxa [35]. We therefore used the re-
duced set of taxa obtained from the multree reduction as the source of sequence data for assem-
bly of supermatrices. This results in a loss of some taxa on average (Fig. 3), but it also reduces
the conflict within a gene tree arising from biological processes such as gene duplication and
loss or incomplete lineage sorting. Although we have not built species trees using any methods
aside from concatenation, our collection of reduced loci/trees could be used as inputs to species
tree inference methods using consensus [41], reconciliation (e.g., [42, 43]) or explicit likelihood
or Bayesian methods exploiting the sequence data proper (e.g., [21]).

Two protocols were used to guide selection of subsets of taxa and loci for assembly of multi-
locus supermatrices from the single-locus reduced data sets in each NCBI hub group and all its
descendant groups. Both generate multi-locus data sets with a desirable property, “decisive-
ness”, which can help limit the impact of missing entries in the supermatrix ([23, 24, 44-47]. A
supermatrix, M, is decisive for tree, T (containing all taxa in M), if and only if the subtrees, t;,
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Fig 2. lllustration of the multree reduction algorithm [37]. The upper tree is a multree, i.e., it has at least
one label that is found on more than one terminal. Furthermore, it displays quartets (subtrees on four taxa)
that are in conflict: BD|EC conflicts with BC|DE. The reduced form of the tree, below, is a singly-labeled tree.
This is a conservative statement about species relationships in the sense that it eliminates conflict (while
introducing no new information).

doi:10.1371/journal.pone.0117987.9002

for each locus i, obtained by restricting T to only those taxa that have sequence data at locus i,
uniquely define T. If, instead, the subtrees are consistent with more than one tree, they do not
define T, and the supermatrix may be unable to distinguish between those trees for certain re-
construction methods (e.g., parsimony or partitioned likelihood analysis: [24]). A particularly
strong form of decisiveness, which holds for some patterns of missing data, is that M may be
decisive for all possible trees.

Our first protocol assembles maximal complete supermatrices by finding all so-called maxi-
mal bicliques in an associated graph data structure. Briefly, a biclique here refers to a set of taxa
and loci for which all taxa have data for all loci; maximal bicliques can be found by exploiting
graph theoretical results cited in [48, 49]. Since any supermatrix in which one locus includes se-
quence from all taxa is decisive, these are decisive for all trees. Our second protocol also guar-
antees decisiveness but allows some missing entries in the supermatrix. It builds a supermatrix
using one locus as a reference locus. The taxon list is then restricted to those in the reference
locus, but all available loci for each of those taxa are included (Fig. 4). Because of the reference
locus, this supermatrix is also decisive for all trees, even though it contains missing data, and
we refer to it as a decisive quasi-biclique (dgbc). For a given collection of loci, one dgbc can be
constructed using each locus as a reference in turn. Fig. 4 illustrates these kinds of data sets, in-
cluding the trivially decisive case of single-locus data sets. In our implementation, we restricted
the dgbc construction to include only those loci with at least 33.3% of the taxa in the
reference locus.

PLOS ONE | DOI:10.1371/journal.pone.0117987 February 13,2015 6/17
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Fig 3. Examples of multree reduction in single locus data sets. A. Highly ranked tree for query “Brassica” inferred from a single-locus data set aligned at
the level of Brassicaceae (data set #56065; phenylalanine ammonia-lyase). B. Reduction of the tree in A to species-level relationships without conflict. Note
the loss of one taxon, Brassica napus; this taxon was present in many quartets in the original tree, but each one was contradicted by at least one other
quartet. Therefore no conflict-free information was present for this taxon, and it was removed by the algorithm. C. Low ranked tree from query “Drosophila”
(data set #130188; SMOX gene) in which there are no informative edges so the multree reduction produces a null result (no edges, no taxa; not shown). D.
Intermediate ranked tree in which only one taxon has multiple sequences and the reduced singly-labeled tree contains all taxa (data set #91190; ‘yolk protein
1’; reduced tree not shown, but can be obtained by deleting all but one of the leaves labeled Drosophila grimshawi).

