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Abstract
The progressive degeneration of the dopamine neurons of the pars compacta of substantia

nigra and the consequent loss of the dopamine innervation of the striatum leads to the im-

pairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the

disease should protect and regenerate the dopamine neurons of the substantia nigra and

the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic

Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons.

The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in

part, the dopamine innervation of the striatum. Here we explored whether the over-

expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 re-

ceptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally

injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with

the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered

i.p. during 4½months via osmotic pumps and the BDNF gene transfection into nigral cells

using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively trans-

fect the dopamine neurons via the high-affinity neurotensin receptor expressed by these

neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months
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old), immunohistochemistry assays were made. The over-expression of BDNF in rats re-

ceiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the

muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was as-

sociated with the recovery of the nigral neurons, the dopamine innervation of the striatum

and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of

BDNF in dopamine neurons associated with the chronic activation of the D3 receptors ap-

pears to be a promising strategy for restoring dopamine neurons in Parkinson’s disease.

Introduction
Parkinson´s disease is a progressive neurodegenerative disorder characterized clinically by bra-
dykinesia, reduced motor coordination, muscle rigidity, and gait dysfunction, among other al-
terations of motor behavior. The clinical decline reflects ongoing nigrostriatal dopaminergic
degeneration [1,2]. Levodopa continues to be the best treatment for the disease, because it elim-
inates most of the motor symptoms; however, it does not prevent the progressive loss of dopa-
mine neurons and produces, after 4–5 years of treatment, dyskinesia. The progressive neuronal
degeneration ultimately results in severe motor, mental and functional disability. This suggests
that a therapeutic strategy preventing neuronal death and promoting growth and regeneration
would be a valuable approach to control the disease [3]. Several neurotrophic factors have been
evaluated as potential neuro-protective agents [4–6]. The trophic effect of BDNF on dopamine
neurons is well established [7,8]. BDNF is expressed by dopamine neurons of substantia nigra
pars compacta where it plays a critical role in functions such as cell proliferation [9], cell sur-
vival [10], synaptic plasticity [11], dopamine release modulation [12,13], neuronal firing [14],
striatal re-innervation [15], dopamine phenotype induction [8,16] and dopamine D3 receptor
expression [17,18]. In addition, nigral dopamine neurons degenerate in the absence of BDNF,
suggesting its involvement in the pathogenesis of Parkinson´s Disease [19,20]. The reduced ex-
pression of BDNF in nigral neurons in Parkinson´s disease patients and in rats with lesions of
the nigrostriatal innervation also suggests its participation in the pathogenesis of the disease
[19,21,22]. Its reduction in the disease is not only because of the loss of the dopamine neurons
but also because the remaining neurons express less BDNF [19].

The activation of dopamine D3 receptors also has trophic effects. It increases the neurogen-
esis in the subventricular zone and neostriatum in the adult rat brain via rapidly amplifying
progenitor cells [23,24]. The activation of D3 receptors stimulates mitogenesis [25–27] and in-
creases the arborization of the dendrites of mesencephalic dopaminergic neurons [28]. The re-
duced expression of this receptor in Parkinson´s disease patients and in rats with lesions of the
nigrostriatal innervation also suggests its participation in the pathogenesis of the disease
[29,30]. In addition, the selective activation of dopamine D3 receptors regenerates the nigros-
triatal pathway, thus improving some aspects of motor behavior [31].

BDNF mediates, in part, the trophic effect of the activation of dopamine D3 receptors [32],
in turn, BDNF increases the number of D3 receptors [17,18]. In addition, dopamine increases
the number of TH+ neurons isolated from the cerebral cortex of 14–15 day-old embryos, and
BDNF markedly increases the enhancement in the number TH+ neurons generated by dopa-
mine [8]; it is possible that this effect was mediated by D3 receptors because they first appear in
embryos of about the same age [33]. There exists then the possibility that BDNF potentiates
the trophic effect of the activation of dopamine D3 receptors in the adult brain. We explored
here this possibility by examining whether BDNF potentiates the regeneration of nigrostriatal
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innervation brought about by the activation of D3 receptors [31]. Preliminary results of this
work have been presented elsewhere [34]

Materials and Methods

Ethics Statement
All procedures were carried out in strict accordance with the current Mexican legislation,
NOM-062-ZOO-1999 and NOM-087-ECOL-1995 (SAGARPA), based on the Guide for the
Care and Use of Laboratory Animals, NRC. The CINVESTAV Institutional Animal Care and
Use Committee approved our procedures for animal use (protocol #0121–03). All efforts were
made to minimize animal suffering. Anesthetics (chloral hydrate anesthesia, 300 mg/kg, i.p.)
and analgesics (ketoprofen 1%, 0.2 ml i.p.) were used when appropriate under the direction of
a veterinarian to alleviate potential pain and distress and were given prior to euthanasia with
the transcardial perfusion with 120 ml of 0.9% saline, followed by 300 ml of
4% paraformaldehyde.

Experimental Protocol
Male adult Wistar rats were housed individually when appropriate during the recovery from a
surgery, two weeks after the surgery they were housed in groups of four with water and food ad
libitum, under an inverted dark-light cycle (12:12 h). The animals were 1 year old at the begin-
ning of the experiment (400g—500g of body weight). Gait analysis, rotarod performance, open
field and EMG activity were tested before the lesion as initial parameters (normal condition) of
the motor coordination, postural balance and muscle rigidity of each rat in order to follow up
their performance throughout the experiment. The rats were first tested in the rotarod and
trained to remain on the rod at 5 rpm and 10 rpm for 2 min, discarding those that after three
consecutive days were unable to stay on the rod; only 40 rats out of 48 met the criterion. Eight
of these rats were randomly assigned to an intact group. The remaining 32 rats were injected
with 6-OHDA (6-hydroxydopamine hydrochloride; Sigma, St., Louis, MO) into the striatum
and after one month the rats that did not reduce their rotarod performance [35] more than
50% were discarded. Only 24 rats fulfilled this criterion, they were divided into three groups of
8 rats each one: 1) treated with the D3 receptors agonist associated with the transfection of
BDNF gene (7-OH-DPAT + BDNF), 2) treated with the D3 receptor agonist (7-OH-DPAT),
3) treated with saline. Some animals died for several reasons. The deaths were aleatory and
occur throughout the 12 months of the experiment. Apparently, they were not associated with
the experimental procedure because it included intact rats. Finally, the groups were as follows:

