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Abstract
Human-altered environments often challenge native species with a complex spatial distribu-

tion of resources. Hostile landscape features can inhibit animal movement (i.e., genetic ex-

change), while other landscape attributes facilitate gene flow. The genetic attributes of

organisms inhabiting such complex environments can reveal the legacy of their movements

through the landscape. Thus, by evaluating landscape attributes within the context of genet-

ic connectivity of organisms within the landscape, we can elucidate how a species has

coped with the enhanced complexity of human altered environments. In this research, we

utilized genetic data from eastern chipmunks (Tamias striatus) in conjunction with spatially

explicit habitat attribute data to evaluate the realized permeability of various landscape

elements in a fragmented agricultural ecosystem. To accomplish this we 1) used logistic re-

gression to evaluate whether land cover attributes were most often associated with the ma-

trix between or habitat within genetically identified populations across the landscape, and 2)

utilized spatially explicit habitat attribute data to predict genetically-derived Bayesian proba-

bilities of population membership of individual chipmunks in an agricultural ecosystem. Con-

sistency between the results of the two approaches with regard to facilitators and inhibitors

of gene flow in the landscape indicate that this is a promising new way to utilize both land-

scape and genetic data to gain a deeper understanding of human-altered ecosystems.

Introduction
Fragmentation of natural landscapes by anthropogenic attributes, such as agriculture, urbani-
zation, and transportation infrastructure, alters the manner in which animals utilize remnant
native habitats [1], [2]. In fragmented agricultural ecosystems, native habitats are generally re-
duced in area, resulting in a reconfiguration and loss of connectivity between native habitats.
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The formerly continuous habitats may then be reduced to small patches separated by potential-
ly inhospitable matrix habitat [3], [4]. As a result of the redistribution and loss of connectivity
of habitat elements, successful movements of individuals between patches can be markedly re-
duced [5], either by direct mortality or reluctance to leave the safety of a known environment
[6]. Over time, wildlife populations in fragmented landscapes can become genetically differen-
tiated and may lose genetic diversity due to isolation and the acceleration of genetic drift [7–9].

Of particular concern in fragmented ecosystems is the concept that a long-term reduction
in genetic diversity and impediments to gene flow can inhibit future adaptation of species [10].
However, if matrix habitats do not completely impede movement between patches, species in-
habiting fragmented landscapes may function as a metapopulation. Metapopulations are typi-
fied by low levels of dispersal between populations and patterns of population extirpation and
recolonization wherein populations inhabiting small, isolated patches are at greater risk of ex-
tinction than those inhabiting larger or more connected patches [11]. To help understand how
to maintain connectivity between isolated patches, one method is to identify habitats that im-
pede dispersal, a process that generally involves detecting barriers to gene flow.

In fragmented ecosystems, the term ‘barrier’ refers to possible impediments to individual
movement that exist in the matrix between patches of ideal habitat. When matrix habitats pre-
vent enough movement to cause genetic differentiation between patches, resultant patterns of
genetic variation across a landscape should be correlated with matrix habitats. The desire to
understand the relationship between landscape heterogeneity and genetic differentiation has
largely led to the formation and prolific growth of the field of landscape genetics [12], [13]. The
attraction of landscape genetic approaches for fragmented ecosystems is that assumptions
about biological processes are more realistic than traditional population genetic models [14].
Importantly, landscape genetic models do not require a priori groupings and genetic patterns
can be analyzed at the individual scale. Another benefit of using landscape genetics for frag-
mentation studies is its ability to disentangle multiple influences on gene flow because genetic
variation is often influenced by multiple factors that operate at different spatial [15–18] and
temporal scales [19], [20].

Landscape genetic models often depend on accurate definition of the functional biological
extent of populations, particularly in management and conservation efforts [21], [22]. Unfortu-
nately, defining biologically meaningful populations is especially problematic within the con-
text of fragmented environments [23]. For example, understanding how factors like the spatial
distribution of habitat attributes and the composition of the intervening matrix habitats con-
tribute to the spatial extent of population structure is rarely intuitive. Fortunately, Bayesian ap-
proaches provide a method to use individual-based data for detection of underlying population
structure at various spatial scales. Bayesian clustering algorithms have proven to be particularly
useful for identifying major barriers to gene flow in a variety of species, often confirming ex-
pectations that topographic (e.g., [24–26]) and anthropogenic barriers (e.g., [27], [28]) limit
the ability of animals to move freely through their environments. While these approaches have
been extensively used to elucidate population subdivision resulting from prominent habitat
features, Bayesian algorithms can also aid in evaluating how more cryptic factors impact gene
flow in heterogeneous landscapes [29–31].

With sufficiently dense, spatially explicit genetic and landscape attribute data, we should be
able to use Bayesian clustering tools to not only hypothesize about the presence of cryptic barri-
ers to gene flow, but also to explicitly identify those habitat attributes contributing most signifi-
cantly to landscape level permeability, even in complex landscapes with relatively subtle
changes in fine-scale habitat attributes. One method to evaluate the effects of fragmentation is
to utilize individual-based estimates of ancestry or assignment relating to each genetic cluster
(i.e., q-values or posterior probabilities) inferred from Bayesian algorithms within landscape
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genetic models. These genetic variables can act as response variables in statistics that evaluate
how landscape parameters influence genetic variation. For example, several studies have uti-
lized genetic surfaces based on ancestry coefficients from Bayesian clustering programs to in-
vestigate how specific landscape features (i.e., unsuitable habitats, roads, and topographic
barriers) impacted gene flow [18], [32]. Spatially explicit Bayesian algorithms (e.g., Geneland,
[33], [34]) may be particularly suited to identifying the effects of fragmentation because they
include spatial coordinates as priors, and thus, can infer spatially explicit boundary areas and,
by extension, spatial isolating features between biologically relevant populations in the land-
scape (e.g., [27], [35], [36]).

