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Abstract
Reaction networks are useful for analyzing reaction systems occurring in chemistry, sys-

tems biology, or Earth system science. Despite the importance of thermodynamic disequi-

librium for many of those systems, the general thermodynamic properties of reaction

networks are poorly understood. To circumvent the problem of sparse thermodynamic data,

we generate artificial reaction networks and investigate their non-equilibrium steady state

for various boundary fluxes. We generate linear and nonlinear networks using four different

complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and

compare their topological properties with real reaction networks. For similar boundary con-

ditions the steady state flow through the linear networks is about one order of magnitude

higher than the flow through comparable nonlinear networks. In all networks, the flow de-

creases with the distance between the inflow and outflow boundary species, with Watts-

Strogatz networks showing a significantly smaller slope compared to the three other net-

work types. The distribution of entropy production of the individual reactions inside the net-

work follows a power law in the intermediate region with an exponent of circa −1.5 for linear

and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions

associated with weakly connected species. This effect is stronger in nonlinear networks

than in the linear ones. Increasing the flow through the nonlinear networks also increases

the number of cycles and leads to a narrower distribution of chemical potentials. We con-

clude that the relation between distribution of dissipation, network topology and strength of

disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

Introduction
Connecting network theory with thermodynamics was an idea already present more than 40
years ago under the term network thermodynamics [1]. Despite the fact that the terms were
used in combination, the theory was merely a graphical representation of conservation equa-
tions and did not make any statements about complex networks, as they are known today. In
2006 Cantú and Nicolis [2] studied thermodynamic properties of linear networks, but limited
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themselves to small networks, which they were able to handle analytically. Here, we extend
their study by generating big random linear and nonlinear reaction networks and simulating
them to a thermodynamically constrained steady state. This might contribute to a framework
that allows to test methods for reconstructing thermodynamic data of reaction networks [3, 4]
and lead to a better thermodynamic understanding of reaction networks in general. Possible
applications of this approach include the thermodynamic investigation of reaction models in
biology [3–5], origin of life [6] and also Earth system and planetary science [7, 8].

We look at reaction networks as thermodynamic systems that transforms two chemical spe-
cies into one another [2]. The environment is driving the network to thermodynamic disequi-
librium by keeping the concentration of two species constant. In the following, we will call the
chemical species that are kept constant ‘boundary species’, because they are the species to
which the boundary conditions are applied to.

Our basic assumption is that the network is able to transform the two boundary species into
each other. This is not always possible in real reaction networks where the transformations are
constrained by stoichiometry of chemical constituents. For example, any chemically sound re-
action model will implicitly forbid pathways that transform N2O into H2O. Even if the artificial
networks we create are comparable in density, they are not created with this constraint. This is
due to the implications this constraint would have on the complexity of the boundary condi-
tions. Omitting it leads to the existence of many transformation pathways between most pairs
of randomly chosen boundary species, otherwise almost all pairs of boundary species would
just have a steady state flow of zero between them.

We study different quantitative properties of the networks at steady state. In particular, be-
cause cycles have been reported to have important functions in networks [9–11], we look at the
cycles that appear in the flow pattern. These cycles depend on the direction of the flow of each
reaction, which in turn depends on the strength of the thermodynamic disequilibrium caused
by the boundary condition.

In the next section we describe our method for generating reaction networks so they resem-
ble different complex network models and how we simulate them to find their non-equilibrium
steady state. We then present our results concerning the flow through the networks, the distri-
bution of entropy production of individual reactions, and the dependency of cycle number
from flow through the nonlinear networks.