Fig 1. Illustration of the experimental design. Arrows with asterisk indicate an evaluation of the motor behavior, which included gait analysis, rotarod
performance and ambulatory activity in the open field. Double asterisks indicate EMG recordings. Rats were 12 months old at the beginning of
the experiment.

doi:10.1371/journal.pone.0117391.g001
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7-OH-DPAT + BDNF (n = 5), 7-OH-DPAT (n = 5), Saline (n = 6) and intact (n = 6). Fig. 1
shows the experimental design. The treatment (7-OH-DPAT infusion plus the BDNF transfec-
tion) started 5 months after the unilateral nigrostriatal lesion, when rats were middle age
(17-months-old). Motor performance tests were evaluated every 6 weeks during of the treat-
ments (4½ months,) and two months after the end of the D3 agonist or saline infusion (end of
treatment), to test the persistence of the effects. It is important to note that the BDNF expres-
sion persist until the time of sacrifice. The Immunohistochemical analysis was carried out at
the end of the 2 months after treatment when rats were 2 years old.

6-OHDA Lesion
The dorso-medial intra-striatal injection sites were chosen in an effort to avoid the nonspecific
chemical damage to the medium-sized spiny neurons produced by 6-OHDA [36] in the dorso-
lateral striatum, which could, potentially, prevent the reinervation of this area, predominantly
receiving afferencies from the sensorimotor cortex [37,38]. Anesthetized rats were mounted on
a stereotaxic apparatus (Kopf model 201025R), then 6-OHDA was slowly injected (1μL/3 min)
via a 30-G injection needle connected through a polyethylene tube to a 10 μL Hamilton syringe
driven by a MicroSyringe Pump Controller (World Precision Instruments). The neurotoxin
was injected into two sites (10 μg/μL/site) in the right striatum according with the following co-
ordinates: AP = +1.4, ML = +2.2, DV = -5.2; AP = +0.9, ML = +3.0, DV = -4.2. The coordinates
AP and DV were from Bregma according to the Atlas of Paxinos [39] and DV was from the
dura mater. The 6-OHDA dissolved in saline solution containing 0.1% ascorbic acid was kept
on ice (4°C) and protected from light to minimize oxidation. After ending the injection, the
needle remained in its place for 5 min to prevent reflux and to allow for diffusion of the toxin.
Once the scalp wound was sutured, the rats were housed individually, and received Terramycin
(Pfizer) 2 g/L dissolved in the drinking water for two weeks.

Administration of the D3 Agonist
The D3 agonist 7-OH-DPAT (Sigma, St., Louis, MO) was systemically administered [40]
(0.1 mg/kg/day) via osmotic pumps (Alzet micro-osmotic pump, model 2006) implanted
in the abdominal cavity. The pumps were implanted under chloral hydrate anesthesia
(300 mg/kg, i.p.) and aseptic conditions. The D3 agonist was infused during 4 1/2 months, re-
placing the pumps every 1 ½ months. The treatment started when the rats were 17 months old
and finish when they were 21 ½ months old.

BDNF-flag transfection by NTS-polyplex
The plasmid phDAT-BDNF-flag (10.511 kbp) that codes for BDNF-flag was transfected into the
dopamine neurons using the neurotensin (NTS)-polyplex nanovector [41]. This transfection is
highly selective for dopamine neurons because the NTS-polyplex nanovector is endocytosed via
the high affinity neurotensin receptor present only in the dopamine neurons [3,42–44], and also
because the BDNF-flag gene expression is under the control of the human dopamine transporter
gene promoter (hDAT) [3,45,46]. The surgical procedure for the transfection was as that for the
6-OHDA injection. The NTS-polyplex (2 μL of the phDAT-BDNF-flag/NTS-carrier solution)
was injected slowly (0.1 μL/min), just above (in the border) of the substantia nigra pars compacta
to avoid the mechanical lesion produced by the injection needle. The injection site was localized
at the following coordinates: AP = -5.0, ML = +1.9, DV = -7.0 as described earlier [41]. The coor-
dinates AP and DV were from Bregma according to the Atlas of Paxinos [39] and DV was from
the dura mater. Retention and retardation micro assays [42,44] were used to determine the opti-
mummolar ratios of NTS-polyplex components, which were 30 nM plasmid DNA; 30 μM
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karyophilic peptide; and 1.17 μMNTS-FP-PLL (a conjugate of NTS, a fusogenic peptide and
poly-L-lysine) [44,45]. For these molar ratios, the NTS concentration was 1.17 μM, as deter-
mined previously with 125I-NTS [45]. Taking into account this NTS concentration and the injec-
tion volume (2 μL), the NTS-poliplex dose at the time of dosing was 2.34 pmol for rats of 550 g
of mean body weight. In accordance with the amount of plasmid DNA, the dose was 419.6 ng of
phDAT-BDNF-flag.

