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Abstract

The extracellular matrix (ECM) is a dynamic composite of secreted proteins that play impor-
tant roles in numerous biological processes such as tissue morphogenesis, differentiation
and homeostasis. Furthermore, various diseases are caused by the dysfunction of ECM
proteins. Therefore, identifying these important ECM proteins may assist in understanding
related biological processes and drug development. In view of the serious imbalance in the
training dataset, a Random Forest-based ensemble method with hybrid features is devel-
oped in this paper to identify ECM proteins. Hybrid features are employed by incorporating
sequence composition, physicochemical properties, evolutionary and structural informa-
tion. The Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are
adopted to select the optimal features. Finally, the resulting predictor termed IECMP (Identi-
fy ECM Proteins) achieves an balanced accuracy of 86.4% using the 10-fold cross-valida-
tion on the training dataset, which is much higher than results obtained by other methods
(ECMPRED: 71.0%, ECMPP: 77.8%). Moreover, when tested on a common independent
dataset, our method also achieves significantly improved performance over ECMPP and
ECMPRED. These results indicate that IECMP is an effective method for ECM protein pre-
diction, which has a more balanced prediction capability for positive and negative samples.
It is anticipated that the proposed method will provide significant information to fully deci-
pher the molecular mechanisms of ECM-related biological processes and discover candi-
date drug targets. For public access, we develop a user-friendly web server for ECM protein
identification that is freely accessible at http://iecmp.weka.cc.

Introduction

Extracellular matrix (ECM) is an important part of the cellular microenvironment and has a
major regulatory or instructive influence on properties of tissues and cell behavior [1-4]. The
ECM can sense and transduce signals that impact cell fate decisions [5]. The functions of ECM
are reflected in the diversity of ECM proteins [6]. Previous study provided evidence that an
ECM protein can facilitate specific tissue differentiation during embryonic development [7]. In
addition, ECM proteins have an effect on the regulation of angiogenesis [8]. The protein
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composition and dynamics of the ECM are of crucial importance for numerous biological
events such as tissue morphogenesis, differentiation and homeostasis [9].

Two main classes of ECM proteins are proteoglycans and collagens. Proteoglycans regulate
a wide variety of biological activities, including tissue repair, tumor growth, cellular adhesion,
proliferation, and migration [10]. Collagens are widely used in bone tissue engineering applica-
tions [1], provide tensile strength, regulate cell adhesion, support chemotaxis and migration,
and direct tissue development [2]. Thus accurate identification of ECM proteins may provide
important clues to decipher the underlying mechanisms in the above-mentioned biological
processes and design ECM protein based biomaterials for bone tissue engineering applications.

As crucial modulators of cell behavior, ECM proteins have been implicated in numerous
human diseases [4, 10]. The ECM protein, collagen VI, was found to be a crucial determinant
of muscle disorders including severe congenital muscular dystrophy and milder Bethlem my-
opathy [11]. The decorin, a member of proteoglycan gene family, plays an important role in
suppressing cancer cell growth and metastasis [12]. Therefore, ECM is a source of diagnostic
and prognostic biomarkers [4]. To assist in patient diagnosis, an urgent need is to identify the
related ECM proteins in development and pathology. The effort to identify ECM proteins may
open novel opportunities for mechanistic understanding of disease pathogenesis as well as pro-
vide pathology-specific biochemical markers. What’s more, new identified proteins may pro-
vide key information for biomedical applications, including wound healing, tissue
regeneration, and the rational design of mimetic biomaterials [3].

With the avalanche of genome sequences generated in the postgenomic age, it would be of
great benefit to develop computational methods for rapidly and effectively identifying ECM
proteins [13]. To our best knowledge, three machine-learning methods have been proposed in
recent years to predict ECM proteins. Juan J et al. [14] presented a predictor called ECMPP
(ECM Protein Prediction) which introduced five novel characteristics of ECM proteins, includ-
ing molecular weight, sequence length, repetitive residue, repeated domains, and glycine-x-y
repeats. Anitha J et al. [15] proposed a computational method (referred to in this paper as
PECMP (Prediction of ECM Protein)) for prediction of extracellular matrix proteins using po-
sition specific scoring matrix as input features for the SVM"™™ Classifier. Kandaswamy KK
etal. [16] provided a web server, ECMPRED (ECM PREDiction), to predict ECM proteins
through a Random Forest approach based on features from the frequency of functional groups
and physicochemical properties. The above methods have their own merits and achieve satis-
factory results. However, two limitations should be noted. (i) The existing methods did not
consider the sequence order and structure information which have been shown useful for pro-
tein attribute prediction [17]. (ii) Earlier work did not deal with the class imbalance problem.
In this case, the classifier would tend to predict most of the incoming data belonging to the ma-
jority class, which limited the prediction performance.