The main goal of this study, therefore, was to assess the utility of spatially explicit Bayesian
methods for detection of fine-scale habitat attributes that inhibit gene flow, leading to evidence
of population subdivision, in cryptic, fragmented environments. To accomplish this objective
we focused our research in the highly fragmented, human-dominated, agricultural landscape
of northern Indiana. Our study species within this landscape was the eastern chipmunk
(Tamias striatus), a species that exhibits substantial evidence of fine-scale genetic structure
within our study area and for which a suite of 12 highly polymorphic microsatellites has been
developed [37]. Chipmunks generally select forested habitats or those with adequate tree cover,
so movement (and gene flow) was expected to be facilitated by forest and impeded by unsuit-
able habitats such as agriculture and roads. This study utilized spatially explicit Bayesian
clustering to derive population structure from genotypic and spatial coordinate data for
1,422 eastern chipmunks distributed across 33 distinct 23 km2 study cells in northern Indiana
to address two main objectives. First, we examined if the intervening habitat between pairs of
patches with and without gene flow were characterized by different fine-scale habitat attributes.
Second, we analyzed whether fine-scale land cover features could predict the probability of
population membership calculated via spatially explicit Bayesian clustering methods.

Methods

Study Area and Sampling
Our study area was located in north-central Indiana, within the upper Wabash River basin
(UWB; Fig. 1). The UWB drains over 20% (>20,000 km2) of the state [38] and contains eight
major watersheds. Extensive land use change has occurred since the arrival of European settlers
in the 17th century, primarily from forest to agriculture. Prior to European settlement, forest
cover statewide is estimated to have been 87% [38], [39]. In contrast, forest cover during sam-
ple collection in UWB was about 8% (Fig. 1), compared to 19% statewide. Remaining native
forests (predominantly oak-hickory-maple [Quercus-Carya-Acer]) in the basin are highly frag-
mented with the largest tracts confined to major drainages where floodplains or locally steep
topography prohibits agriculture [38]. Possible corridors are dispersed throughout the region
in various forms, such as small woodlots, fence rows, streams, shrubland, and windbreaks. The
majority of land area was privately owned (96%) with 88% of the area designated
as agriculture.

Sample Collection
Eastern chipmunks were trapped at multiple sampling sites within 5, 18, and 12 of the 35,
23km2 study cells from late May to early August in 2001, 2002, 2003, respectively. Prior to each
field season, all 30 X 30 m pixels in each cell were classified into 1 of 5 land cover categories (ag-
riculture, forest, grassland, wetland, or urban), and then sampled according to a stratified-
random design. To capture the variation within the study area, trapping grids were placed in
sampling sites based on land cover so that natural land cover types (i.e., grassland, forest, and
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wetland; 27.8% of grids each) were disproportionally represented as compared to urban and
agriculture (13.9 and 2.8% of all grids respectively). We randomly chose sampling sites
(i.e., where trapping grids were placed) within patches of habitat by randomly selecting pixels
of an appropriate habitat according to the predefined proportions stated above within each
study cell (n = 35). Forest site selection had an additional step because they were also stratified
according to forest patch size (small< 5 ha; medium 5–50 ha; large> 50 ha), and then were se-
lected according to their log10 area within the three size categories. In total, a maximum of
45 sampling sites were selected per study cell in a summer [38], [40], and each forest habitat
patch generally had 1–3 sampling sites [38]. A full description of study cell and sampling site
selection is described in [38].

Each sampling site within a cell contained a grid of Fitch live traps (2001), Sherman live
traps (2003), or a mixture of both (2002) spaced 15 m apart. Grid dimensions varied by trap
year and patch size. Grids in 2001 were primarily 3 traps x 3 traps, with a few 7x7 grids where
forest patch sizes were large enough to accommodate this arrangement. In 2002 and 2003,
5x5 grids were used whenever space allowed; otherwise 4x4 or 3x3 grids were used. If a forest
patch was not large enough for a 3x3 grid, it was not sampled. Habitat corridors were identified
as treed and non-treed land cover features less than 30 m wide and were fitted with 5x2 grids.
Simultaneous trapping for raccoons was conducted at the edges of the trap grids to limit distur-
bance by raccoons to the small mammal traps.

Traps were baited with black-oil sunflower seeds. A pre-bait period with traps locked open
occurred for 3 days, followed by a 5-day trap-check session, during which traps were checked
twice daily. Each site had one trapping session. All animals were handled according to proce-
dures approved by the Purdue Animal Care and Use Committee under protocol #01–024. Ear
clips were taken from each individual using sterile scissors, and treated with ferric subsulfate in
cases of excess bleeding. Animals were then released, and all tissues were stored in at -80°C
prior to DNA extraction.

Fig 1. Map of study area in northern Indiana showing distribution of study cells. The blue line
corresponds to the Wabash River, and land cover is colored. Right inset demonstrates several sample sites
within each study cell. Left inset shows the study area location in North America and Indiana with counties
outlined. All study cells are labeled by their ID.

doi:10.1371/journal.pone.0117500.g001
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DNA Extraction and Genotyping
We extracted DNA from ear tissue using an ammonium acetate protein precipitation protocol
(modified form the PUREGENE kit; Gentra Systems) followed by an ethanol wash. Genomic
DNA was run on 2% agarose gels stained with ethidium bromide to determine quality and quan-
tity of DNA samples prior to genotyping. Amplification of twelve microsatellite loci [37] by mul-
tiplex PCR took place in 10 uL reactions volumes with 20 ng of template DNA, 0.2 mM of each
dNTP, 1 U of TaqDNA polymerase (NEB) and 2X Thermopol reaction buffer (20 mM Tris-
HCl, 10 mM (NH4)2SO4, 10 mMKCl, 2 mMMgSO4, 0.1% Triton X-100; NEB). Primer concen-
trations were adjusted so that intensities of the final products per multiplex reaction were
approximately equal [37]. The amplification conditions included an initial denaturation step at
94°C for 2 min, then 35 cycles of 94°C for 30 s, annealing temperature [37] for 30 s, 72°C for
30 s, then a final extension of 72°C for 10 min and a soak at 60°C for 45 min. The PCR products
were sized on an Applied Biosystems 3730 automated sequencer, and the genotypes were deter-
mined for all loci in all individuals using the software GeneMapper 3.7 (Applied Biosystems).