Immunohistochemistry
Twelve months after the 6-OHDA lesion and under chloral hydrate anesthesia (300 mg/kg,
i.p.), the rats were perfused transcardially with 120 ml of 0.9% saline, followed by 300 ml of
4% paraformaldehyde. After that, the brains were removed and stored at 4°C in 30% in sucrose
for cryoprotection. Slices (50-μm) from the whole brain were obtained using a freezing sliding
microtome (Leica; Heidelberg, Germany), and collected in phosphate-buffered saline (PBS)
pH 7.4. To deplete endogenous peroxidase, the slices were incubated in a peroxideisopropanol
solution (0.3%–10% in PBS) for 30 min at room temperature (RT). Slices were permeabilized
with a solution of 0.5% Triton X-100 in PBS 4 times for 10 min at RT. To block unspecific
binding sites, slices were incubated in a solution of PBS containing 0.5% Triton X-100 and
10% normal goat serum for 1 hour at RT. Immediately, the slices were incubated with a rabbit
anti-tyrosine hydroxylase (TH) polyclonal antibody (1:1000 dilution; Chemicon International;
Temecula, CA, USA) for 48 h at 4°C. Next, the slices were washed three times with PBS and in-
cubated with a goat anti-rabbit IgG biotinylated (1:200 dilution; Vector Laboratories; Burlin-
game, CA, USA) for 2 h at RT. The peroxidase enzyme was detected with diaminobenzidine
using the VectaStain Elite kit (Vector Laboratories). The nigral tyrosine hydroxylase-positive
(TH+) neurons were visualized with a microscope (Leica DM1000LED) using a digital DC300
camera (Leica; Cambridge, UK) at 10x. The digital images of the substantia nigra pars com-
pacta were projected onto a monitor screen. The substantia nigra pars compacta was delimited
considering the following anatomical references: the accessory optic tract in the medial flank,
the cerebral peduncle basal part in the lateral flank, the subparafascic nucleus in the superior
side and by pars reticulate in the inferior side [39]. The TH+ cells were counted within this
area, both in the intact and injured side, using the Qwin Pro Program (Leica Imaging System
Ltd.; Cambridge, UK). In our analysis, we applied the principles of the classical stereology tech-
nique, but instead of representative sections of the plane, we counted the total number of the
TH+ neurons in the whole slice, in order to increase the sample and reduce the statistical error.
Slices were taken every 200 μm along the rostro-caudal extension of the substantia nigra pars
compacta (10 to 12 slices; n = 4 rats per group). This analysis was unbiased because the person
in charge of cell counting was blind with respect to the experimental treatment of the rat.

Optical Densitometry
The TH immunoreactivity was visualized using a microscope (Leica DM1000LED) with 1.25x
objective and a digital camera (Leica DFC290HD). The optical density (OD) of the TH-positive
fibers in the striatum was estimated analyzing the TH+ images using ImageJ software (NIH;
Bethesda, MD, USA http://rsb.info.nih.gov/ij/). We calibrated the OD using built-in functions
of the software (http://imagej.nih.gov/ij/docs/examples/calibration/). We converted the
TH+ images to 8-bit grayscale, without rescaling. The OD of the striatum was assessed in three
areas: dorsomedial, dorsolateral and ventral, in 12–14 slices taken every 200 μm along the
rostro-caudal extension of the striatum, from AP = +1.5 to AP = -1.2. The coordinates AP and
DV were from Bregma according to the Atlas of Paxinos [39] and DV was from the dura
mater. [39]. The OD of substantia nigra pars reticulata was assessed in 10–12 slices along its
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rostro-caudal extension. The substantia nigra reticulata was defined as the area below the sub-
stantia nigra compacta, delimited by the accessory optic tract in the medial side and the cere-
bral peduncle in the lateral and inferior side [39]. The OD of the corpus callosum was taken as
background for the striatum and the anterior pretectal nucleus for pars reticulata. To quantify
the shrinkage of the striatum produced by the 6-OHDA, the total area analyzed of the lesioned
striatum in pixels was compared with the total area in pixels of the intact striatum. The total
area was calculated as the sum of the pixels determined in every slice of that striatum.

Retrograde Labeling of Nigral Neurons
Tetramethylrhodamine (Rho) conjugated with dextran amine (10,000 MW, lysine fixable; Mo-
lecular Probes; Eugene, OR, USA) was injected (1μL; 0.1 μM/μL) into the striatum (AP = +2.0,
ML = +1.9, DV = -5.0), as a retrograde fluorescent tracer, seven days before sacrificing the ani-
mals. The coordinates AP and DV were from Bregma according to the Atlas of Paxinos [39]
and DV was from the dura mater. The fluorescence of Rho was detected with a confocal micro-
scope (Leica TSC SP8) with 20X objective at 568–585 nm excitation—emission wavelengths.
After projecting the digital images of the fluorescent-labeled nigral neurons onto a monitor
screen, we counted manually the number of TH+ cells showing the retrograde fluorescent trac-
er in 10–12 slices per rat taken every 200 μm along the rostro-caudal extension of the substan-
tia nigra pars compacta.

Immunofluorescence
Slices were permeabilized with a solution of 0.5% Triton X-100 in PBS 4 times for 10 min at
RT, then incubated for 30 min at 37°C in PBS containing 0.5% Triton X-100 and 10% BSA (to
block unspecific binding sites). Then, exposed for 48 h at RT to the rabbit polyclonal anti-
tyrosine-hydroxylase antibody (1/1000, Millipore, Billerica, MA, USA), together with the
mouse monoclonal anti-flag antibody (1/300, Sigma-Aldrich Co., St. Louis, MO, USA). Then,
the slices were incubated for 2 h at RT with the suitable secondary antibodies: CY5 goat anti-
rabbit IgG (1/200; Zymed laboratories, San Francisco, CA, USA), and fluorescein (FITC)-
conjugated sheep anti-mouse IgG (1/60; Sigma-Aldrich Co., St. Louis, MO, USA). After 5-min
washing with PBS, the nigral slices were mounted on glass slides using Vectashield and pro-
tected with coverslips. The fluorescence was detected using a confocal microscope (Leica, TSC
SP8). Ten to twelve slices taken every 200 μm along the rostro-caudal extension of the sustantia
nigra pars compacta were scanned (1 μm optical thickness, total 30–35 μm) in the z-series, pro-
jecting the integrated images onto a two-dimension plane. The fluorescent images were over-
lapped on the screen monitor using the color green for fluorescein, red for Rho, and blue for
CY5. Negative controls were obtained by omitting the primary antibody. The number of fluo-
rescent nigral neurons were counted manually using the Confocal Assistance Program (Leica
Confocal Systems, TCS SP8).

Golgi Method
A block of about 4 mm from the anterior lobe of the brain containing the most rostral part of
the striatum (AP = +1.5 to AP = +2.2), very close to the first 6-OHDA injection site, was cut.
The bock was immersed into a Golgi solution (potassium dichromate 2.7% and osmium 0.3%)
for 7 days, followed by an immersion into 0.75% aqueous solution of silver nitrate for 2 days.
Slices (100-μm-thick) were obtained, dehydrated in ethanol (96% and 100%), and after clearing
(eugenol and xylol), they were mounted on entellan-covered slides. We counted the dendritic
spines along a 10 μm-length of five secondary dendrites out of 10 spiny neurons of each
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striatum [47,48]. The counting was unbiased because the person counting the spines was blind
to the experimental condition of the rat.