To address these two limitations and enhance the prediction performance, we present an
ensemble method based on hybrid features to identify ECM proteins. The proposed method,
IECMP, is implemented in the following five steps. (i) The training sequences are mapped into
feature vectors. To fully extract information from the original sequence, the process extracts
hybrid features from sequence composition, physicochemical properties, evolutionary and
structural information. (ii) To reduce the complexity and the feature redundancy, the Informa-
tion Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are employed. A train-
ing model is then built to determine a subset of the optimal features. (iii) The training set is
divided into 11 training subsets through the undersampling approach. (iv) Based on the opti-
mal features, the 11 training subsets train Random Forest classifiers, respectively. (v) The pre-
dicted class labels of the test set are determined through the majority voting method. The
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Fig 1. The overall work flow of the proposed method IECMP(Identify ECM Proteins). (i) The training sequences are mapped into feature vectors. (ii) To
reduce the complexity and the feature redundancy, the Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are employed. (iii) The

training set is divided into 11 training subsets through the undersampling approach. (iv) With the optimal features, the 11 training subsets train Random
Forest classifiers, respectively. (v) The predicted class labels of the test set are determined by the majority voting method.

doi:10.1371/journal.pone.0117804.9001

1

overall work flow of our method is shown in Fig. 1. For public easy to access and utilize, the
presented approach is realized on a user-friendly IECMP web-server.

The average of sensitivity and specificity named balanced accuracy is presented to evaluate
the performance, which is able to recover the drawback of accuracy regarding unbalanced data.
The presented method IECMP achieves a higher balanced accuracy for the 10-fold cross
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validation and the test set. Our comparison results demonstrate that the proposed approach is
superior to the existing methods on the balanced accuracy index for both the training dataset
and the independent testing dataset.

Materials and Methods
1. Datasets

In biology, the extracellular matrix (ECM) is a collection of extracellular molecules secreted by
cells, such as structural proteins, matricellular proteins, and proteoglycans, which influences
the mechanical properties of tissues and the phenotype of the cells that reside in those tissues
[2]. The ECM proteins include both structural components of the ECM and matricellular ele-
ments. Furthermore, the ECM is refered to as a subcellular location in the UniProt Knowledge-
base. In this paper, the ECM protein dataset is as well composed of proteins that locate in the
ECM while the non-ECM protein dataset is composed of proteins that don’t locate in the
ECM. The datasets used in this paper for performance analysis and comparison are divided
into two parts: training dataset and independent testing dataset.

A dataset composed of 445 ECM proteins and 4486 non-ECM proteins, introduced by Kan-
daswamy KK et al. [16], is employed to construct the origin training dataset. The dataset is ob-
tained from metazoan secreted protein sequences. The details about the procedure to obtain
the dataset can be found in [16].

In order to compare with reported methods on dataset not used for training, an indepen-
dent testing dataset, not including the training samples, is obtained from the human proteome.
The human ECM proteins are extracted from the Supplemental File 3 of the reference [6],
which includes 159 proteins. The human non-ECM proteins are collected from the dataset
Hum3681 introduced by reference [18], which includes 3681 proteins. The human ECM pro-
teins and non-ECM proteins are combined together to construct the original independent test-
ing dataset. The final training dataset and independent testing dataset are obtained from the
origin training dataset and independent testing dataset (original datasets) through the follow-
ing two steps.

Step 1: To obtain high quality data, protein sequences of the origin datasets with less than
50 amino acids or more than 3000 amino acids are screened out. Protein sequences deleted
from Unipro or containing ambiguous amino acids, such as B, ], O, U, X, and Z, are also re-
moved from the origin datasets. To evaluate the proposed method objectively, protein se-
quences that are included in the training dataset are also screened out from the original
independent testing dataset.

Step 2: After the first step, there are 3416 non-ECM protein sequences remaining in the
ECM dataset and 85 ECM protein sequences remaining in the non-ECM dataset. However, in
the feature extraction stage, it is time consuming for protein sequences to obtain the features
extracted from secondary structure by PSIPRED. Aside from the ECM, the protein sequences
in the Hum3681 locate in altogether 13 human subcellular locations. Without loss of generality,
to reduce the computational complexity, we randomly select 10 sequences from each of the
13 subcellular locations in the remaining 3416 non-ECM protein sequences to form the non-
ECM set. In addition, we performed an experiment to evaluate our method on the non-ECM
dataset that randomly select 300 sequences from the Hum3681 dataset. Results show that the
performance of this case is similar to that given in the paper. Therefore, it is reasonable and
timesaving to evaluate our method by randomly selecting 10 sequences from each of the
13 subcellular locations.

Thus the final training dataset consists of 410 metazoan ECM proteins and 4464 metazoan
non-ECM proteins while the final independent testing dataset consists of 85 human ECM
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proteins and 130 human non-ECM proteins. The final training and independent testing data-
sets are available in S1 Table.

2. Feature Extraction

To develop a computational method for predicting protein attributes, protein sequences should
be represented as a feature vector that could really reflect the intrinsic correlation with the de-
sired target [13]. Constructing a proper feature vector of proteins is a key step for a successful
prediction [19]. As discussed in [20], an individual feature extraction strategy does not preserve
enough discriminative information. The idea of hybrid model can be adopted for enhancing
the discrimination power [21]. To realize this, protein sequences are characterized by the hy-
brid features based on sequence composition, physicochemical properties, evolutionary and
structural information. Details about these descriptors are given in following parts.