Several quality control measures were used to confirm the accuracy of genotypes. A negative
control, two pre-amplified positive controls, and a concurrently amplified positive control
were run on every 96-well plate. To standardize allele calling, ninety-two samples from each
multiplex set were amplified twice, scored independently by two individuals, and examined for
inconsistencies. Additionally, any ambiguous samples or samples with low quality flags accord-
ing to GeneMapper 3.7 were re-amplified and genotyped again at all loci. Any individuals miss-
ing one or more genotypes were re-amplified in the multiplex reaction up to two times (the last
using undiluted genomic DNA) in an attempt to obtain the genotype, which has the added
benefit of confirming previous genotypes at the other loci in the multiplex. If there were still
missing genotypes after re-amplifying the multiplex, we used single locus reactions to attempt
to retrieve the missing genotypes.

Prior to statistical analyses, we used Cervus 2.0 [41] to calculate null allele frequencies as
well as to identify and remove duplicate multilocus genotypes from the dataset. We tested for
linkage disequilibrium and Hardy-Weinberg disequilibrium in Genepop 3.4 [42], [43]. To ob-
tain standard errors<0.01, we increased default parameters to the following: 10,000 dememor-
ization iterations, 2,000 batches, and 10,000 iterations per batch. FIS values and 95% confidence
intervals were calculated after 1000 permutations in R [44] using the package diveRsity (func-
tion “divBasic”; [45]). Finally, we tested for isolation-by-distance (IBD) across the entire study
area using a simple Mantel test in the R package vegan [46] via the “mantel” function.

Statistical Analysis
To investigate the influence of landscape attributes on the creation of genetic structure in eastern
chipmunks, we utilized a hierarchical set of analyses involving five key steps. Each step is de-
scribed in detail in the following sections. Briefly these were: 1) Conduct genetic-based estimation
of populations to delineate population boundaries; 2) Define segments within and between popu-
lations to represent potential movement pathways of individuals; 3) Measure the proportion of
each land cover type and the average probability of population membership in a series of segment
widths to determine the appropriate sampling bandwidth for this system; 4) Utilize regression
models to evaluate the role of fine-scale habitat attributes in genetic structure and the influence of
landscape features on probability of population membership; and 5) Conduct model validation to
assess whether the regression models are effective in predicting the outcomes for a test dataset.

We obtained genetic clusters (hereafter referred to as populations) using the Geneland pack-
age [33], [34] in R to cluster individuals within each of 33 of the 23 km2 study cells sampled for
eastern chipmunks (two of the 35 study cells had too few samples to be analyzed). Genetic
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clustering within each study cell was based on multi-locus genotypes with spatial coordinates
for all eastern chipmunks captured across all sample sites located within that particular study
cell. Bayesian inference is used to estimate the number of populations under the assumption
that spatial dependence exists among individuals, so that as geographical distance increases be-
tween two individuals, the joint probability that they belong to the same population decreases
[34]. The method first estimates the number of populations (k), and then calculates assigning
the probability of membership of individuals to each of k populations.

In initial runs of Geneland, we allowed the number of populations within each study cell to
vary from 1–6 over 200,000 iterations (thinning = 40; 5,000 iterations retained) of the Markov
chain. The number of polygons in the Voronoi tesselation was set close to the number of indi-
viduals, as suggested by the authors [34]. Allele frequencies were allowed to be correlated
among populations, and an uncertainty radius of 100 m was included on spatial coordinates.
The number of populations was estimated by the mode of the posterior distribution of k. Five
independent runs were performed to ensure consistency in the estimation of k. If there were in-
consistencies between runs (e.g., the modal k or individual assignments were different), we
added additional runs with 400,000 iterations (thinning = 80; 5,000 iterations retained). Finally,
Geneland may produce empty populations in addition to occupied populations, a phenomenon
known as ‘ghost populations’ [34]. The authors suggest ignoring these empty populations and
estimating k only from occupied populations, so we adjusted the estimated k accordingly.

After k was estimated, Geneland was run with a fixed k to obtain individual probabilities of
population membership for each individual. The same parameters as when estimating k were
used, except the number of iterations was increased to 400,000 (thinning = 80; 5,000 iterations
retained). A grid of 100x100 pixels bound by the outer sample points was created, and the pos-
terior probability of population membership was calculated for each pixel. This process creates
a grid of posterior probabilities for each study cell, so study cells with strong genetic structure
will have pixels with high posterior probabilities. We used FSTAT 2.9.3 [47] to calculate signifi-
cance (1,200 randomizations) of pairwise FST values among populations of eastern chipmunks
identified within each 23 km2 study cell as well as between study cells to confirm that the popu-
lations exhibited significant genetic differentiation.

To classify habitats within each 23 km2 study cell relative to permeability for gene flow, we
first measured pairwise Euclidean distances between all sample sites contained within each
population identified by Geneland, excluding those populations comprised of individuals sam-
pled at only one sample point (i.e., no within population distance). Within each study cell, we
used distance-based rules to classify line segments connecting sample point as between-
population habitat (defined as occurring between two clearly identified populations) versus
within-population habitat (defined as occurring within a clearly defined population). If two
sample sites belonging to adjacent populations were geographically closer than the median dis-
tance of sample sites within those populations, clustering was assumed to be due to a barrier
other than simple geographic distance. Pairs of sample sites meeting these criteria were classi-
fied as “between” populations, hereafter “B segments”. Alternatively, pairs of sample sites with-
in each of the clearly identified populations on either side of the matrix that most closely
matched the between-population distance were classified as “within” population, hereafter
“W segments”. To avoid problems arising from spatial autocorrelation associated with the sam-
pling of multiple W segments within any given population, we limited the total number of rep-
resentative W segment habitats to 1 from each population joined by a B segment (see Fig. 2 for
a diagram of this process). Populations that contained only one sample site could not produce
W segments; however, this type of population could form one end of a B segment.

Due to the spatial distribution of sample sites within study cells, several (31%) populations
were excluded as being associated with clearly defined B segments because the distance
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between those populations and neighboring populations was greater than the median distance
between sample sites within populations. For these populations, the overall average B segment
length (across all sample cells) was calculated (mean = 776 m, median = 760 m) and used to
classify 1 W segment within each of these populations if possible. The only populations from
which it was not possible to build a W segment were those containing one sample site.