Gait Analysis
Gait disorder is one of the most incapacitating symptoms of Parkinson’s disease. Gait analysis
in rodent models of Parkinson´s disease allows testing the degree of loss of dopamine in
striatum [49]. Here we studied gait to assess the recovery of the dopamine innervation of the
striatum by the employed treatments. Gait was recorded on a transparent acrylic runway
(17 cm- high, 15 cm wide and 170 cm long, with a dark compartment at the end of the runway
for sheltering). The runway was 150 cm above floor level. The iliac crest, greater trochanter, lat-
eral malleolus, and the fifth metatarsal distal head were marked with indelible ink, as reference
for analysis. To avoid inter-tester variability, the same operator evaluated gait throughout the
experiment. As the gait analysis was limited to the sagittal plane, the camera was placed facing
the left side of the rat (contralateral to the 6-OHDA lesion), perpendicular to the direction of
movement. The marked points were tracked frame by frame, obtaining a two-dimensional co-
ordinates (x, y) using the ImageJ software (NIH; Bethesda, MD, USA http://rsb.info.nih.gov/
ij/). Data were imported into Microsoft Office Excel 2010 (Microsoft) and further analyzed
with pre-assembled Excel sheets to modeled body segments as rigid straight lines between the
marked points. The knee position was computed indirectly by superimposing two circles cen-
tered on hip and ankle pivots, with a radius of the length of the femur and tibia respectively
[50]. The kinematics of gait was reconstructed from changes in the marked points located be-
tween consecutive frames, facilitating the generation of stick diagrams (superimposing mod-
eled body segments of every frame) and spatial displacement plots. Angles and distances were
calculated directly by the software. For angle measurements, we used the smaller angle of the
two alternatives (insert Fig. 2B); typically, this was the angle at the flexor side of the joint. We
chose to analyze the angle of the ankle joint because it was the one most altered by the
6-OHDA lesion. To learn to move along the runway with constant speed, the rats were trained
during three consecutive days before the recording session. One session usually consisted of
10 passes along the runway. Four satisfactory strides per rat were obtained when the rat
moved with relatively constant speed (center of the runway). Optical deformation of the
image produced by the camera lens was determined and corrected by using an acrylic square
(5 cm x 5 cm) which served as a bi-dimensional scale.

Rotarod Performance
This test evaluates motor coordination and balance as well as motor learning. In the rat, both
aspects are under the control of the dopaminergic innervation of the dorsal striatum: the dor-
somedial part controls motor learning and the dorsolateral part controls motor coordination
and balance [37,51–53]. Motor performance of rodents in the rotarod allows for the evaluation
of the loss or recovery of nigrostriatal innervation in rodent models of Parkinson´s disease
[35,54]. The rotarod consists of a four-lane rotating rod (diameter 7.5 cm.) and infrared beams
to detect the moment of fall. The body of the rat was placed perpendicular to the rotating axis
and the head against the direction of the rotation; the animal must therefore move forward to
stay on the rod. Since several rats were generally tested in the same session, each rat rested for
about 15 min between the different testing speeds, thus reducing stress and fatigue. The rats
were trained twice on the rotarod at the constant speed of 5 and 10 rpm for two min during
three consecutive days before the evaluation of their performance. In the evaluating session,
the rats were placed on the rod and their performance was tested at different constant speeds
(5, 10, 15, 20 and 25 rpm) for a maximum of 2 min at each speed. All rats were video-recorded
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Fig 2. The combined treatment restored gait. The lesion increased the angle of the contralateral ankle during the dorsiflexion of the swing phase of gait
(arrows) and the undulatory displacement of the hip (limping), red line in A. The combined treatment normalized both conditions (A, B) and supplementary
videos (S1 Video—GAIT ANALYSIS IN NORMAL SPEED and S2 Video—GAIT ANALYSIS IN SLOWMOTION). The D3 agonist alone did not restore
neither the hip displacement (not shown) nor the angle of the ankle during gait. The increase in the angle produced by the lesion persisted all along the
experiment (saline-treated rats) in B. The recovery produced by the combined treatment was significant (F3, 15 = 26.09, P< 0.0001, One-way repeated-
measures ANOVA). *P< 0.05; ** P< 0.01; *** P< 0.001compared with saline-treated rats; # P = No significant difference compared with intact rats
(Bonferroni’s Multiple Comparison Post tests). A, illustrate a representative case. The data are given as the mean ± SEM (n = 5–6 rats per group).

doi:10.1371/journal.pone.0117391.g002
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while staying on the rod to assess the qualitative aspect of recovery of motor coordination
and posture.

Open Field Test
The evaluation of the behavior of the rats in the open field was performed approximately every
6 weeks. The rat was placed in the center of a square arena (80 × 80 cm) with 40 cm high, opaque
black walls, in a quiet, red light illuminated room. The motor behavior was video recorded for
20 min. The geometrical coordinates of the rat position in the arena were measured frame by
frame from the recorded videos to obtain the spatiotemporal sequence of the movements. The
following behavioral parameters were measured in the first ten minutes in the open field: walking
distance (ambulation), rearing and walking speed. Bradykinesia was estimated by the reduction
in walking speed assessed by the time taken by the rat to move from one corner of the open-field
to the next one with relative constant speed. The arena was cleaned with a water/alcohol (70%)
solution before every behavioral testing to avoid a possible bias due to odors and/or residues left
by rats tested earlier. All experiments were carried out from 11:00 a.m. to 3:00 p.m.