2.1. Feature Extraction based on Sequence Composition
(I)Frequencies of functional groups. It has been reported that side chains of amino acids per-
form a significant role in formatting and folding of proteins structure [22]. We categorize
amino acids into 10 functional groups based on the presence of side chain chemical groups
such as phenyl (F/W/Y), carboxyl (D/E), imidazole (H), primary amine (K), guanidino (R),
thiol (C), sulfur (M), amido (Q/N), hydroxyl (S/T) and non-polar (A/G/I/L/V/P) [23]. The fre-
quencies of the 10 functional groups are respectively computed for every sequence.
(II)Information entropy. The statistical distribution of amino acids contains uncertain in-
formation as a result of evolution. In information theory, entropy is a measure of the uncertain-
ty [24]. The Shannon entropy, one of the most important metrics in information theory, is
calculated using the following formula [25].

HGx) = =3 P log. (P). W

According to (1), we compute the Shannon entropy of amino acid composition and dipep-
tide composition, where P;(i = 1,2, - - -, n) are the occurrence frequencies of 20 native amino
acids or 400 dipeptides in protein sequences.

(IIT)Distribution. The count of each native amino acid in protein sequences is denoted by
Ni(i=1.2,---,20). D; is the distance from the jth amino acid i of the protein sequence to the

first amino acid i. Then the distribution of amino acid i is

. N 2
(D,, Xh D;-)
Ni M 2
o\ N @
j=1

J
N,

(IV) Transition. To avoid losing order information hidden in protein sequences, the transi-
tion descriptor introduced by Dubchak I et al. [26] is applied to characterize the sequences.
This feature set has been used for predicting membrane protein types [27], and DNA-binding
proteins [28]. The transition descriptor is defined as

Na[ocj + ijozi (3)
ij S
where i,j € {1,2, - - 1,10} and i # j. @; is one of the above-mentioned 10 functional groups. Ny, 4;

is the number of the dipeptide encoded as “o; @;” in the sequence and L is the length of
the sequence.
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2.2. Feature Extraction based on Physicochemical Properties

(I)Pseudo amino acid composition. The specificity and diversity of protein’s structure and
function are largely related to various physicochemical properties of amino acids. The PseAAC
(Pseudo Amino Acid Composition) method proposed by K.C. Chou can combine physico-
chemical properties with sequence order information properly [29], which has been widely ap-
plied in protein attribute prediction [13]. Meanwhile, various modes of PseAAC that extract
different features from protein sequences were proposed in [30]. In this work, we adopt the
PseAAC model presented in previous study [31]. Let the parameter i = 20, then 40 features are
obtained from this model. The details about the model can be found in [31].

Four physicochemical properties including hydrophobicity, flexibility, net charge, and aver-
age accessible surface area are taken into account to calculate the model on the basis of the fol-
lowing reasons. (i) The hydrophobic effect is considered as the most important factor to affect
protein structures [32]. (ii) The ECM protein collagen introduces flexibility into the molecules,
which is crucial in regulating cell behavior [4]. (iii) Charged amino acids tend to form hydro-
gen bonds which are beneficial for ECM proteins in contact with solvents [33]. (iv) Previous
studies have indicated that the accessible surface area of an amino acid is related to posttransla-
tional modification [34], which may be the drive force for the ECM to form a
dynamic network.

(IT)Discrete wavelet transform. Discrete Wavelet Transform (DWT) can allow the analysis
of signals both in time and frequency domain [35]. Thus DWT has achieved vast improvement
in investigations of molecular biology data, such as genome sequence analysis [36], protein
structure prediction [37], and gene expression data analysis [38]. DWT analysis can decom-
pose the signals into the approximation coefficients, which represent the high-scale and low-
frequency components of the signal, and the detail coefficients, which represent the low-scale
and high-frequency components of the signal [39]. We apply DWT on the numerical signal
converted from the three physicochemical properties, hydrophobicity, flexibility, and average
accessible surface area, respectively.

The following statistical features are calculated for the identification of ECM proteins.

(i) Mean, and standard deviation of the original signal. (ii) Maximum, minimum, mean, and
standard deviation of the wavelet coefficients in each sub-band. The “Db4” wavelet function is se-
lected and the decomposition level 4 is chosen. Finally, 42 features are obtained for every sample.

2.3. Feature Extraction based on Evolutionary Information

Evolutionary conservation usually reflects important biological function [40]. Previous studies
have proven that evolutionary information is important in protein structure and function pre-
dictions [41, 42]. To incorporate the evolutionary information of proteins, the position specific
scoring matrix (PSSM) [43] profiles are adopted here. The PSSM is calculated by runnning
PSI-Blast program through three iterations with 0.001 as the E-value cutoff. For a protein se-
quence with L residues, the generated PSSM matrix includes L x 20 elements, which can be ex-
pressed as

_E1H1 Ebz Ebj T Ebzo i
E, ., E, ., EZHj E, 2
Ppsow = . ) (4)
E_., E., - Eiﬂj o Eiy
_ELHI ELHQ U EL*»j U EL~>2U J
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where E; _,  represents the score of the amino acid in the ith position of the query sequence
being mutated to amino acid type j during the evolution process. The elements of PSSM are
normalized using the following sigmoid function.