doi:10.1371/journal.pone.0117987.9003

The multi-locus datasets (maximal bicliques and decisive quasi-bicliques) built at some
node in the NCBI hierarchy can and are expected to overlap with one another (Fig. 4). To en-
sure that the datasets are not entirely redundant with others constructed at the same NCBI
node, various checks and filters were run on the results. We checked whether there were dupli-
cate data sets within or between nodes in the NCBI hierarchy and whether any decisive quasi-
bicliques were actually bicliques (which occurs rarely when the taxon coverage pattern is con-
ducive). In addition we used a BLAST protocol to check that all loci in a data set are indepen-
dent from each other, sharing no local homologies (these can arise occasionally for a variety of

reasons upstream in the pipeline), which might lead to redundant inclusion in the same super-
matrix (e.g., [12], corrigendum). The collection of multi-locus datasets can be large, in some

cases with relatively dense taxon coverage, due to basic combinatorics. We found, for

example, that within mammals there were hundreds of thousands of primate and carnivore
bicliques (more than all the number of bicliques for all other taxa combined, in fact); we there-
fore sampled only a fraction of bigliques at random from these collections: 2% and

20% respectively.
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Fig 4. Data availability matrix. Filled bars indicate the presence of data for a particular locus and taxon.
Multilocus datasets are constructed in two ways: (1) as bicliques (within the solid line), in which no taxa are
missing any loci, and none can be added without introducing missing data (so they are “maximal”), and (2) as
decisive quasi-bicliques (within the dashed line), in which a reference locus serves to restrict the taxon list, but
all loci available for those taxa are included. Here locus 1 serves as the reference locus for the decisive quasi-
biclique shown, but two others can be constructed by using the other two loci as reference loci. Similarly, other
maximal bicliques are present, each containing only two loci (e.g., loci 2 and 3 for taxa C, J, K, L).

doi:10.1371/journal.pone.0117987.9004

The output of this pipeline is nearly one million “phylogenetically informative” data sets
(i-e., having at least four taxa), among which 351,212 distinct taxa recognized by NCBI are dis-
tributed. For each data set, multiple sequence alignments using MUSCLE [50], ML optimal
trees using default options in RAXML [51], and 1,000 “fast” parsimony bootstrap trees using
PAUPx [52] were obtained. Computing time required is approximately 6 weeks on a 300 core
linux cluster for the analyses described. We estimate that repeating this with full maximum
likelihood bootstrap analyses with default options in RAXML (as opposed to the fast parsimony
bootstraps used here) would require 5-50 years on the same hardware.

The Database

Schema, search and retrieval. The STBase database has a very simple schema aimed at maxi-
mizing search and retrieval efficiency. Essentially it consists of five entities: taxa, sequences,
clusters, data sets and confidence sets of trees. A taxon consists of a species or subspecific name
and its NCBI taxon ID (both following NCBI's taxonomy). A taxon can have multiple synony-
mous names mapped to the same taxon ID. Each sequence—represented by an NCBI GI

PLOS ONE | DOI:10.1371/journal.pone.0117987 February 13,2015 8/17
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number as its ID—is associated with a taxon, and there can be multiple sequences associated
with the same taxon. A cluster is a collection of homologous sequences, loosely referred to as a
“locus”. A data set is a collection of one or more aligned clusters/loci, concatenated into a
supermatrix (if more than one), from which trees were constructed. Each data set is mapped to
a set of one thousand bootstrapped trees. To map efficiently among these entities, STBase em-
ploys hash functions [53, 54] (string-specific: [55]), which are capable of inserting and deleting
arandom element in constant time irrespective of the size of the collection.