EMGRecording
The EMG was recorded from the surface of the gastrocnemius and tibialis anterior muscles
using a pair of stainless steel electrodes (Grass electrodes) inserted subcutaneously. The subcu-
taneous location of the electrodes avoids damaging the muscle structure. A fifth wire (ground)
was also placed subcutaneously close to the recording ones. The EMG signal was acquired with
an amplifier DAM 80 (World Precision Instruments, amplification factor of 1000, filtered at
1 Hz—10 kHz). The resultant signal was recorded and digitized at a sampling rate of 100 Hz
with an oscilloscope (Agilent 54622A). EMG is expressed as mean tonic EMG activity
(mV/20s). To avoid the activation of muscle and tendon receptors, the rat was suspended with
the aid of an adjustable soft leather jacket, which covered the head, thorax, forelimbs and the
base of the rear limbs. The rats were generally quiet during the recording and there was no pha-
sic bursting EMG activity due to joint movements. Tonic EMG activity was recorded when the
animal was completely relaxed but awake. The environment was always kept quiet and dark.

Data Analysis
Gait, rotarod performance, open field behavior and EMG activity analysis from each rat were
analyzed before the 6-OHDA lesion. The values of these analyses were taken as 100% (normal
condition). The values obtained in subsequent evaluations were expressed as percentage of the
values of the normal condition of the same animal, to rule out the variability among animals of
the same species and age. Values are provided as the mean ± SEM. As the same animals were
tested multiple times, the sequential effects of treatments and the differences among groups
were estimated by repeated measures one-way ANOVA test and Bonferroni´s multiple com-
parisons post-test. In the histological analysis, statistical significance was determined by one-
way ANOVA followed by Bonferroni´s multiple comparisons post-test. Statistical significances
were estimated using GraphPad Prism version 5.0 program (GraphPad Software, San Diego
California, USA). P< 0.05 was taken as a statistically significant difference.

Results

Effect on Gait
The loss of dopamine in the rodent model of Parkinson´s disease increases the angle of the ankle
during the swing phase of gait [55,56], which indicates reduced dorsiflexion of the ankle. Here
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the unilateral dorsomedial striatal lesion with 6-OHDA increased the angle of the ankle of the
contralateral hind limb by about 16% at the end of the flexion during the swing phase of gait (ar-
rows in Fig 2A, middle stick diagram). The administration of the D3 agonist associated with the
BDNF transfection progressively normalized the angle of the ankle (arrows in Fig 2A, lower stick
diagram). The recovery persisted at least two months after the end of the combined treatment
(Fig. 2B), suggesting a trophic effect of the treatment. The lesion also produced a limping of the
contralateral limb, which was expressed by an increase in the hip undulating displacement dur-
ing gait (red line in Fig. 2A). The D3 agonist associated with the BDNF transfection practically
eliminated the limping and normalized the hip displacement (Fig. 2A and S1 Video- Gait analy-
sis and S2 Video- Gait analysis in slow motion). By contrast, the D3 agonist alone did not nor-
malize the angle of the ankle (Fig. 2B) or the hip displacement (not shown). The lesion also
increased the stance phase of gait by about 17% and reduced the flexion angle of the knee by
about 12%; the combined treatment significantly (P< 0.05) restored to normal both conditions
(not shown). The lesion did not affect walking speed or step length (not shown).

Effect on Motor Coordination
The motor coordination and balance of the rats was evaluated by the amount of time that the
rats remained on the rod at the different constant rotation speeds (Fig. 3A) and by their overall
rotarod performance (Fig. 3B), calculated as the area under the curve in a plot of time-on-the-
rod vs. rotation speed [35,54]. The D3 agonist associated with the BDNF transfection as well as
the D3 agonist recovered the motor coordination and balance (Fig. 3A and B). The recovery by
the combined treatment was faster than that of the D3 agonist alone. After 1 ½ months of the
combined treatment the rotarod performance of the treated rats was significantly different
from that of the saline treated rats, and after 4 ½ months their rotarod performance was not
statistically different from that of intact rats (Fig. 3B). The sole administration of the D3 agonist
also recovered the rotarod performance, but the recovery was slower and not statistically differ-
ent from that of normal rats until the end of treatment. However, the recovery was not as com-
plete as the combined treatment: the rats treated with the sole D3 agonist dragged the
contralateral hind limb while staying on the rod (Fig. 3C and S3 Video- ROTAROD PERFOR-
MANCE and S4 Video—ROTAROD in slow motion).

Effect on Muscle Rigidity
The loss of the dopamine neurons, both in experimental and human Parkinson´s disease, pro-
duces muscle rigidity. Here we assessed muscle rigidity by the increase in electromyographic
(EMG) activity of the muscles of the hind limb. The lesion increased the EMG activity of the
contralateral gastrocnemius but not of the ipsilateral one (Fig. 4A). In addition, the lesion did
not consistently affect the EMG activity of the tibialis anterior of either side (not shown), sug-
gesting that the loss of dopamine produced rigidity mainly of extensor muscles. The D3 agonist
associated with the BDNF transfection normalized the increased EMG activity of the contralat-
eral gastrocnemius (Fig. 4A), and the EMG activity remained normal after two months of the
end the treatment (Fig. 4B). The D3 agonist alone also recovered the EMG activity, but the re-
covery was partial and occurred two months after the end of the treatment (Fig. 4B). The sa-
line-treated rats did not recover the normal EMG activity at any moment of the treatment
(Fig. 4B), indicating that there was no spontaneous recovery of the muscle tone.

Effect on Motor Behavior in the Open Field
The unilateral lesion reduced the locomotion of the rats in the open field (Fig. 5). The reduced
locomotion could be either by bradykinesia or by an increase in anxiety. Because rats were not
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Fig 3. Administration of the D3 agonist associated with the BDNF transfection restoredmotor coordination. The lesion reduced the time on the rod
(A-I) and the rotarod performance (B). The combined treatment normalized the time on the rod (A-II) and the rotarod performance (B). The effect persisted
two months after the treatment (A-III and B). The D3 agonist alone also recovered the motor coordination (A, B) but the rats dragged the contralateral hind
limb during rod rotation (arrows in C and supplementary videos S3 Video—ROTAROD PERFORMANCE IN NORMAL SPEED and S4 Video- ROTAROD
PERFORMANCE IN SLOWMOTION). Saline-treated rats did not recover the rotarod performance (A, B). The recovery produced by the treatments were
significant (AI: F3, 12 = 9.881, P< 0.0015; AII: F3, 12 = 8.879, P< 0.0023; AIII: F3, 12 = 12.49, P< 0.0005 and B: F3, 15 = 21.84, P< 0.0001, One-way
repeated-measures ANOVA). * P< 0.05; ** P< 0.01; *** P< 0.001 compared with saline-treated rats. # P = No significant difference compared with intact
rats (Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM (n = 5–6 rats per group). C illustrates representative cases.