_ 1
T 14’

f(x) (5)

where x is the original PSSM value. The protein P is represented as

FPSSM: [9}’0;'"70;070?70;"';62 79330;770;0]7 (6)

20
) Li; b
where 07 = iZ (E_, — Ewﬁ,-)z, i=1,2,---20,0 <A < L. The value of A is chosen as 4.
j=1
Thus the total number of extracted features from evolutionary information equals 80.

2.4. Feature Extraction based on Structural Information

(I)Disorder. A protein region is defined as “disorder” if it fails to fold into a stable three-
dimensional structure. The disorder regions play important roles in various signaling and regu-
latory pathways such as transcriptional regulation, cellular signal transduction, and posttrans-
lational modification [44]. The disorder predictor “VSL2” [45] is employed to calculate the
disorder score of each residue in a given protein sequence. The following 8 features are de-
signed to encode each protein sequence. (i) Mean/standard deviation of all residues’ disorder
scores (2 features). (ii) Number of disorder/non-disorder segments (2 features). (iii) Mini-
mum/maximum length of disorder/non-disorder segments (4 features).

(IT)Secondary structural information. Previous studies have demonstrated that protein
secondary structure results in the formation of tertiary structure, which reveals the function of
proteins to a great extent [46, 47]. The secondary structure has 3 regular conformations, alpha
helix (H), beta strand (E), and random coil (C). In this study, an effective tool PSIPRED [48] is
employed to map protein sequences into secondary structural sequences. The following 51 fea-
tures are computed from secondary structure information. (i) Number of helix/strand/coil di-
vided by the sequence length (3 features). (ii) Number of the helix/strand/coil segments
divided by the total number of secondary structure segments (3 features). (iii) Distribution of
helix, strand, and coil (3 features). (iv) Minimum/maximum/mean/standard deviation of the
length of the helix/strand/coil segments (12 features). (v) Frequencies of helix/strand/coil in
10 functional groups (30 features).

(IIT) Functional domain information. Protein domains can evolve, function, and
exist independently and carry out diverse molecular functions [49]. Previous studies have
demonstrated that proteins in the same organelle share specific functional domains [50, 51].
Furthermore, ECM proteins are typically made up of distinct domains for protein interactions.
Therefore, we perform the feature extraction work from the functional domain information
through the following steps. First, the functional domain composition of each ECM protein
in the training dataset is obtained from the Intepro database [52]. Then, functional domains
present in more than or equal to 25 ECM proteins are chosen to extract features. The result
covers a total of 17 Intepro entries, which can be found in S2 Table. Finally, information
of each of the 17 functional domains is represented by a binary score: 1 if present and
0 otherwise.

In this paper, each protein sample is encoded with hybrid features based on the above-
mentioned sequence composition, physicochemical properties, evolutionary and structural in-
formation. Table 1 illustrates detailed information of the 315 features adopted in this study.
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Table 1. Summary of the considered features. Hybrid features are employed by incorporating sequence composition, physicochemical properties,

evolutionary and structural information.

Category Feature type No. of features
Sequence composition based (77 features) Frequencies Of Functional Groups(FFG) 10
Information entropy 2
Distribution 20
Transition 45
Physicochemical properties based (82 features) Pseudo Amino Acid Composition(PseAAC) 40
Discrete Wavelet Transformation(DWT) 42
Evolutionary information based(80 features) Position Specific Scoring Matrix (PSSM) 80
Structural information based (76 features) Disorder 8
Secondary Structural Information(SSI) 51
Functional Domain Information(FDI) 17

doi:10.1371/journal.pone.0117804.t001

3. Feature Selection

After carrying out the feature extraction methods mentioned above, all protein sequences are
converted into numerical feature vectors with the same dimension. However, the original fea-
ture set generally contains redundant or uninformative features which often result in poor pre-
diction performance and dimension disaster [53]. To overcome these shortcomings, the
Information Gain Ratio followed by Incremental Feature Selection (IGR-IFS) method is per-
formed in current work to pick out informative features.

Information Gain Ratio. Information Gain Ratio (IGR) is a good measure of the relevance
of an attribute with respect to classes [54]. In this paper, the entropy of the class C is defined as

ZP ) log, P(C), (7)

where P(C;) is the percent of class C; (ECM protein or non-ECM protein) in the training set.
The set of values of feature Fy(i € {1,2, - - -,315}) is denoted as S, = { V!, VZ,-- - V/"}. Then,
the entropy of the feature F; is expressed as

= _P(V)log, P (V). (8)
=1
The conditional entropy of class C, given the feature F;, is defined as
H(CIF) = ZP (V) ZP (C|V]) log, P (C|V)). (9)

The information gain ratio for the feature F; is given by

H(C) — H(C|F)

H(F) (10)

IGR (F) =

According to this measure, C has a stronger correlation with F; than with F; if IGR(F;) >
IGR(F);). The features then can be ranked by the IGR scores.