Methods

Reaction Networks
Reaction networks [12] consist of a set of speciesM combined with a set of reactionsR. They
contain information on the connection of chemical species through reactions and include the
stoichiometric constraints given by the reactions. Mathematically, a reaction network can be
described by two stoichiometric matrices L and R. Lij is the coefficient of the i-th species on the
left side of the j-th reaction and Rij is the coefficient of the i-th species on the right side of the j-
th reaction. Combining both matrices gives the stoichiometric matrix N = R−L, for which the
element Nij in i-th row and j-th column gives the effective change of species i by reaction j.
Given a relation v = v(x) between reaction rates v and species concentrations x, one can associ-
ate the reaction network with the dynamics of an ordinary differential equation (ODE):

dx
dt

¼ N � vðxÞ:

In complex network science instead of looking at a bipartite graph, where reactions and spe-
cies are represented by different types of nodes which are connected by edges, often the
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substrate graph is used. In this simplified view the nodes represent the species and an edge be-
tween two species is present if and only if there is a reaction having those two species on differ-
ent sides of the reaction equation (Fig. 1, (B’)) [13, 14].

Network Construction
Our artificial reaction networks are generated in three steps. We first generate a simple directed
network (graph) consisting out of a set V of N nodes and a multiset E

[

V×V ofM edges. These
networks are generated following the models of Erdős-Rényi [15], Barabási-Albert [16] (scale-
free), Watts-Strogatz [17] (small-world, clustering) and Pan-Sinha [18, 19] (hierarchically-
modular). We are always using variants of these network models that allow formation of self
loops and multiple edges between the same nodes. Also, we generate networks with a fixed
number of edges. From these complex networks the reaction network is constructed.

Simple reaction networks are created by translating each edge into a reaction of the form
X⇋Y with X being the first and Y being the second node. In the rate equation of mass action ki-
netics this leads to a linear dependence of the reaction rates from the concentrations and thus
we are calling these networks “linear” reaction networks.

Fig 1. Illustration of realized simulations. (A) Linear reaction networks are generated from existing complex network models. (Arrows represent reactions,
chemical species are indicated by lowercase letters.) (B) Pairs of linear reactions are combined to form nonlinear reactions. (B’) Substrate graph that should
maintain its characteristic properties while coupling. Edges invoked by coupling are depicted with dotted arrows. (C)Gibbs energies of formation are
assigned to species from a normal distribution, activation energies to reactions from a Planck-like distribution (Eq. 8). (D) Two boundary species whose
concentrations are kept constant are selected while the others are initialized randomly. (E) Reaction equation is solved numerically and final rates are taken
as steady state rates.

doi:10.1371/journal.pone.0117312.g001
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Nonlinear reaction networks are generated out of directed networks by combining pairs of
edges to second order reactions of the form X+Z⇋Y+W. The selection of pairs is done with a
probability distribution that maintains the characteristic properties of the substrate graph as
much as possible. This is done by considering the probability of newly introduced edges in the
substrate graph in the originally used network model. For example, consider the combination
of the reactions A⇋B and C⇋D to create the reaction A+C⇋B+D. This leads to two new edges
in the substrate graph between A and D as well as between C and B. The probabilities of these
two edges in the original network model are then used to calculate the probability of the
combined reactions.

Finally, the thermodynamic data is generated and assigned to species and reactions. In the
following, the generation process of nonlinear networks specific to the different network mod-
els is explained before the generation of thermodynamic data is specified in detail.

Erdős-Rényi (ER). In the Erdős-Rényi network model [15] all possible edges have the
same probability. We create these networks by simply drawing the nodes of every edge from
the set of all nodes with uniform probability. For the construction of nonlinear reaction net-
works, second order reaction equations are then chosen from the set of pairs of linear equations
with uniform distribution. Note that linear equations that are used as part of a nonlinear equa-
tion are not returned leading to the probability of all pairs of linear equations containing it
being set to zero for subsequent couplings.

Barabási-Albert (BA). For generating scale free networks, the Barabási-Albert models are
used [16]. In this model nodes are added consecutively. Newly added nodes are connected to
the network by introducing edges between it and already existing nodes. The selection of nodes
to attach to is done with probability scaling with their node degree (preferential attachment).