doi:10.1371/journal.pone.0117391.g003
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habituated, due to the prolonged interval between testing, the open field was a novel environ-
ment that possibly triggered anxiety in the rats. To decide between the bradykinesia and anxi-
ety, we determined the speed of walking to assess bradykinesia, and the ambulation and
frequency of rearing during the first ten min in the open field to assess anxiety [57–59]. As
seen in Fig. 5, the lesion did not produce bradykinesia but reduced ambulation and the fre-
quency of rearing, suggesting that the reduction was mainly due to an increase in anxiety.
None of the treatments was able to normalize ambulation or rearing (Fig. 5A and B). The intact
(normal) rats maintained their initial ambulation and rearing (Fig. 5), indicating that there was
no habituation because of the repeated exposures to the open field, probably because the

Fig 4. The combined treatment recovered normal muscle tone. The lesion increased the EMG activity of the contralateral gastrocnemius but did not
affect the EMG of the ipsilateral one (A). The combined treatment normalized the EMG activity (A and B) and the effect persisted two months after the
treatment (B). The D3 agonist also reduced the EMG, but the reduction was partial and occurred two months after the treatment (B). The recovery produced
by the combined treatment was significant (F2, 6 = 5.674, P< 0.0414, One-way repeated-measures ANOVA). * P< 0.05; ** P< 0.01 compared with saline-
treated rats (Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM (n = 5 rats per group). A, shows a representative case.

doi:10.1371/journal.pone.0117391.g004
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evaluations were performed every 1 ½ months, a time enough to rule out habituation. The re-
duced ambulation and frequency of rearing remained reduced throughout the experiment in
the saline-treated rats, indicating that there was no spontaneous recovery.

BDNF-Flag Expression
In a previous study [45], we showed that the transfection BDNF-flag gene by the NTS-polyplex
to TH+ neurons produced a high expression of the BDNF-flag in the dopamine neurons of the
pars compacta. Both the injection of the NTS-polyplex in the striatum (retrograde transfection)
and the injection of the NTS-polyplex in the substantia nigra (direct transfection) resulted in a
high BDNF-flag expression. Here we also found that the BDNF gene transfection by the

Fig 5. The combined treatment did not recover the ambulatory activity and rearing in the open field. The lesion reduced the ambulatory activity
evaluated by the distance traveled (A) and frequency of rearing (B) during the first ten min in the open field. However, it did not produce bradykinesia
assessed by the speed of walking (C). None of the treatments recovered the ambulatory activity or rearing (A and B). Intact rats did not showed changes
either in ambulation or in rearing, throughout the experiment. The 6-OHDA lesion reduced significantly the traveled distance and frequency of rearing
(A: F3, 6 = 73.75, P< 0.0001 and B: F3, 6 = 57.30, P< 0.0001, One-way repeated-measures ANOVA) but it did not produce a significant effect on
bradykinesia (C: F3, 6 = 3.563, P< 0.0868, One-way repeated-measures ANOVA). *** P< 0.001 compared with saline-treated rats. # P = No significant
difference compared with saline-treated rats (Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM (n = 5–6 rats per group).

doi:10.1371/journal.pone.0117391.g005
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NTS-polyplex produced a high BDNF-flag expression in the dopamine neurons of the pars
compacta, as indicated by the co-localization of the TH-immunoreactivity with the BDNF-flag
immunoreactivity in the same dopamine neurons. About 80% of the nigral neurons showed
the co-localization (Fig. 6).

Recovery of TH+ Nigral Cells
The 6-OHDA lesion reduced the number of TH+ nigrostriatal neurons (Fig. 7A and B) and de-
creased the TH+ dendrites of the pars reticulata, as indicated by the reduction of the optical
density of the TH immunoreactivity (Fig 7A and C). The D3 agonist associated with the BDNF
transfection as well as the administration of the D3 agonist alone induced a significant recovery
of the number of the TH+ cells of pars compacta and dendrites of pars reticulata. However, in
both cases the recovery produced by the combined treatment was greater than that of the D3
agonist alone (Fig. 7B and C).

Fig 6. BDNF gene transfection by NTS-polyplex to dopamine neurons of substantia nigra pars compacta. (A) Panoramic view of the labeled
TH+ neurons. (B) Amplification of the zone indicated by the frame in A. The arrowheads show the co-localization of the BDNF-flag in the TH+ neurons. This is
a representative illustration of the BDNF-flag expression.

doi:10.1371/journal.pone.0117391.g006
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Fig 7. The combined treatment restored the number of dopamine neurons of the sustantia nigra pars compacta. (A) Representative microgaphs of
TH-immunoreactivity in mesencehalon slices. (B) Number of TH+ neurons along the rostro-caudal extention of the susbtantia nigra pars compacta. (C)
Optical densitometry analysis of TH-immunoreactivity in the substantia nigra pars reticulata of the micrographs in A showing that the combined treatment
recovered the dopamine dendrites, judged by the overlapping of the lesion side histogram (red) with the normal side histogram (black). (D) Graph of the OD
along the pars reticulata under the different treatments. The recovery produced by the treatments was significant (B, F2, 8 = 56.00, P< 0.0001; D,
F2, 9 = 26.66, P< 0.0002, One-way ANOVA). *P< 0.05, **P< 0.001 compared with saline-treated rats, & P< 0.01 compared with the 7-OH-DPAT alone
(Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM (n = 4). A, representative images of the TH-immunoreactivity in
substantia nigra pars compacta and reticulata.

doi:10.1371/journal.pone.0117391.g007
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Recovery of the Striatal Innervation
The recovery of the innervation of striatum was assessed by the TH-immunoreactivity. The
6-OHDA lesion produced a shrinkage of the striatum that varied from 4 to 20% (mean 14%)
compared with the intact side. The lesion also produced a marked loss of TH-immunoreactivi-
ty in the dorsomedial, dorsolateral and ventral striatum all along its rostro-caudal extension
(Fig. 8A and C). The loss tended to be greater in dorsomedial striatum (Fig. 8C). The combined
treatment as well as the treatment with the D3 agonist alone restored the TH-immunoreactivi-
ty, but the combined treatment recovered the immunoreactivity more fully than that of the ag-
onist alone (Fig. 8B and C).