The user inputs a list of taxon names and/or genus names. Genus names are replaced by a
list of all taxon names in that genus. This is followed by five steps: (1) retrieval of correspond-
ing taxon IDs, (2) finding the data sets having the desired overlap with the set of query taxa
and reading them from disk, (3) processing each data set to restrict each of its thousand trees
to the taxa that overlap with the query, (4) summarizing the restricted trees for each cluster as a
majority rule consensus tree, with support values, and returning these MRTs to the user. A sim-
ilar approach is used on the website birdtree.org [14], which allows users to query sets of trees
drawn from a pseudo-posterior distribution of complete bird trees constructed using a combi-
nation of data and simulation. Finally, (5) in the case of multrees, a singly-labeled reduced tree
is computed on demand (this only applies to single-locus data sets—for multi-locus data sets,
redundant sequences are handled prior to concatenation).

Because of the collective storage requirements of the trees (over 200GB), trees from all data
sets cannot be kept in RAM, which poses several challenges to achieving fast query processing.
Given a set of taxon IDs, identifying overlapping clusters and reading them from disk memory
is the most time consuming part of the query process, as there are nearly one million data sets,
with 4 to nearly 10,000 taxa each, covering more than 340,000 taxa (Table 1). However, STBase
identifies overlapping clusters in time that is independent of the size of the database by using
inverted indexing [56, 57]. An inverted index enables search and retrieval of a subset of “docu-
ments” (here data sets) containing one or more words from the query set. It does so by main-
taining a mapping from a predefined set of keywords to the documents in the collection that
contain them. In STBase, the goal is to find the data sets containing taxa that map to the list of
taxa supplied by the user. STBase’s inverted index therefore stores exactly which data sets
(“documents”) contain taxon names (“keywords”) and where those data sets are located on the
hard drive.

Majority rule tree generation. A query typically finds 100-200 data sets having sufficient
overlap with the taxon names provided as input. Each of these is associated with a thousand pre-
computed bootstrapped trees that are each restricted to the query overlap. These 1000 pruned
trees are then summarized as an MRT. To generate the MRT at query time (“on-the-fly”), we
used Amenta et al.’s [58] randomized linear time MRT algorithm, which uses hash codes—a con-
stant size object—to represent bipartitions and a clever method to construct the MRT using only
these hashed bipartitions. This results in an expected linear-time (i.e., optimal) algorithm.

Utility
User Interface

Fig. 5 shows a screenshot of the user interface. The user can enter a list of up to 10,000 species
or subspecific taxon names as multinomials, following the NCBI taxonomy. Any uninomial is
assumed to represent a genus name, and all species in that genus are added to the query. On
the search page the user can optionally increase the required minimum taxonomic overlap to
reduce the number of trees returned and can also select the format of taxon names for subse-
quent download after retrieval.
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Fig 5. Screenshot of the STBase user interface. Query taxa are shown in the query box at upper left. Top hits are ranked in the list at lower right. One of
these is selected for viewing at upper right. Lower left tree shows the larger source tree from which the overlapping subtree was extracted.

doi:10.1371/journal.pone.0117987.g005

The output consists of a simple table layout of ranked hits, each row corresponding to a
data set and its confidence set of trees. To orient the user to the phylogenetic scope of the trees
returned, the last common ancestor (LCA; also known as “most recent common ancestor”) of
the data set (within the NCBI hierarchy) is computed and returned (using an efficient LCA im-
plementation: c.f. [27]). The weighting parameter for overlap vs. tree quality can be adjusted
on this page with a slider bar, which instantly re-orders the retrieved trees. A variety of data
sets can be accessed from this page as well, including a nexus formatted multiple sequence
alignment, a nexus formatted tree file for the overlapping subtree, and the multree reduction of
any single cluster trees for which this has been computed. Metadata for the loci included in
multi-locus data sets are embedded in the sequence alignment file. Single-locus trees are rooted
(provisionally and no doubt approximately) by reference to a midpoint-rooted [59] optimal
ML tree of the entire source tree, which is constructed and stored elsewhere in the database.