For all segments (B andW), we calculated the proportional area of each of nine habitat
types within each segment for a series of segment widths. The widths were varied to create a set
of models from which we assessed the sampling bandwidth that best reflected the genetic prob-
abilities of population membership associated with the habitat data. The widths we used were:
3 m, 10 m, 25 m, 50 m, 100 m, 200 m, 400 m, and 1,000 m. The 3 m segment width represents
a straight line of minimal width between sample sites. The maximum width of 1,000 m repre-
sents a width beyond the maximum movement likely for an eastern chipmunk if an individual
traveled along the edge of the defined segment. For each width examined, we recorded the area
of each land cover type and the distance between the two sample sites defining the matrix
using ArcGIS 9.2 (ESRI). For each segment, we also calculated the average probability of popu-
lation membership, generated by Geneland, averaging across values for all pixels contained
within the segment at each given width.

All defined segments were used to build a series of regression models designed to 1) identify
differences in habitat characteristics that might exist between B andW segments of varying
widths, and 2) to predict the average probability of population membership (genetic based)
from habitat attributes. Eight fine-scale land cover types (forest, non-treed corridors, roads,
grassland, shrubs, treed-corridors, urban, and water) served as predictor variables within our
regression models. Non-treed corridors were comprised of a mix of grasses, shrubs, and some
trees, but mature trees were not the dominant vegetative cover. The water variable included
open water bodies as well as wetland areas. We excluded proportion of agriculture from all
models due to its high negative correlation with proportion of forest cover. Correlation among
the other habitat variables ranged widely across segment widths (S1 Table). Following

Fig 2. Diagram of point selection for habitat segments between and within genetically identified
populations. The dashed line indicates the median distance between sample points within a population,
averaged across all 70 populations in the study. In this example, the minimum distance between sample
points from populations 1 and 2 is less than the median distance and qualified for analysis. However, the
minimum distance between sample points from population 3 and the others exceed the median distance, so
these did not qualify for a “B” segment. The shaded rectangle represents the segments, B = between
populations andW = within populations.

doi:10.1371/journal.pone.0117500.g002
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calculation of land cover variables, we bootstrap resampled (R function “sample”) our full
dataset (B and W segments and their associated land cover variables) 1000 times to calculate
confidence intervals around all beta estimates as well as evaluate stochasticity within
estimations.

To evaluate which land cover types characterized intervening habitats within or between
populations, we used a set of logistic regression models to identify habitat characteristics that
differed between B and W segments. The response variable was segment category (between ge-
netically defined populations = 0, within genetically defined populations = 1). Stepwise model
selection by AIC was used using the function “stepAIC” in the R package MASS [48]. Stepwise
model selection calculates AIC for the full model, and the change in AIC for exclusion of each
variable is calculated. If excluding a variable reduces AIC, the next model is evaluated with the
remaining subset of variables. Previously excluded variables may be added back to the model if
they lower AIC in a later reduced model. The final model is found when addition or exclusion
of any variable does not improve the AIC of the model. The final models for each segment
width were tested against the null using Chi-Squared tests. Since the same number of B and
W segments was used across widths, the null deviance was equal among models as evaluated in
[49]. We compared residual deviance among segment widths (i.e., highest residual deviance
has the best fit) to determine the best sampling bandwidth for this system.

For our second objective, we used multiple linear regression models with the eight land
cover variables as predictor variables to evaluate if land cover attributes can predict the proba-
bilities of population membership calculated from Geneland (both B and W combined). Like
the logistic regressions, models were run separately on each bootstrap iteration and segment
width (3, 10, 25, 50, 100, 200, 400, and 1000 m). The dependent variable was the average proba-
bility of cluster membership across all pixels within each segment at each given width. We used
an Anderson-Darling test (function “ad.test”) in the R package nortest [50] to test for normali-
ty in our probability data. The Anderson-Darling tests indicated probability values were not
normal (A = 2.992, p< 0.001), so they underwent an arcsine square root transformation to
conform to normality. We used the same stepwise selection by AIC as the logistic regression
models to determine the best fitting model for each segment width. Significance of the final
models for each segment width was assessed (probability of obtaining F-statistic greater than
observed for the given degrees of freedom), and adjusted R2 values were used to assess the seg-
ment width that explained the largest proportion of the variance in probability of population
membership. All regression calculations were performed in MASS.

To test the predictability of our regression models, we resampled 20% of the individuals
within each original bootstrap iteration another 1000 times (total = 1,000,000 iterations per
width). For the logistic regression models used to address our first objective, we calculated the
probability of getting a B segment from the given composition of habitat and final logistic
regression model coefficients for each segment width. A segment was predicted to belong to
the W category if its probability was> 0.5, otherwise the category was B. We then compared
the predicted result to the known category for each segment. To assess the strength of the mul-
tiple linear regression models for predicting probability of population membership, we calcu-
lated the predicted probabilities of population membership and 95% prediction intervals
around each probability using the “predict.lm” function in MASS. If an observed probability
fell within the 95% confidence intervals, the estimate was considered correct.

Results
DNA from 1,448 eastern chipmunks was amplified at 12 microsatellite loci, which yielded
a total of 17,140 of 17,376 (98.6%) possible genotypes. After duplicate genotypes from possible
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recaptures were removed, 1,422 chipmunks remained in the dataset. Test for Hardy-Weinberg
and linkage disequilibrium did not indicate any consistent, significant deviations from expected
values within or across loci, and null allele frequencies were generally low (0.022–0.123). All di-
versity metrics (observed and expected heterozygosities, numbers of alleles observed, allelic rich-
ness by rarefaction, and FIS values) were similar between study cells (1-way ANOVA: FAllelic
richness = 1.112, Fobserved heterozygosity = 1.023; all p� 0.065; S2 Table). A simple Mantel test revealed
significant IBD across the entire study area (r = 0.208, p = 0.003: S1 Fig.), and study cells exhibited
significant genetic differentiation (FST range = 0.012–0.121).