The coupling probability of linear reactions is calculated from the product of the node de-
grees of the chemical products. In principle, other functional dependencies are possible, but for
simplicity we choose this one and check that it maintains the power law distribution of the
node degree in the associated substrate graph (Fig. 2 (A)).

Watts-Strogatz (WS). Networks having a comparable average path length to Erdős-Rényi
but with a higher clustering are generated with the Watts-Strogatz model [17]. From a circular
lattice like structure, a fraction α is randomly reordered. For the size of our networks we choose
a value of α = 0.1 (see Table 1).

Fig 2. Comparison of artificial and real networks. (A) Nonlinear BA networks maintain scale-free degree distribution. (B) Cumulative degree scaling of
real network’s substrate graphs shows pronounced scale free property in comparison with their null models (randomized counterparts) for Earth’s
photochemistry [22] and a kinetik model of Yeast’s metabolism [25]. (C) Cumulative distribution of the standard change of Gibbs energy of formation
(Dm0

j ¼
P

iNijm
0
i ) for artificial networks and respective thermodynamic reference data for glycolysis (see [28], Table 4, Δr G

00). Distributions were (linearly)
rescaled to have a mean of one.

doi:10.1371/journal.pone.0117312.g002
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For the creation of nonlinear networks we only form those couplings between linear reac-
tions which lead to two new close edges in the substrate graph. Here “close”means that their
distance in terms of the circular lattice is not larger than the largest distance of non reordered
edges in it. It would have be possible to use a more sophisticated approach and use the parame-
ter α as the probability of introducing a far edge in the substrate graph while coupling. But be-
cause even our simple method does not achieve a clustering coefficient as high as equivalent
linear networks (Table 1) we use this simple method.

Pan-Sinha (PS). Hierarchically-modular networks are generated starting with uniformly
partitioning the nodes into 2h elementary modules, with h being the number of hierarchical
levels of the network. On the first level two pairs of modules on the elementary level are joined
to form a new module, leading to 2(h−1) modules on the first level. Analogous, for all other lev-
els modules of the level below are joined pairwise, up to the h-th level where there is just one
module consisting out of the entire network. When edges are added to the network this hap-
pens with a probability proportional to the lowest level l in which the two nodes to be con-
nected share a module. Two nodes that share an elementary module are connected with the
probability p0 whose value is given by normalization. Nodes whose lowest common level is l
are connected with probability p0 p

l. For our networks we choose p = 0.5 and h = 8.
When creating nonlinear reactions we assign each possible coupling a probability propor-

tional to the product of the probability of the two newly introduced edges in the original
model. Assuming a coupling leads to new edges in the substrate graph between nodes with low-
est common module on levels l1 and l2, then the probability of choosing this coupling is scaled
with pl1pl2 .

Parameters. For network construction we generate linear reaction networks with N =
1000 species andM = 5000 first-order reactions. Nonlinear networks are build by generating a
linear network withM = 3000 reactions and connecting C = 1000 of them to second-order re-
actions. To compare linear and nonlinear networks directly we also generate linear networks

Table 1. Network properties. Properties of the substrate graphs of artificially generated networks as well as of examples of real networks. Table contains
the number of vertices (jVj) and edges (jEj), the mean shortest path length (< L >) and the clustering coefficient (< C >) of the respective undirected
network. The modularity is calculated using the walktrap community finding algorithm [38]. Data for real networks is taken from a database for Earth’s
photochemical reactions [22], models for the combustion of Ethanol [23] and Dimethyl ether [24] and a kinetic model of Yeast’s metabolism [25]. For the
artificial networks and the randomizations of the real networks mean values and standard deviations are calculated from 10 samples.

network jVj jEj < L > < C > modularity 1-cycles 2-cycles 4-cycles

ER (linear) 1000 5000 4.5 ± 0.02 0.0098 ± 5e-04 0.234 ± 0.0037 4.6 ± 2.4 10 ± 2.3 151 ± 14