Use Case: Genome Size Variation in Cactaceae

We illustrate a typical “use case” for the database by the following example. As a prelude to ge-
nomic investigation of the angiosperm family Cactaceae (the cacti), a user would like to under-
stand the variation in genome size across the family and undertake ancestral state
reconstruction to see if some groups’ genomes are evolutionarily more labile than others. The
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Kew Plant DNA C-value database (http://data.kew.org/cvalues/; release 6.0) is queried and a
list of all 50 species (in 21 genera) is obtained for which C-values are known. The 50 names are
submitted to STBase and 89 resulting hits are obtained in 1.5 seconds, with scores ranging
from 19-69.9. The best scoring result (using the default value & = 1.0) is a tree containing 14 of
the original 50 taxa (from 7 of 21 genera), and is based on a 3-locus decisive quasi-biclique data
set. Average bootstrap values are quite high in the tree (Fig. 6). For context the original source
tree, having 411 taxa, can be viewed via a hyperlink from the tree display page. Average boot-
strap values across this much larger tree are less, which illustrates the power of our subtree
pruning to extract an assessment of strong signal for the relationships most germane to the
taxa for the available comparative data. A tree file with all results and a table with summary sta-
tistics can be downloaded. The complete supermatrix alignment can also be downloaded di-
rectly from the results page, which includes the original GenBank GI numbers of all sequences.
If desired, the user is then free to rebuild the tree using more computationally intensive infer-
ence methods (the alignment can also be redone). At this point the user could perform compar-
ative analyses on the C-value data, such as ancestral state reconstruction.

Optionally, the user might increase the taxonomic overlap by running the search again at
the genus level. Our implementation replaces a submitted genus name with all the species in
that genus that are currently in the database, and then runs the query as usual. The user at that
point might be willing to use that species as a proxy for the actual species in the same genus for
which the C-value data are available. In our use case, when the 21 genus names are submitted
to the query engine, 508 resulting trees are obtained in 3.1 seconds, with scores ranging from
0.8 to 43.1. The best scoring result is a 4-locus decisive quasi-biclique data set with 162 taxa
from 11 of the 21 genera. It comes from an original larger tree of 392 taxa. The best scoring tree
returns all species from the original source tree in each of the overlapping genera, so, for exam-
ple, most of the species in the tree are in Mammillaria, many more than are present in the ge-
nome size data set. It is up to the user to decide which proxy species may be appropriate to

Data set 981170

Bootstrap majority rule tree from decisive quasi-biclique data set pruned to
overlapping taxa

Multi-locus concatenated data set assembled from no more than one sequence
per taxon (obtained via multree reduction algorithm).

13 taxa; 3 loci

Source tree had 411 taxa

Nopalea cochenillifera
Opuntia microdasys
Mammillaria huitzilopochtli
sof— Mammillaria supertexta
Mammillaria dixanthocentron
» Mammillaria albilanata
Mammillaria haageana

Mammillaria rhodantha
¥ Mammillaria boolii
100% Astrophytum ornatum
b Leptocereus quadricostatus
) 55§ Carnegiea gigantea

Neobuxbaumia polylopha

Fig 6. Tree view. Highest ranking tree resulting from query on 50 species names in Cactaceae for which
genome sizes are available.

doi:10.1371/journal.pone.0117987.9006
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map the C-value data from a species to a congener in this tree. Overall the bootstrap support
values are fairly good, although there is lack of resolution within Mammillaria.