In total, 70 populations were detected in 33 study cells, 8 cells had a single population and
26 had k� 2 (S3 Table). All but one FST value between putative populations were significantly
different from zero (S3 Table), supporting that clusters found in Geneland represent true popu-
lation boundaries. The median distance between sample sites within populations was 1,389 m
versus 760 m between populations. In 23 instances, the pairwise distance between sample sites
within adjacent populations was less than the median within-population distance. Thus,
23 B segments were created for analyses using these pairs of sample sites. There were 47 in-
stances where pairs of sample sites within each of the clearly identified populations closely
matched the average between-population distance. We did not select multiple W segments for
two reasons. First, including more W segments would likely introduce high amounts of spatial
autocorrelation due to the strong IBD within our study landscapes. Second, we sought to pre-
vent an overrepresentation of W segments within our analyses. In total, 47 W segments
(1 W segment per population) and 23 B segments were utilized for our statistical analyses
where each segment represented a single data point within our regression models.

Results from logistic regression model selection indicated that the proportions of forest,
non-treed corridors, and grassland were consistent discriminatory variables for B or W seg-
ment habitats (Table 1). An increase in any of these variables increased the odds that the seg-
ment was within a population. Proportion of treed-corridors remained an important variable
after model selection for 100 m, 200 m, and 400 m widths, and an increase in treed-corridors
was associated with B segment habitats. At the matrix width of 1,000 m, only grassland was re-
tained as an important variable. At this segment width, increases in the proportions of grass-
lands corresponded to W segment habitat. All beta estimates were highly consistent across the
1000 bootstrap iterations within each segment width as evidenced by the small standard errors
and narrow 95% confidence intervals around each estimate. Percent deviance explained varied
from 13.6–28.5% with 200 m (20.8% explained) and 400 m (28.5% explained) being the highest
among the eight segment widths (Table 1).

Similar to the logistic regression analysis, the multiple linear regression retained forest, non-
treed corridors, and grassland in the majority of best fit models (Table 2). The proportion of
grassland within segments was retained in the final models identified for all eight segment
widths and was positively related to probability of population membership in all models. Pro-
portions of forest (3–100 m) and non-treed habitat (3–400m) also increased the probability of
population membership and were retained in the majority of segment widths (Table 2). While
proportion of water was retained in the majority of segment widths (10–200 m), it had a nega-
tive effect on probability of population membership. Standard errors around beta estimations
were very small (0.001–0.822) across all widths and no 95% confidence intervals included zero,
indicating all included variables impacted probability of membership. (The adjusted R2 value
ranged from 0.074 to 0.206 (Table 2) with the highest values occurred at 200 and 400 m, and
rapidly decreased at matrix widths 1000 m.

Collectively, our regressions suggest that the appropriate scale for assessing landscape per-
meability of small mammals like eastern chipmunks may be less than 1000 m in this landscape
because best fit metrics (residual deviance and adjusted R2) peaked at 200–400 m. Therefore,
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Table 1. Final logistic regression models for habitat prediction of segment category in eastern chipmunks after stepwise selection from full
models with response variable 0 = between population segment, 1 = within population segment.

Width Variable Estimate Std. Error Upper 95% CI Lower 95% CI Pr|t| > 0 Residual Deviance p-value

3m 75.112 0.009

Intercept -1.206 0.006 -1.194 -1.218 0.136

Forest 2.580 0.005 2.589 2.571 0.014 % Exp

NTC 20.999 0.054 21.106 20.892 0.106 14.0

Grassland 8.501 0.027 8.554 8.447 0.089

10m 74.186 0.020

Intercept -0.187 0.008 -0.171 -0.204 0.790

Forest 1.869 0.006 1.882 1.858 0.061 % Exp

Grassland 7.765 0.029 7.820 7.709 0.143 13.6

Shrubland -5.878 0.018 -5.843 -5.912 0.177

Water -6.431 0.022 -6.387 -6.475 0.102

25m 72.298 0.006

Intercept -1.023 0.015 -0.994 -1.052 0.264

Forest 2.548 0.008 2.564 2.532 0.022 % Exp

NTC 22.487 0.065 22.614 22.360 0.110 17.3

Grassland 9.586 0.032 9.649 9.522 0.079

50m 73.307 0.003

Intercept -1.491 0.004 -1.482 -1.499 0.053

Forest 2.816 0.005 2.825 2.807 0.009 % Exp

NTC 27.276 0.060 27.393 27.159 0.085 16.1

Grassland 9.970 0.037 10.043 9.898 0.062

100m 68.377 0.002

Intercept -0.753 0.007 -0.739 -0.767 0.376

Forest 2.190 0.005 2.201 2.179 0.066 % Exp

NTC 26.597 0.099 26.792 26.402 0.136 21.8

Grassland 19.122 0.043 19.206 19.038 0.024

TC -24.873 0.063 -24.749 -24.996 0.062

200m 62.830 <0.001

Intercept -0.484 0.008 -0.469 -0.499 0.544

Forest 2.265 0.005 2.274 2.256 0.111 % Exp

NTC 39.698 0.112 39.918 39.478 0.072 28.1

Grassland 21.282 0.037 21.354 21.209 0.014

TC -36.500 0.092 -36.349 -36.710 0.026

Shrubland -7.515 0.021 -7.474 -7.555 0.218

Water -7.015 0.049 -6.918 -7.112 0.119

400m 62.455 <0.001

Intercept -0.520 0.006 -0.507 -0.532 0.541

Forest 2.701 0.005 2.711 2.690 0.085 % Exp

NTC 54.038 0.139 54.312 54.765 0.023 28.5

Grassland 18.304 0.044 18.390 18.218 0.019

TC -53.261 0.105 -53.057 -53.467 0.010

Shrubland -7.813 0.013 -7.788 -7.838 0.157

Water -6.441 0.029 -6.385 -6.497 0.158

1000m 74.491 0.007

Intercept -0.006 0.014 0.021 -0.033 0.467

Grassland 13.146 0.043 13.230 13.063 0.020 % Exp

(Continued)
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validation was conducted on 100, 200, and 400 m for both logistic and multiple linear regres-
sions (1,000,000 subsampled populations, 14,000,000 individuals total for each segment
width). Assignment of the correct segment category (B or W) for each validated width occurred
in 98.01–99.02% of the validation individuals within the logistic regression (14,000,000 individ-
uals total; Fig. 3). In contrast, prediction intervals for 56.35–58.17% of individuals encom-
passed the observed values (Fig. 3). The drastic differences between the validations in logistic
(98.01–99.02%) and multiple regression models (56.35–58.17%) likely stems from the defini-
tion of how a predicted value was deemed correct. Multiple regression prediction intervals
were smaller than 0.5, the cut-off for the logistic regression, so the stringency in the 95% pre-
diction intervals may explain the lower performance in the multiple regressions.