Incremental Feature Selection. Based on the ranked feature list evaluated by the IGR ap-
proach, the Incremental Feature Selection (IFS) method is adopted to determine the optimal
feature set. The IFS procedure [55] starts with an empty feature set, and adds features one by
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one from higher to lower rank. A new feature set is constructed when another feature have
been added. The feature set that has a relatively higher balanced accuracy and lower dimension
is selected as the final input of the classification system.

4. Random Forest Classifier

The Random Forest (RF) algorithm, developed by L. Breiman [56], has excellent performance
in protein attribute prediction problems [57, 58]. RF is an ensemble classifier consisting of sev-
eral decision trees which are generated using a randomly sampled set of the original dataset.
The predicted class is obtained by each of the constructed decision trees. The RF classifier then
chooses the class with the most votes over all trees as the final prediction result. For detailed de-
scription about the RF algorithm, please refer to [56].

In this study, the Random Forest classifier in WEKA software [59] is employed to imple-
ment the classification with default parameters.

5. Ensemble Method

As described earlier in the “Datasets” section, the number of ECM proteins is much smaller
than that of non-ECM proteins. This leads to the imbalanced data classification problem [60].
This issue will result in poor prediction accuracy of the minority class. The PECMP [15] and
ECMPRED [16] have tried to change the distribution of positive and negative samples by ran-
domly selecting ECM proteins and non-ECM proteins with a same size as the training set.
However, they failed to make full use of the sample information in the original training dataset,
which might adversely affect the prediction performance.

Previous studies have demonstrated that an ensemble classifier is often superior to the indi-
vidual classifier, which enhances not only the performance of the classification, but also the
confidence of the results [28, 61]. In this paper, the RF-based ensemble method is applied to
address the imbalance problem. The prediction performance of the training dataset is evaluated
by the 10-fold cross-validation as follows.

The positive and negative datasets are respectively divided into 10 subsets with an approxi-
mately equal number of samples. One subset from positive dataset and one subset from nega-
tive dataset are combined for testing, while the remaining subsets are used for training. The
processes mentioned above are repeated 10 times. Each run, using the ensemble method, fol-
lows the two steps below.

Step 1. As the ratio of negative to positive samples is about 11, the negative dataset in the
training set of each run is undersampled and split into 11 groups. Each group is then combined
with the positive samples in the training set of each run as a training subset. After the under-
sampling procedure, 11 training subsets are obtained.

Step 2. 11 Random Forest classifiers are trained by the 11 training subsets, respectively and
the performance of the model is evaluated by the testing set in each run. The final predicted
class is determined by majority votes among the outputs of the 11 classifiers. In majority
voting scheme, a test instance is labeled the predicted class that obtains the highest number
of votes.

6. Performance Measures

In this study, 10-fold cross-validation and independent test are adopted to examine and com-
pare the performance of ECM protein predictors. Sensitivity (Sn), specificity (Sp), accuracy
(Acc), and balanced accuracy (BAcc) were employed to evaluate the performance of the
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prediction system. These measurements are defined as

TP
S =—— 11
" TP+ EN’ (11)
N
S =— 12
P TN +FP’ (12)
TP + TN

Acc (13)

" TP+ FP+ 1IN+ EN’

BAcc = (S, +S,), (14)

N =

where TP, TN, FP and EN are the number of true positives, true negatives, false positives and
false negatives, respectively.

Sensitivity and specificity reflect the rates of prediction accuracy with regard to positive and
negative samples, respectively. Accuracy is the proportion of all samples that are correctly pre-
dicted. For the classification of unbalanced data, Accuracy is not an appropriate measure be-
cause it may be still high when the sensitivity is very low [62]. However, a good prediction
system is usually expected to provide both high sensitivity and specificity. Therefore, the bal-
anced accuracy is introduced as the main measure in this study.

Results and Discussions
1. The Information Gain Ratio (IGR) Result

Based on the IGR algorithm mentioned in Section 2.3, the ranked feature list (see S3 Table) is
obtained on the basis of each feature’s relevance to the class of samples. Within the list, a
smaller index of a feature indicates that the feature is more important for ECM protein predic-
tion. Such a list of ranked features are used to establish the optimal feature set in the IFS
procedure.

2. IFS Result and the Optimal Feature Set

By adding features one by one from higher to lower rank, 315 different feature subsets are ob-
tained. The individual predictor is then accordingly built for each feature subset and evaluated
by 10-fold cross-validation. The prediction performance for each of the 315 predictors (The
IFS result) is given in S4 Table. The IFS curve is plotted in Fig. 2, which reveals the relation be-
tween the balanced accuracy and the feature subset. It can be observed that the maximal BAcc
is 0.8645 when the feature set is comprised of 289 features. In addition, when the 102 features
are included, the BAcc is 0.8635 as shown in Fig. 2. It is a drop of just 0.001 from the the maxi-
mal BAcc. To avoid dimension disaster, the 102 features (see S5 Table) are selected as the opti-
mal feature set to identify ECM proteins.