Efficiency

As a result of techniques described above and some careful preprocessing of the data, STBase
answers queries in time that is linear in the total size of the query plus the output, and indepen-
dent of the size of the underlying tree repository. Retrieval times for queries of ~50 names on
our database of 1 million data sets and 1 billion trees typically require 5-15 seconds. However,
because the time is linear in the size of the output, query time can be significantly longer when
the number of hits is very large. For example, a query on the genus name Felis (alone) or Dro-
sophila (alone) finds a very large number of hits that must be retrieved, ranked and processed.
The search engine by default limits output to 1,000 records, each computed from the first 100
bootstrap replicates only. For queries returning longer lists, this is not guaranteed to return an
optimal ranking, and modifying the defaults is a good idea. In the future we want to explore a
“seeding” strategy, in which particularly poor candidates are immediately filtered out by com-
putation on a very small number of bootstrap replicates.

Discussion
Tree quality

Our pipeline was designed to limit upstream errors due to multiple sequence alignment prob-
lems in highly divergent taxa by restricting data set assembly to occur within but not between
500+ “hub groups” of eukaryotes. Within these groups, we used “fast” parsimony heuristics to
build large confidence sets of tree. Although these tend to produce conservative tree estimates
with bootstrap scores lower than those using more exhaustive heuristics [60], the quality of
trees was quite good on average. Table 1 reports the average fraction of nodes resolved in the
bootstrap MRT, which is an aggregate indication of tree quality. Efforts to engineer decisive
multi-locus data sets may explain the higher values in those data sets, but presumably these val-
ues are also due to presence of multiple loci and the smaller average size of trees, which is corre-
lated with increasing bootstrap proportions [39]. Our first release of STBase also relies on fast
parsimony algorithms for computational reasons. The 5-50 years of computing that would
currently be required for full (not fast) ML runs is obviously out of bounds. Because our aim is
to provide quality assessments for user-generated subtrees (based on the taxa of interest),
branch-based probabilistic approaches such as the approximate likelihood ratio test [61] can-
not be used here.

Rationale for Data Set Assembly Strategy

The data sets in STBase overlap with one another. In mathematical terms, they represent a
“cover” of the underlying sequence data, rather than a “partition” of it. Each data set in STBase
comprises a different collection of sequences, taxa and loci, but these collections can overlap
partially with each other. The effect of this is somewhat analogous to coverage in genome se-
quence assembly, where multiple reads allow evaluation of mistakes, except that in phylogenet-
ic inference the mistakes(s) can arise for many inferential reasons. For example, suppose we are
interested in a set of taxa, U, common to two different data sets, having taxon sets X; and X,:
thus U = X; N X,. After building alignments and trees from X; and X, separately, we might
well discover that the subalignments and subtrees corresponding to just our taxa of interest,

U, are different for any number of reasons. Both the optimal alignment and optimal tree given
the alignment for the taxa in U can depend on the context, that is, the other taxa in X; or X.
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This is part and parcel of the longstanding debate over adding taxa vs. loci in phylogenetic
analysis [62]. By assembling data sets with many different contexts, including different phylo-
genetic scales (levels in the NCBI hierarchy), different numbers of loci, and different patterns
of missing data (bicliques vs. decisive quasi-bicliques), we hope the database exposes sensitivity
to these factors. By listing these different data sets ranked by quality in the output, the interface
naturally encourages exploration of these effects, and we would encourage users to consider,
for example, studying alternative alignments of the largest clusters. The important caveat emp-
tor is that users should not be tempted to take multiple data sets returned in a search and per-
form subsequent phylogenetic or statistical analyses on them assuming they are statistically
independent. Any one data set, however, reflects a non-redundant sample of sequence data.