Discussion
Although genetic drift as a consequence of isolation by distance likely contributes to variance
among populations of eastern chipmunks in our study area, genetic differentiation clearly is
not simply a function of spatial proximity in this landscape. We observed breaks in gene flow
at distances of only a few hundred meters, well within the capabilities of chipmunks to traverse
and less than the median distance between sample sites within populations. The results of our
analyses indicate that probabilities of population membership identified across our study land-
scape likely reflect fine-scale physical and biological barriers to genetic exchange in this envi-
ronment. Thus, landscape attributes that influence the successful movement, survival, and
reproduction of individuals dictate the spatial distribution of populations across our study
area, which is characterized by fine-scale habitat features representing pockets of habitat where
gene flow readily occurs and gaps where gene flow is restricted. However, two sources of unex-
plained variance in our analyses that potentially could limit our ability to interpret the perme-
ability of the various landscape attributes we examined are 1) the lack of data on other
biological factors, such as predators and competitors, that may be associated with those attri-
butes, and 2) lack of micro-habitat data (e.g., amount of woody debris, ground cover, or aver-
age DBH of trees per patch) which may affect the distribution of eastern chipmunks in the
study area.

Results from the logistic and linear regression models indicated that forest, non-treed corri-
dors, and grasslands are habitats that are contributing to gene flow and intrapopulation struc-
ture. Both the logistic and linear regression identified forest, non-treed corridors, and
grasslands as important drivers of genetic structure across the majority of segment widths
(3–400 m and 3–200 m in logistic and multiple regression respectively). We also observed little
variation in the positive beta estimates in the 1000 bootstrap iterations, which provides robust
evidence for the relationship between the land cover variables and whether segments were

Table 1. (Continued)

Width Variable Estimate Std. Error Upper 95% CI Lower 95% CI Pr|t| > 0 Residual Deviance p-value

14.8

All metrics were calculated from the 1000 bootstrap iterations of each model, and parameters were included if stepwise AIC retained them in at least 900

bootstrap iterations. Shown for each segment width are: the selected variables, mean beta estimates, standard errors with 95% confidence intervals, and

average p-values for each beta estimate (Pr|t| > 0). Statistics for the overall models include model residual deviance (null deviance = 87.350 for all

models), average percent deviance explained by the model (% Exp), and p-value of the Chi-squared test of significance for the model. Land cover

abbreviations are: NTC = non-treed corridor and TC = treed corridors.

doi:10.1371/journal.pone.0117500.t001
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Table 2. Final multiple regression models for habitat composition prediction of probability of population membership for eastern chipmunks
collected in northern Indiana after stepwise selection.

Width Variable Estimate Std. Error Upper 95% CI Lower 95% CI Pr|z| > 0 Adjusted R2 Model p-value

3m 0.150 0.028

Intercept 0.627 0.001 0.629 0.626 <0.001

Forest 0.211 0.001 0.213 0.209 0.025

NTC 1.650 0.004 1.657 1.643 0.058

Grassland 0.812 0.001 0.814 0.809 0.117

10m 0.127 0.013

Intercept 0.923 0.001 0.924 0.922 <0.001

Forest 0.272 0.001 0.273 0.270 0.024

NTC 1.622 0.004 1.630 1.615 0.053

Grassland 0.819 0.822 0.817 0.002 0.119

Water -0.840 0.002 -0.835 -0.844 0.086

25m 0.143 0.009

Intercept 0.929 0.001 0.931 0.927 <0.001

Forest 0.266 0.001 0.268 0.265 0.028

NTC 1.846 0.005 1.856 1.837 0.081

Grassland 0.837 0.001 0.840 0.834 0.048

Water -0.876 0.003 -0.870 -0.883 0.077

50m 0.158 0.005

Intercept 0.943 0.001 0.944 0.942 <0.001

Forest 0.219 0.001 0.220 0.218 0.063

NTC 1.641 0.023 1.687 1.595 0.099

Grassland 1.018 0.001 1.021 1.015 0.012

Water -0.944 0.002 -0.940 -0.948 0.053

100m 0.147 0.007

Intercept 0.919 0.001 0.920 0.918 <0.001

Forest 0.245 0.001 0.246 0.244 0.040

NTC 1.784 0.003 1.790 1.777 0.082

Grassland 0.930 0.001 0.932 0.928 0.011

Water -0.758 0.002 -0.755 -0.761 0.109

200m 0.186 0.004

Intercept 1.070 0.001 1.072 1.068 <0.001

NTC 2.387 0.007 2.400 2.373 0.089

Grassland 1.375 0.002 1.379 1.371 0.002

TC -2.793 0.007 -2.779 -2.807 0.027

Water -0.789 0.002 -0.785 -0.793 0.097

400m 0.206 0.001

Intercept 1.058 0.001 1.059 1.057 <0.001

NTC 3.410 0.009 3.429 3.392 0.014

Grassland 1.418 0.002 1.421 1.415 0.001

TC -4.391 0.006 -4.380 -4.402 0.002

1000m 0.074 0.025

Intercept 1.068 0.002 1.071 1.064 <0.001

(Continued)
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B or W. Overall, the consistency of variable selection by both statistical methods and precise
beta estimates suggest that forest, non-treed corridors, and grasslands are important to gene
flow in this agriculturally dominated landscape.