ER (nonlinear) 1000 5000 4.5 ± 0.03 0.0141 ± 0.002 0.296 ± 0.00921 4.1 ± 2 1634 ± 274 2964 ± 939

BA (linear) 1000 5000 3.9 ± 0.04 0.0277 ± 0.001 0.178 ± 0.00412 5.2 ± 2.4 47 ± 9.3 2138 ± 245

BA (nonlinear) 1000 5000 3.8 ± 0.04 0.0386 ± 0.002 0.266 ± 0.00664 9 ± 3.9 1254 ± 273 9321 ± 5306

WS (linear) 1000 5000 6.4 ± 0.1 0.484 ± 0.009 0.805 ± 0.00569 0.3 ± 0.48 2.4 ± 1.8 4188 ± 158

WS (nonlinear) 1000 5000 6.7 ± 0.1 0.255 ± 0.008 0.748 ± 0.00733 90 ± 5.1 1002 ± 58 2201 ± 161

PS (linear) 1000 5000 5 ± 0.03 0.0414 ± 0.003 0.51 ± 0.0124 469 ± 17 208 ± 24 316 ± 31

PS (nonlinear) 1000 5000 4.6 ± 0.06 0.0297 ± 0.001 0.314 ± 0.00817 285 ± 23 1782 ± 553 3758 ± 1745

Earth’s atm. 280 1846 2.9 0.147 0.301 3 1337 48503

(randomized) 280 1846 3.3 ± 0.03 0.0513 ± 0.003 0.202 ± 0.011 6.2 ± 1.6 21 ± 5 480 ± 42

Ethanol 57 2902 1.7 0.4977 0.171 18 14264 1.59e+07

(randomized) 57 2902 1.4 ± 0.005 0.831 ± 0.006 0.051 ± 0.014 56 ± 7.4 1265 ± 22 1.49e+6 ± 19103

Dimethyl ether 79 2492 1.9 0.416 0.285 10 9995 3.45e+06

(randomized) 79 2492 1.7 ± 0.005 0.551 ± 0.007 0.073 ± 0.016 30 ± 4.9 492 ± 23 226961 ± 5134

Yeast Metab. 295 16954 2.6 0.1005 0.0175 27 355713 3.34e+09

(randomized) 295 16954 2 ± 0.01 0.51 ± 0.02 0.025 ± 0.045 59 ± 6.1 1715 ± 208 2.77e+06 ± 6.5e+05

doi:10.1371/journal.pone.0117312.t001
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from the substrate graph of the nonlinear networks. This comparison is not possible with the
generated linear reaction networks because their substrate graph is not as clustered. An over-
view of all generated networks is shown in Table 1.

Thermodynamics of Reaction Networks
Thermodynamic properties of reaction networks can be described by non-equilibrium thermo-
dynamics [20, 21]. For simplicity and due to the artificial nature of our simulations we use unit-
less equations with the Boltzmann constant kB and the temperature T set to one in this work
(we do not consider variations in T).

The change of entropy dS can be separated into the exchange of the system with the envi-
ronment de S and change through processes in the system di S:

dS ¼ deSþ diS: ð1Þ
The entropy exchange with the environment (with constant temperature and pressure) is

given by

deS ¼ dU þ pdV�
X

k

mkdexk; ð2Þ

with de xk being the change of concentration due to interaction with the environment and μk
being the chemical potential. The entropy change through internal processes di S is given ac-
cordingly:

diS ¼
X

k

mkdixk: ð3Þ

From this equation the rate of entropy production can be calculated. By rewriting we see

that the entropy production of the network stot ¼ diS
dt
is merely the sum of the entropy produc-

tion σi of all individual reactions with σi = ∑m μm Nmi vi:

diS
dt

¼
X

k

mk

dixk
dt

¼
X

l

X

m

mmNmlvl ¼
X

l

sl ð4Þ

In steady state the entropy production of individual reaction i can be also written as func-
tion of forward and backward reaction rates vi,+ and vi, −[21]:

si ¼ ðvi;þ � vi;t�Þ ln
vi;þ
vi;�

: ð5Þ

This relation can be applied to calculate the total entropy production rate σtot = ∑i σi of a re-
action network acting between two boundary species b1 and b2 kept at concentrations c1 and
c2. As the entropy production rate in steady state only depends on the boundary conditions
(c1,c2,v = v+−v−) we can replace the entire network with one imaginary linear reaction b1⇋b2. If
we assume the Gibbs energies of formation of boundary species to be zero, the forward and
backward rate coefficients are equal and we obtain the equation

stot ¼ v ln
c1
c2
: ð6Þ

Alternatively one could also get this result by calculating the boundary species entropy ex-
change with the environment, because in steady state 0 = dS = de S+di S.

Generating Thermodynamic Data. The Gibbs energies of formation of the species m0
i are

drawn from a normal distribution N(0,1). Reaction rates are calculated using the Arrhenius
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equation (with the prefactor A set to 1):

k ¼ Ae�Ea ¼ e�Ea : ð7Þ
Here, Ea is the activation energy which is sampled from the distribution

PðxÞ ¼ 6

p2

1

x3ðexpð1=xÞ � 1Þ ð8Þ

for every reaction. We have chosen this distribution, which resembles the Planck-distribution,
because it has an effective non-zero lower bound while still having a large tail to the right
(Fig. 1). We simulate all reactions reversibly. Forward and backward reaction are energetically
constrained by the Gibbs energies of the species. Thus, we sample Ea just once for every reac-
tion and assign it to that reaction direction which respective products have a higher Gibbs en-
ergy of formation, either Ee;i ¼

P
j;Nij>0m

0
i Nij (forward direction) or Ep;i ¼

P
j;Nij<0m

0
i Nij

(backward direction). The second reaction directions activation energy is then given by the
constraint E0

e ¼ Ee þ j ∑j m
0
i Nij j. This expression is a reflection of the fact that in equilibrium,

forward and backward reaction rates need to balance.

Network Simulation
As we are interested in the steady state of the network under thermodynamic boundary condi-
tions we solve the reaction equation while keeping the concentration of two selected chemical
species b1, b2 at fixed concentration c1, c2. To remove the effects of the energy difference be-
tween the boundary species on the flow, we set their Gibbs energy of formation m0

i to zero and
recalculate reaction rates before the simulation. For solving the reactions’ODE, the integrator
of C++’s boost library is used. The selected algorithm is “Dormand-Prince 5”. Concentrations
are initialized normally distributed with c1þc2

2
taken as mean and jc1−c2j as standard deviation.

Dynamics are simulated up to a time t of 50000 or up to the time when the mean square change
of concentration (per species and time-step size) is smaller than 10−20.

We assume that the greatest topological factor influencing flow through the reaction net-
work is the shortest path distance between the boundary species. Because we cannot perform
simulation and analysis for one million pairs of boundary species, we sample 50 pairs of
boundary species for all values of the shortest path occurring in the network.

A simple investigation of network flow and entropy distribution is done with boundary spe-
cies concentrations set to c1 = 0.1 and c2 = 1. To get an error estimate, we generate 10 indepen-
dent samples of every network type.

To investigate the response of the nonlinear networks to an increase in thermodynamic dis-
equilibrium we vary the boundary conditions accordingly. For this we keep c1 at 0.1 while vary-
ing c2 from 0.2 up to 60. With higher values of boundary concentrations we notice an extreme
increase of computational time needed to solve the individual ODEs. Thus, we are only able to
simulate one network sample of every type for this setup.

The software for generating (https://github.com/jakob-fischer/jrnf_tools), running (https://
github.com/jakob-fischer/jrnf_int), and analyzing (https://github.com/jakob-fischer/jrnf_R_
tools) the simulations is developed in R and C++ and freely available through the
platform github.