Species Trees and Gene Tree Conflict

One hallmark of STBase is that it archives estimates of species trees. More precisely it reports
singly-labeled trees in which labels correspond to NCBI taxa at the lowest rank to which they
have been identified. We do this, not optimally, but conservatively. In other words, each mul-
tree from a single-locus data set is reduced to a singly labeled subtree in such a way that it does
not introduce any conflict with the original tree [37]. This often entails loss of resolution and/
or loss of taxa, but the taxon loss is less than it would be if all duplicate taxa were removed, an
admittedly naive alternative [37]. These reduced sets of taxa then form the basis of multi-locus
data set assembly. This multree reduction algorithm is not optimal because it does not exploit
all of the information present in the original multrees, some of which (such as numbers of gene
duplications, or deep coalescence events) can be helpful in inferring a more complete species
tree [63]. However, exploiting this information requires making assumptions about the sources
of multaxa in the data sets, something we cannot glean uniformly from GenBank annotations
or the raw sequence data themselves. The structure of the database can accommodate other
methods of assembling species trees, but at the moment the number of alternative methods is
quite large, and we leave this to future work.

Applications in Comparative Biology and Large Tree Construction

Many, though not all, questions in comparative biology have a phylogenetic scope limited to
major clades, and can thus be addressed by the trees within hub groups in STBase. Many prob-
lems in comparative physiology, functional morphology, developmental biology and compara-
tive genomics are largely within the scope of species in the same taxonomic genus, family or
order. On the other hand, STBase does not currently contain trees that span between our 500+
hub groups. Therefore a query list sampled across all plants in a community or regional flora
(cf. [15]), for example, would return a set of trees, each of which is confined to a major clade of
plants. A user with such a query would then be compelled to pursue their own supermatrix or
supertree analyses to combine these results into a more comprehensive tree.

We were reluctant to transcend the scope of our hub groups for several reasons. The prob-
lems of scaling data set assembly, multiple sequence alignment, and tree inference using nucle-
otide sequences beyond thousands to 10s of thousands of taxa are daunting [12]. Moreover, we
suspect that the exploitation of a small number of idiosyncratic high quality scaffold data sets
will be necessary to tie together trees between major groups [14]. For example, Soltis et al.’s
[45] analysis of 17 loci for 640 angiosperms was a decisive multi-locus data set that could form
the scaffold for our smaller trees among angiosperms, as could others. However, how these
data should be incorporated with a large collection of smaller data sets is unclear, and no doubt
raises many issues about supertree vs. supermatrix construction, as well as the proper handling
of missing data.
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Big data

Given the combination of vast sequence data resources and computationally intractable infer-
ence problems, few would doubt the assertion that phylogenetics is “big data” science. A few
observations gleaned in the construction of STBase provide some support for this notion. First,
it became clear that storage of an entire confidence set of trees rather than a single tree (or a
few alternative optimal trees) let us build a tool for exploration of the statistical support for
phylogenetic hypotheses tailored to the user’s taxon list, in real time. However, a consequence
of this is the need to store 2-3 orders of magnitude more phylogenetic trees in the database. Al-
though compression of these trees is possible [64, 65], there will be a tradeoff between decom-
pression speed and savings in database storage. Second, we selected only a small number of
protocols for assembling data sets for tree construction. These were guided by some theoretical
results on the impact of missing data in multi-locus data sets. Many other protocols could be
designed to emphasize different aspects of data set structure, such as ones taking note of other
measures of information content [66], or to exploit the many different available species tree in-
ference methods [34]. Given sufficient computing resources, the number of data sets might eas-
ily be increased by 1-2 orders of magnitude by including such protocols. Finally, the 6 million
sequences used to build STBase represent only a few percent of GenBank, the “taxonomically
enriched” part, largely neglecting the vast quantities of high throughput sequence data that are
available (still) for a relatively limited number of taxa. Including these data would scale up anal-
ysis in our pipeline by two orders of magnitude, although perhaps not the number or size of
trees to the same degree. However, if metagenomic data sets were ultimately included, the size
of something like STBase might well approach 10'*~10"° trees. Databases of that size or larger
exist now (e.g., NCBI's Sequence Read Archive, or Shutterfly’s image database: [67]), but tailor-
ing database tools to handle tree collections of this size while allowing efficient tree-based que-
ries and other operations specific to phylogenetic analysis may well require new algorithms
and algorithm engineering.
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