Forest, as the preferred habitat of eastern chipmunks, was expected to be highly associated
with the probability of population membership. Therefore, if a high proportion of the land
cover between two points was forest, the area was more likely to be within rather than between
populations. Conversely, we expected grassland, a habitat type generally thought to be rather
impermeable to small forest dwelling mammals due to its openness and relatively unprotected
structure, to be negatively associated with gene flow. For example, [51] reported that eastern
chipmunks rarely moved between forest and grassy fields, and [52] claimed that fencerows
with only grassy vegetation were inhospitable to chipmunks. However, grassland was the only
variable retained in models for all eight segment widths, with more grassland associated with
habitat matrix within populations and increased probabilities of population membership.
Although not an intuitive result, there is some evidence that eastern chipmunks prefer the
forest-grassland ecotone to take advantage of a greater variety of food [53]. Another possible
explanation for grassland promoting gene flow is some organisms move through inhospitable
habitat quickly to reduce predation risk (e.g., [54–55]). Such compensatory movements [56]

Table 2. (Continued)

Width Variable Estimate Std. Error Upper 95% CI Lower 95% CI Pr|z| > 0 Adjusted R2 Model p-value

Grassland 0.990 0.002 0.993 0.986 0.005

All metrics were calculated via 1000 bootstrap iterations (average across 1000 iterations or 95% confidence intervals around beta estimates). Each

segment width includes the selected variables, coefficient estimates, standard errors, 95% confidence intervals, p-values for each parameter, model

adjusted R2, and p-value of the overall model. Variables that had an average p-value < 0.05 are given in bold. Note: NTC = non-treed corridors and

TC = treed corridors.

doi:10.1371/journal.pone.0117500.t002

Fig 3. Proportion of correct validations for 100, 200, and 400m segment widths calculated based on
1,000,000 datasets. For logistic regressions (light grey), a correct validation occurred when a predicted value
of a segment matched the classification of B (0) or W (1) in the observed dataset. A correct validation in the
multiple regression (dark grey) was defined as when the observed probability of population membership for a
segment fell within the 95% predicted intervals produced from the validation dataset. Logistic regressions
were highly accurate with the majority of segments being correctly classified as B or W (98.01–99.02%) while
multiple regressions had lower success (56.35–58.17%). Error bars correspond to 95% confidence intervals
calculated across 14,000,0000 validated segments.

doi:10.1371/journal.pone.0117500.g003
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would predict that inhospitable habitats would not act barriers, and could explain why grass-
lands and non-treed corridors were found to promote gene flow.

Like grassland, non-treed corridors, a land cover variable thought to be unsuitable, also
were identified as an important habitat attribute for predicting within population matrix and
probability of population membership in both sets of models. A translocation study [57] dem-
onstrated that chipmunks quickly left non-treed corridors after release and moved toward
a forest patch, indicating an aversion to such habitat. Although habitat avoidance could suggest
that dispersal does not occur in non-treed corridors, the mixture of grasses, shrubs, and trees
within such areas may provide an abundance of resources for chipmunks. Thus, eastern chip-
munks may find enough protection from predators and the elements in this habitat type to
move freely between forest patches, even if individuals have no inclination to remain long-
term in such habitat. Vertical stratification (herbs, shrubs, and trees) has been shown to have
a positive influence on chipmunk abundance with shrub cover in particular being identified as
a critical habitat element for maintenance of chipmunk populations [58]. Indeed, the impor-
tance of shrubs as a seasonal food source for chipmunks also has been noted [53], [59], even
though dense, short vegetation may inhibit visual range [60].

In terms of the identification of habitat attributes that restrict gene flow of eastern chip-
munks in this agricultural landscape, few variables stood out as clear barriers, although two
variables of interest were treed corridors and water. Increases in the proportion of treed corri-
dors increased the odds of a habitat being classified as between populations at 100–400m, and
was statistically unimportant for predicting the probability of population membership except
at 200 and 400 m. This result was very surprising as in this landscape we expected treed corri-
dors to contribute similarly to genetic structure as did forests, since this land cover is simply
narrow strips of forest. Instead, treed corridors seemed to function as a weak barrier to gene
flow between populations in the handful of models in which it was selected. It is possible that
a small number of eastern chipmunks could establish territories in these corridors and reside
within them. Chipmunks are highly territorial, so these strips of treed corridors, if occupied,
may act as barriers by stopping dispersing individuals and preventing them from reaching
other populations. Additionally, predator species may be attracted to treed corridors and use
these areas as concentrated feeding grounds, in which case this habitat type could become
a population sink. Visual inspection of B segment areas revealed multiple instances of treed
corridors occurring perpendicular to the segment between populations, often surrounded by
agricultural fields. These perpendicular treed corridors may direct chipmunks to follow hori-
zontally (with respect to the forest patches) for a time, and then turn back to the patch of origin
instead of travelling on to a new patch. Alternatively, the association of treed corridors with
large tracts of agriculture also may serve to falsely portray the role of treed corridors as isolating
mechanisms by masking the underlying effect of agriculture. Further study of the role that
treed corridors play in this landscape will be necessary to understand the biological basis for
the observed relationship.

Interestingly, we did not detect an effect of roads on gene flow despite roads being implicat-
ed as barriers to dispersal for many species [61–64] including eastern chipmunks [62], [65],
[66]. For example, [65] found that highways as wide as 90 m were as effective barriers to chip-
munk movements as bodies of water twice as wide, and individual chipmunks seem to avoid
the mowed roadside verge as well as the road surface regardless of traffic patterns [67]. Howev-
er, road habitat was not selected as a variable in logistic or multiple regression models in any
segment widths. Although we expected to detect a more pronounced effect of roads on gene
flow, research also has demonstrated that chipmunks may be less averse to small dirt or gravel
roads than to wider paved roads, some of which occur in our study areas [65]. Furthermore,
barrier effects of roads combined with intrinsic population characteristics (e.g., high effective
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population sizes) may not yield sufficient genetic differentiation to constitute separate popula-
tions, even when field studies confirm reduced movement [68], [69]. Thus, while our analyses
do not suggest that roads reduce gene flow and increase genetic differentiation between popula-
tions, more intensive sampling targeted at forest highway interfaces of differing types may be
needed to clarify the specific effects of roads on gene flow in highly fragmented,
agricultural landscapes.