To evaluate our feature selection method, Table 2 shows the prediction results of the origi-
nal feature set and the optimal feature set. As can be seen from Table 2, the sensitivity, accura-
¢y, and balanced accuracy of the optimal feature set are all superior to those of the original
feature set. The specificity of the optimal feature set is also comparable to that of the original
feature set. These results demonstrate that the original feature set truly contains redundant in-
formation or noise. The IGR-IFS method makes certain contribution to picking out
informative features.
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Fig 2. The IFS(Incremental Feature Selection) curve: the values of balanced accuracy against the feature subset. By adding features one by one from
higher to lower rank, 315 different feature subsets are obtained. The individual predictor is then accordingly built for each feature subset and evaluated by 10-
fold cross-validation. The IFS curve reveals the relation between the balanced accuracy (BAcc) and the feature subset.

doi:10.1371/journal.pone.0117804.g002

Table 2. Prediction results of the original feature set and the optimal feature set.

Feature set No. of features Sensitivity Specificity Accuracy Balanced accuracy
Original feature set 315 0.854 0.850 0.850 0.852
Optimal feature set 102 0.878 0.849 0.851 0.864

doi:10.1371/journal.pone.0117804.t002

3. Analysis of the Optimal Feature Set

As described in “Feature Extraction” Section, there are four kinds of features derived from se-
quence composition, physicochemical properties, evolutionary and structural information.
The numbers of each kind of features in the original and optimal feature set are depicted in
Fig. 3. From the Figure, it can be seen that the numbers of the four kinds of features in the orig-
inal feature set are rather close. After the feature selection, the sequence composition and struc-
tural information based features account for a high proportion of the optimal feature set (both
are 31/102 = 0.304). This implies that the sequence composition and the structure of the pro-
tein are pivotal in determining the ECM proteins. However, the sequence order and structure
information were largely ignored by past studies [14, 16]. Taking full advantage of the sequence
order and structure information, this study is expected to improve the prediction performance.
The four kinds of features in Fig. 3 produce 10 types of feature vectors as given in Table 1.
The feature type distributions in the original and optimal feature set are illustrated in Fig. 4.
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Fig 3. The numbers of each kind of features in the original and optimal feature set. The four kinds of features are based on sequence composition,
physicochemical properties, evolutionary information, and structural information, respectively.
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Fig 4. The feature type distributions in the original and optimal feature set. FFG: Frequencies of Functional Groups, PseAAC: Pseudo Amino Acid
Composition, DWT: Discrete Wavelet Transformation, PSSM: Position Specific Scoring Matrix, SSI: Secondary Structural Information, FDI: Functional
Domain Information.

doi:10.1371/journal.pone.0117804.g004

From Fig. 4, it is interesting to note that features from distribution are all in the optimal feature
set. This phenomenon may be due to that the features from distribution reflect sequence order
information, known to represent important properties for protein attribute prediction [23-25].
Furthermore, a much higher percent of features from functional domain information (15 out
of 17) are selected from the original feature set. This finding is consistent with previous studies.
In previous works, it was indicated that the key role of ECM in governing protein interactions
is attributed to highly conserved domains of ECM proteins [63]. Although slightly less relevant,
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the other eight types of features also contribute to the identification of ECM proteins. The pre-
diction model integrate multiple sources of descriptors for protein sequences in an attempt to
enhance prediction performance.

4. Imbalanced Learning Effects

To analyze the influence of the imbalanced problem on prediction performance, 10 training
datasets are constructed by randomly extracting negative samples from the training dataset and
plusing all positive samples in the training dataset. The ratios of the number of positive samples
to negative ones in the 10 training datasets are from 1:1 to 1:10, respectively. Then the prediction
results are evaluated on the 10 training datasets using 10-fold cross-validation. The processes
mentioned above are repeated 10 times. The averaged performance of prediction systems
trained with different positive to negative sample ratios is shown in Fig. 5 and listed in Table 3.

As shown in Fig. 5, the specificity is gradually improved with the increase of negative sam-
ples. On the contrary, the sensitivity keeps declining. This phenomenon demonstrates that the
imbalanced problem will lead to most of samples classified as the majority class. These results
also indicate that the prediction performance is indeed affected by the imbalanced training
dataset. In addition, the accuracy has the opposite trend compared to the sensitivity, from
0.846 to 0.949, which indicates that the more serious the imbalance problem is, the higher ac-
curacy it will be. Therefore, the accuracy is not a good measure for the imbalanced problem.
But the balanced accuracy tends to drop accompanied with higher ratios (more imbalanced
datasets). Therefore, for the imbalanced training dataset, it is reasonable that the balanced ac-
curacy is chosen as the performance measure to select the optimal features.