The recovery of the striatal dopamine innervation was also estimated by the number of do-
pamine neurons retrogradely labeled by Rho-dextran amine injected in the striatum (Fig. 9A)
[60,61]. The D3 agonist associated with the BDNF transfection significantly increased the
number of TH+ cells retrogradely labelled with Rho. The treatment with the D3 agonist also in-
creased the number of cells retrogradely labelled but to a smaller extent compared with the
combined treatment (Fig. 9B), suggesting that the latter brings about a greater reinnervation of
the striatum. About 14% of Rho+ neurons were not positive for TH.

Recovery of Dendritic Spines
The nigrostriatal lesion significantly reduced the number of spines of the medium-sized spiny
neurons of the striatum (Fig. 10A and B). The D3 agonist associated with the BDNF fully re-
covered the spines. The D3 agonist alone produced a significant recover of the number of
spines, however, the recovery was partial (Fig. 10A and B).

Discussion
Because PD is more common in older people, their reduced motor performance is caused by
the disease and senescence. Accordingly, older rats might increase the predictive validity of
pre-clinical rodent models since they exhibit more robust parkinsonian motor deficits than
younger rats [62]. Age-related degeneration of mesencephalic dopaminergic cells is produced
in part by a decreased availability or efficacy of neurotrophic factors [63]. This is why therapeu-
tic approaches with viral vectors are used to increase levels of striatal BDNF or GDNF in aged
rats [64,65]. However, age reduces the efficiency (40%–60%) of viral-vector-mediated gene
transfer in comparison to young rats [66]. Therefore, in the present study, the nonviral trans-
fection in combination with a D3 agonist treatment was evaluated in a period from the middle
aged (17 months) to aged rats (24 months).

Our results show that the transfection of the BDNF gene to dopamine neurons associated
with the chronic (4 ½ months) and continuous administration of the dopamine D3 receptor
agonist recovers normal gait, motor coordination and postural balance in the unilateral striatal
rat model of Parkinson´s disease. A recovery up to 80% of dopamine neurons of substantia
nigra and about the same percentage of recovery of the dopamine innervation of the striatum
accompanied the recovery of these motor impairments. A total recovery of dendritic spines of
striatal medium-sized spiny neurons and a recovery of normal muscle tone also accompanied
the recovery of the motor behavior.

Van Kampen and Eckmann [31], administered the dopamine D3 agonist 7-OH-DPAT for
up to two months into the third ventricle in rats with unilateral lesions of the nigrostriatal in-
nervation induced by the application of 6-OHDA in the striatum, a model representing early
Parkinson´s disease, like the model used here. They chose the preferential dopamine D3 recep-
tor agonist because of its mitogenic role both in vitro [25–27,67] and in vivo [23,68]. They
found that the chronic and continuous infusion of the D3 agonist induced cell proliferation in
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Fig 8. The combined treatment restored the TH immunoreactivity of the striatum. (A) Representative micrographs of TH immunoreactivity showing that
the lesion extends along the rostro-caudal extention of the striatum. (B). Representative micrographs showing the effect of the treatments on TH
immunoreactivity of the striatum. The black arrows show lesion produced by 6-OHDA. (C) Optical densitometry analysis of TH-immunoreactivity in dorso-
medial (DMS), dorso-lateral (DLS) and ventral (VS) regions of the striatum. The recovery produced by the treatments was significant (DMS: F2, 9 = 9.694,
P< 0.0057; DLS: F2, 9 = 40.46, P< 0.0001 and VS; F2, 9 = 19.93, P< 0.0005, One-way ANOVA) * P< 0.05; ** P< 0.01; *** P< 0.001 compared with
saline-treated rats; & P< 0.01 compared with the 7-OH-DPAT alone (Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM
(n = 5 rats per group). The insert shows the three different sectors where the OD was determined.

doi:10.1371/journal.pone.0117391.g008
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the substantia nigra pars compacta; many of the cells acquired the dopaminergic phenotype.
The treatment reduced amphetamine-induced turning, and recovered the use of the contralat-
eral forelimb for feeding (staircase test). Our results showed that D3 agonist also recovers com-
plex aspects of motor behavior, like motor coordination in the rotarod. However, the recovery
was not as complete as when the treatment with the D3 agonist was associated with BDNF
transfection. The association normalized gait and abolished muscle rigidity, which the D3 ago-
nist did not. Furthermore, the association showed a greater recovery of the dopamine neurons
of the pars compacta, striatal innervation and dendritic spines of the striatal neurons, all of
which indicates that the transfection of BDNF to dopamine neurons potentiates the trophic ac-
tion of the D3 agonist. It remains to be determined whether neurogenesis mediates the recov-
ery of dopamine neurons, as proposed by Van Kampen and Eckman [31].

Fig 9. The combined treatment recovered the nigro-striatal innervation. (A) Representative micrographs of the substantia nigra pars compacta showing
TH+ neurons with the presence of rhodamine-labeled dextran amine (arrowheads), previously injected into the striatum. (B) Graph showing the percentage
of rhodamine-labeled TH+ neurons with respect to the total of TH+ neurons of the same substantia nigra pars compacta, in each experimental condition. The
recovery produced by the treatments was significant (F2, 8 = 18.34, P< 0.0010, One-way ANOVA). * P< 0.05; ** P< 0.01 compared with saline-treated rats
(Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM (n = 4 rats per group).

doi:10.1371/journal.pone.0117391.g009
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The rats with unilateral nigrostriatal lesions showed a reduction of about 25% in the number
of spines of the striatal medium-sized spiny neurons (Fig. 10), a similar value was found by
Solis, et al. [69] in rats with 6-OHDA lesion. In Parkinson´s disease patients studied post-
mortem, Zaja-Milatovic et al. [70], reported a reduction of about 45%, whereas Stephens et al.
[71], reported a 27% reduction. In the rat with a 6-OHDA unilateral lesion, the reduced num-
ber of spines corresponds with a similar reduction in glutamatergic synapsis from cortico-
striatal afferents [72], which may explain the motor behavior impairment. Accordingly, the full
recovery of the dendritic spines brought about by the activation of the D3 receptors associated
with the transfection of BDNF may explain the recovery of motor behavior in the present
work. This idea is in line with the fact that the efficacy of striatal dopamine grafts also requires
the recovery or preservation of dendritic spines [73].