One of the primary benefits of landscape genetics for studies of fragmentation is the use of
the powerful analytical tools available to population geneticists to evaluate the complex nature
of relationships between species ecology and landscape attributes. Bayesian algorithms are ex-
tensively used for population delineation in population and landscape genetics, but disentangl-
ing fine-scale processes can be difficult to interpret with a broad-scale analysis. In particular,
the number of inferred clusters can be overestimated if subtle barriers [70] or isolation-by-
distance [71] occur within a study area. Despite potential problems with inferring fine-scale
processes via Bayesian clustering algorithms, our approach shows that they can be highly useful
in fine-scale analyses even in the presence of confounding variables (e.g., high spatial autocor-
relation). For example, outputs from Bayesian algorithms can be utilized to create genetic sur-
faces (e.g., [17], [32], [72], [73]), which can then further aid in population delineation as well as
be used as genetic response variables within landscape genetic statistics (e.g., Mantel tests, re-
gression, or constrained ordination). This study highlights that Bayesian programs can be uti-
lized for many more applications beyond population assignment, and when paired with
appropriate statistics like the regressions utilized in this study, can provide powerful evidence
of how fragmentation impacts gene flow.

Another advantage of our approach was the ability to utilize regressions to evaluate both the
influence of land cover variables on segment category type and the probability of population
membership across the study area. Regression models provided the relative contribution of
each habitat attribute as a barrier or facilitator of gene flow in the landscape (regression coeffi-
cients and measures of variance) and eliminated those that were unimportant for gene flow.
Regression coefficients are particularly useful because unlike correlation coefficients in statis-
tics like Mantel tests (see [74]), they can be used to predict how focal landscape variable influ-
ence genetic variation (as seen in the validation datasets). Furthermore, our approach
suggested that the ideal sampling bandwidth for eastern chipmunks in this landscape was in
segments approximately 400 m wide because performance (i.e., model fit statistics) occurred at
400 m wide for both logistic and multiple regression models. Landscape variables can have var-
iable effects according to spatial scales (e.g., [15], [16], [75]), so our method provides a way to
disentangle multiple influences on gene flow across spatial scales. Taken together, this ap-
proach is highly useful for informing management about how to maintain connectivity in frag-
mented landscapes because it can predict how landscape variables impact gene flow without
a priori parameterization and explicitly incorporates spatial scale.

Fine-scale landscape genetic analyses such as the one undertaken in this study have great
potential to contribute to conservation and corridor planning because they provide evidence
how organisms move in heterogeneous landscapes. In particular, genetic data is often paired
with individual-based movement analyses (e.g., [76–78]) that identify paths that organisms are
most likely to travel based on costs assigned to different landscape features within a landscape.
However, the accuracy of most individual-based modeling approaches rely heavily on the
input cost values [79–81], which are generally derived as estimates provided by the investigator
[81], with expert opinion and literature-derived information most often serving as the basis
for assigning cost values [79], [81]. Several authors [81], [82] have argued that two main
faults of individual-based modeling approaches is that we may never know the true cost of dis-
persal, and that cost values based on expert opinion may be based on the wrong type of data
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(e.g., presence/absence of habitat use rather than dispersal cost). If cost values are inaccurate
for a given species, the resulting predictions of movement behaviors will be meaningless or
misleading, the repercussions of which could lead to ineffective or detrimental conservation
and management efforts. As such, the assignment of initial cost values is extremely important,
and a pressing question for those who utilize all forms of individual-based modeling is how to
most accurately assess cost values for habitats within a landscape.

The concept of using genetic information to inform individual-based analyses began to
emerge due to concerns over improperly parameterized cost values. For example, recent studies
have employed intense computational methods involving hundreds to thousands of least cost
paths with different expert-derived cost values to reveal the parameter set that best matches
a set of observed genetic parameters [82–84]. Also, methodologies such as [85] have recently
been developed to help optimize and develop unbiased cost values for landscape genetic stud-
ies. Our approach represents another potential method to parameterize landscapes without in-
cluding human bias because no a priori assignment of cost values is needed. Instead, regression
coefficients derived from models developed in independent landscapes like our study could
also be used to parameterize resistance surfaces. Once developed, genetically informed
individual-based models could be used for a variety of purposes such as comparison to other
parameterization (e.g., expert opinion, presence-absence) or optimization ([84], [85]) methods,
mapping possible movement corridors, estimating how functional connectivity may change
under future land use alterations, or predicting changes in ecological and genetic parameters
associated with changing land use practices.

Elucidating the complex relationships between landscape features and gene flow continues to
be important in our human-dominated ecosystems as conservation experts try to plan for future
challenges by mitigating isolating factors and improving connectivity of natural populations. In
this study, utilizing both spatially explicit genetic and landscape attribute data, we have been suc-
cessful in identifying landscape elements that affect gene flow within and among eastern chipmunk
populations inhabiting a highly fragmented agricultural ecosystem. The results of our analyses are
intriguing, given that the estimated permeability of both grasslands and treed corridors to chip-
munk movement were counterintuitive and thus, point to the need for further study of how this
species actually utilizes these landscape attributes. Ultimately, the approaches outlined herein
can be extended to a variety of species and the results utilized to more accurately parameterize
individual-based models for application to a wide variety of conservation and management issues.
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S1 Table. Correlation coefficients and standard deviation of landscape features found in
the segments between populations (below diagonal) and within populations (above diago-
nal) across the eight matrix widths. Abbreviations are as follows: ag = agriculture, ntc = non-
treed corridors and tc = treed corridors.
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S2 Table. Microsatellite locus information for eastern chipmunks sampled in northern In-
diana during 2001–2003 by study cell. Sample size (N), number of alleles (Na), observed (Ho)
and expected heterozygosity (He), allelic richness (AR), and FIS with the upper and lower
95% confidence intervals are listed per locus and sample cell. Bold FIS values indicate a signifi-
cant deficiency of heterozygotes.
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S3 Table. Number of genetic clusters estimated from Geneland (k) and FST for each study
cell. Global FST values were calculated for each study cell as well as pair-wise FST values
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with IBD (r = 0.208, p = 0.003).
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