In Table 3, a balanced training dataset with 1:1 ratio yields the best performance among dif-
ferent ratios, which has the highest sensitivity and balanced accuracy. The sensitivity,

0.7
9e Sensit]'ivity
0.6 == Specificity
Accuracy
Balanced Accuracy
0.5

1:1 1:2

1:3

1:4 1:5 1:6 1:7 1:8 1:9 1:10
Ratio

Fig 5. The averaged performance with different ratios between positive and negative samples in the training set. The ratios of the number of positive
samples to negative ones are from 1:1 to 1:10, respectively.

doi:10.1371/journal.pone.0117804.g005
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Table 3. The averaged performance with different ratios between positive and negative samples in
the training set. The ratios of the number of positive samples to negative ones are from 1:1 to
1:10, respectively.

Ratio Sensitivity Specificity Accuracy Balanced accuracy
1:1 0.893 0.799 0.846 0.846
1:2 0.794 0.889 0.857 0.842
1:3 0.759 0.930 0.888 0.845
1:4 0.710 0.952 0.904 0.831
1:5 0.682 0.966 0.919 0.824
1:6 0.654 0.971 0.926 0.812
1.7 0.637 0.976 0.934 0.807
1:8 0.609 0.982 0.940 0.795
1:9 0.601 0.985 0.947 0.793
1:10 0.572 0.987 0.949 0.779

doi:10.1371/journal.pone.0117804.t003

Table 4. Prediction results with or without the ensemble method.

Method Sensitivity Specificity Accuracy Balanced accuracy
Without ensemble 0.598 0.989 0.956 0.793
With ensemble 0.878 0.849 0.851 0.864

doi:10.1371/journal.pone.0117804.t004

specificity, accuracy, and balanced accuracy are 0.893, 0.799, 0.846, and 0.846, respectively.
Thus 1:1 is the suitable ratio of the training set to identify ECM proteins, which is in this study
maintained through the predictor development process.

To evaluate the effectiveness of our ensemble method to overcome the imbalanced problem,
Table 4 shows the prediction results with or without the ensemble method. In Table 4, without
the ensemble method, the accuracy and specificity are 0.956 and 0.989. But the sensitivity is only
0.598 due to the imbalanced data size. On the other hand, the prediction performance achieves a
balanced sensitivity (0.878) and specificity (0.849) with the ensemble method. These results sug-
gest that the ensemble method could solve the imbalanced problem in the ECM protein
training dataset.

5. Comparison with Several Machine Learning Methods

In this section, the prediction results of the RF classifier and other state-of-the-art classifiers
are compared. The data mining software WEKA [59] including several machine learning tech-
niques is employed to execute the comparisons. Their prediction results with the 10-fold cross-
validation are listed in Table 5. From Table 5, the prediction results of all the 7 classifiers are
quite close, which proves that our method is robust to classifiers. Specifically, the balanced ac-
curacy of the RF classifier as recorded in Table 5 is 0.038, 0.057, 0.029, 0.013, and 0.019 higher
than that of the Adaboost, BayesNet, Decisiontable, J48, and Logistic classifiers. Meanwhile,
the performance of the RF is very close to that of the MLP, only 0.002 less for the balanced ac-
curacy. However, the MLP is time-consuming during the classification process. These compar-
ison results indicate that the RF is an ideal choice among different machine learning methods.
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Table 5. Comparison with several machine learning methods.

Classifier Sensitivity Specificity Accuracy Balanced accuracy
Adaboost 0.868 0.784 0.791 0.826
BayesNet 0.824 0.791 0.793 0.807
Decisiontable 0.859 0.811 0.815 0.835
J48 0.871 0.832 0.835 0.851
Logistic 0.849 0.842 0.842 0.845
MLP 0.861 0.871 0.870 0.866
Random Forest 0.878 0.849 0.851 0.864

doi:10.1371/journal.pone.0117804.t005

6. Comparison with the Existing Methods on the Training Dataset

To gain insights into the prediction power of our developed approach, we compare the predic-
tion results of the IECMP approach with results from the existing approaches, ECMPP [14],
PECMP [15], and ECMPRED [16], are compared. The method ECMPP [14] generates five
novel features specific to ECM proteins for ECM protein prediction. The method PECMP [15]
develops a SVM""™ based model using PSSM profiles to facilitate the identification of ECM
proteins. More recently, ECMPRED [16] employs an RF classifier trained on frequencies of
functional groups and physicochemical properties for classifying ECM proteins. To make a
fair comparison, these methods are trained on the same training dataset as introduced in Sec-
tion 2.1. The prediction results of above-mentioned methods using the 10-fold cross-validation
are summarized in Table 6.

As shown in Table 6, it is obvious that PECMP achieves the lowest sensitivity (0.490). The
method ECMPRED has the lowest accuracy (0.830) and specificity (0.770). On the contrary,
ECMPP achieves the highest accuracy (0.956) and specificity (0.992). However, the sensitivity
of ECMPP is extremely poor, 0.315 lower than that of IECMP. IECMP also achieves the highest
balanced accuracy (0.864), followed by ECMPP with 0.778, PECMP with 0.731, and
ECMPRED with 0.710. In other words, it can obtain better trade-off between sensitivity and
specificity. Therefore, our method is superior to ECMPP, PECMP, and ECMPRED in regard to
both high sensitivity and specificity.