Double and Crocker showed [74] that the loss of the activation of dopamine receptors in
substantia nigra pars reticulata results in muscle rigity, as indicated by the increase in EMG

Fig 10. The combined treatment restored the dendritic spines of the medium-sized spiny neurons of the striatum. (A) Representative micrographs of
the Golgi-stained spines of the medium-size spiny neurons under the different conditions. (B) Mean number of the spines from 50 striatal secondary
dendrites per rat in each experimental condition. The recovery produced by the treatments was significant (F3, 596 = 102.1, P< 0.0001, One-way ANOVA).
***P< 0.001 compared with saline-treated rats. & P< 0.01 compared with the rats treated with the combined treatment. # P = No significant difference
compared with normal side (Bonferroni’s Multiple Comparison Post tests). The data are given as the mean ± SEM. (n = 3 rats per group)

doi:10.1371/journal.pone.0117391.g010
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activity of the gastrocnemius and tibialis anterior muscles. In Parkinson´s disease, the dopa-
mine receptors would not be activated because of the loss of dopamine, which would explain
the muscle rigidity accompanying the disease. The combined treatment significanlty recovered
the dopamine (TH+) dendrites in substantia nigra pars reticulata (Fig. 7C and D), which could
have been the source of dopamine to activate the proper receptors in pars reticulata, thus ex-
plaining the normalization of the EMG activity produced by the treatment (Fig. 4). The efferent
projection of substantia nigra pars reticulata to the mesopontine tegmental area of the brain-
stem controls gait and muscle tone. The loss of dopamine present in rodent models of Parkin-
son´s disease markedly increases the inhibitory input from pars reticulata to the locomotor
mesencephalic area and pedunculo pontine nucleus, which disturbs gait and increases muscle
tone [75,76]. However the effect of the lesion on gait appears to be different depending on
whether the 6-OHDA is applied in the striatum or in the forebrain bundle, because the extent
of lesion is typically much greater following delivery of 6-OHDA to the forebrain bundle. The
lesion reduces the stride length in the first case [77] but there is no reduction in the second case
(present results), which is conistent with the finding that the lesion did not produce bradykine-
sia (Fig. 5). The full recovery of normal gait induced by the combined treatment (Fig. 2) may
be associated with the recovery of the normal inhibitory input from pars reticulata to the these
brainstem nuclei controlling gait and muscle tone.

The unilateral lesion of the nigrostriatal innervation apparently produces anxiety, assessed
by a decrease in ambulation and frequency of rearing in the open field [78]. However, in the
present study, the apparently increased anxiety expressed by the decrease in ambulation and
frequency of rearing produced by the unilateral striatal lesion of the nigrostriatal innervation
was not accompanied by bradykinesia (Fig. 5), which suggests a non-motor cause of the anxi-
ety. Intact rats did not reduce their ambulation and rearing levels indicating that there was no
habituation, probably because the evaluations were done every 1 ½ months, a long enough
time to rule out habituation. In the present study, none of the treatments was able to eliminate
anxiety. Eskow et al., [78] found that the unilateral lesion of the nigrostriatal innervation in-
duced by 6-OHDA injected in the forebrain bundle produced anxiety (reduced ambulation
and frequency of rearing) and depression (reduced climbing in the forced-swimming test).
They also reported that L-Dopa did not eliminate these manifestations of anxiety. The reason
for the failure of the combined treatment and of L-Dopa to control anxiety is unknown.

Physiological expression of BDNF-flag gene could be a key point in the efficacy of the com-
bined treatment. The BDNF-flag gene transfection to dopamine neurons produced the expres-
sion of the BDNF-flag protein in a rather large number (80%) of the dopamine neurons of
substantia nigra compacta (Fig. 6). However, it is possible that the BDNF-flag was present not
only in the transfected neurons but also in neurons neighboring the transfected ones because
they could have taken up the BDNF-flag secreted by the transfected ones [45,79]. If so, this
would amplify the effect of the transfection recovering the functional re-innervation of the stri-
atum and motor behavior. It should be emphasized that the recovery of the dopamine neurons
did not produce dyskinetic movements as occurs in the case of dopaminergic transplants in the
striatum [80–83], suggesting that, in the present case, the functional recovery of the striatal in-
nervation was not accompanied by an excessive dopaminergic innervation of the striatum.

Conclusions
Our findings provide evidence that the continuous and prolonged activation of dopamine D3
receptors associated with the selective non-viral transfection of the BDNF gene to the dopa-
mine neurons of the substantia nigra pars compacta produces a substantial and persistent re-
covery of motor behavior in an aged rat model of Parkinson´s disease. The motor benefits
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correlate with an increase in the number of TH+ neurons re-innervating the striatum as well as
with the recovery of the spines of striatal medium-sized spiny neurons. A pharmacological ef-
fect is unlikely to explain the functional recovery because the improvement in motor behavior
persisted at least 2 months after the end of the treatment, suggesting rather a trophic effect.
The combined treatment seems to be a promising strategy for recovering the dopamine neu-
rons in this experimental model of Parkinson´s disease, representing initial Parkinson in mid-
dle to old age subjects. However, as the traditional toxin model of PD used in this study has
focused on the nigrostriatal pathway and the loss of dopamine neurons in this region, it is lim-
ited in that it does not reproduce the full pathology and progression seen in PD [84]. This situ-
ation creates a need for further work, testing the treatment in different models of the disease to
assess its reliability.
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