7. Comparison with the Existing Methods on the Independent Testing
Dataset

To further demonstrate the efficiency of the proposed model and avoid biased evaluations, it is
objective to compare the performance of IECMP with those of previous methods on an inde-
pendent dataset. Table 7 reports the detailed prediction results obtained by ECMPP, PECMP,
ECMPRED, and IECMP on the independent dataset given in Section 2.1. To gain a fair

Table 6. The prediction results compared with other methods on the training dataset using 10-fold
cross-validation.

Reference Method Sensitivity Specificity Accuracy Balanced accuracy
[14] ECMPP 0.563 0.992 0.956 0.778
[15] PECMP 0.490 0.971 0.931 0.731
[16] ECMPRED 0.650 0.770 0.830 0.710
This study IECMP 0.878 0.849 0.851 0.864

doi:10.1371/journal.pone.0117804.t006
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Table 7. The prediction results compared with other methods on the independent testing dataset.

Reference Method Sensitivity Specificity Accuracy Balanced accuracy
[14] ECMPP 0.294 0.985 0.712 0.640
[15] PECMP 0.435 0.938 0.740 0.687
[16] ECMPRED 0.622 0.478 0.535 0.550
This study IECMP 0.765 0.785 0.777 0.775

doi:10.1371/journal.pone.0117804.t007

comparison result, these methods are all trained with the same training dataset adopted in
this study.

In Table 7, ECMPP achieves the lowest sensitivity of 0.294 and the highest specificity of
0.985, which may be attributed to the imbalanced training dataset (410 positive samples and
4464 negative samples). PECMP also has a relatively low sensitivity (0.435) and a relatively
high specificity (0.938). Although trained with an imbalanced training dataset (410 positive
samples and 410 negative samples), ECMPRED obtains the lowest specificity of 0.478 and the
lowest of balanced accuracy of 0.550. This phenomenon may be due to the fact that ECMPRED
fails to make full use of the negative sample information in the original training dataset. Fur-
thermore, for ECMPP, PECMP, and ECMPRED, there is a great divergence between sensitivity
and specificity. In contrast, with a sensitivity of 0.765 and a specificity of 0.785, our method
IECMP has a relatively balanced performance in positive and negative datasets. In terms of the
balanced accuracy, the value of IECMP is 0.775, which is much better than ECMPP, PECMP,
and ECMPRED. The outstanding performance of the current method may be attributed to the
informativeness of the feature vector in representing proteins and the RF ensemble method.
The good performance on the independent dataset also indicates that our method is robust
to datasets.

8. Web-Server

To make it easy for public to access and utilize the method presented in this paper, an IECMP
web-server has been launched and is freely available at http://iecmp.weka.cc. The main page of
the IECMP web-server is shown in Fig. 6, while the predicted result page is shown in Fig. 7. As
displayed in Fig. 6, users can either enter the sequence of query proteins in FASTA format or
input the UniProtKB ID of the query protein for prediction. When protein sequences are sub-
mitted to the server, a job ID is presented to users. The predicted result page as shown in Fig. 7
will return the input information, predicted result, and values of attributes for every submitted
sequence. If users enter your email address in the input box, predicted results will be emailed to
users once the job has completed.

Conclusions

Owing to the significance of ECM proteins in numerous biological events and human diseases,
an urgent need is to develop a high-quality prediction model for identifying ECM proteins. An
RF based ensemble method for ECM protein prediction is presented with hybrid features in-
corporating sequence composition, physicochemical properties, evolutionary and structural in-
formation. To enhance prediction performance, the IGR-IFS method is employed to select
highly discriminating features. Experimental results show that our method IECMP obtains sat-
isfactory results. The sensitivity, specificity, and balanced accuracy are 0.878, 0.849 and 0.851,
respectively for the training set using 10-fold cross validation. When performed on the
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Fig 6. The main page of the IECMP web-server. Users can either enter the sequence of query proteins in
FASTA format or input the UniProtKB ID of the query protein for prediction.

doi:10.1371/journal.pone.0117804.9006
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Attributes(102)

+ Show all

Fig 7. The predicted result page of the IECMP web-server. The predicted result page returns the input
information, predicted result, and values of attributes for every submitted sequence.

doi:10.1371/journal.pone.0117804.g007

independent dataset, IECMP achieves a sensitivity of 0.765, a specificity of 0.785, and a bal-
anced accuracy of 0.775. These results demonstrate that IECMP has a more balanced predic-
tion capability for both positive and negative samples. Compared with prior studies, the
proposed method not only took full advantage of multiple descriptors for protein sequences
but also overcome the imbalanced data classification problem. The comparison results indicate
that IECMP indeed performs better than the previous studies in terms of the balanced accuracy
for both 10-fold cross-validation and independent test. It is anticipated that IECMP can pro-
vide candidate ECM proteins for future experimental verification to assist in understanding the
molecular mechanisms of ECM-related biological processes and drug development for the
treatment of human diseases.
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