Results
For our study we generate various random networks for each network model (Table 1). We
simulate these networks for different boundary conditions and analyze the resulting steady
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state. In the following, we first compare the artificial networks with real networks and then
show in detail how the flow and and energy dissipation depend on network structure and
boundary condition.

Network Structure
We compare the topological features of our artificially generated networks with real world net-
works (Table 1). For this we use a compilation of chemical reactions in Earth’s atmosphere
[22] and models for the combustion of Methane [23] and Dimethyl ether [24]. Also a kinetic
model of the metabolic network of Yeast [25], available through the BioModels Database [26],
is investigated. To avoid that the representation of networks as substrate graphs biases our re-
sults [27] we compare each network with a randomized version of itself. When randomizing an
artificial network we would obtain an Erdős-Rényi network with the same density and the
same types of reactions. Thus, rows for randomized BA, WS, and PS networks are omitted in
Table 1.

The power law scaling for Earth’s atmospheric reaction network and the metabolic network
of Yeast are clearly pronounced in comparison with their respective null models (Fig. 2 (B)).
This is not true for the Ethanol combustion chemistry whose size of 57 species (nodes) does
not allow to unambiguously decide on the scale-free property. The substrate graphs of the two
combustion chemistries show the properties of small world networks, they have a small mean
shortest path length and a high clustering coefficient. As their null models show the same prop-
erties, this can be attributed to their high density. All reaction networks have more cycles than
their randomized counterparts. With the exception of the network from Yeast’s metabolism all
real networks also have a higher clustering coefficient or a higher value for modularity.

For a comparison of the artificial reaction networks with real thermodynamic data we use a
table of reaction free energies (Δr G

0) of reactions in glycolysis [28]. In our networks this corre-
sponds to Dm0

j ¼
P

jNijm
0
i . Because there is no way to assign a unique reaction direction to the

reactions in the artificial networks, we are only comparing the distributions of absolute values
jm0

j j. The normalized (mean set to one) cumulative distributions show a more localized distri-

bution with a wider tail for the data from glycolysis. The distribution for the artificial networks
is over all more regular. The bimodal distribution for the data from glycolysys might be related
to the fact that it describes two distinct processes, the tricarboxylic acid cycle and the pentose
phosphate pathway.

Distance Dependency of Flow
To characterize the strength of the steady state flow for different network types, we start with
the intuitive assumption that the main factor determining the flow is the distance between the
two boundary species in the reaction network, measured by shortest path length d in the sub-
strate graph. The dependency of the mean flow on shortest path length is shown in Fig. 3.

The flow through reaction networks created with small-world and clustering topology
(Watts-Strogatz model) shows to be especially weakly dependent on boundary species distance
d. In the linear as well as the nonlinear case these networks have a lower mean flow for small d
(� 4) while for larger values of d, they have generally a larger flow than the other networks.
We hypothesize that the flow for boundary points whose distance is close to the diameter is
limited by the sparse connection of those boundary species to the network. The high clustering
of Watts-Strogatz networks (cf. Table 1) apparently leads to their exceptional high flow for
boundary points with a large distance d. This also agrees with the low sensitivity to boundary
species distance that the Watts-Strogatz networks show.
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The linear networks generated out of the Erdős-Rényi model and those generated with the
Pan-Sinha model show a strikingly similar behavior. This may be due to their similar degree
distribution (not shown).

Varying Flow through Nonlinear Networks
Unlike in linear networks, the flow and dissipation distribution in nonlinear networks depend
on the absolute concentrations of the boundary species. For the variation of boundary concen-
tration flow dependency of the concentration difference is in an intermediate regime (Fig. 4
(A)) and the slope in log-log plot takes a value between 1 and 2. This is plausible since the net-
work consists of a mix of linear reactions and nonlinear reactions with at best quadratic behav-
ior. Theoretically a stronger than quadratic dependency of flow from concentration difference
would be possible for a specific boundary condition and a specific concentration range, but this
possibility seems not to influence the mean behavior.

We look at the distribution of chemical potentials μ = μ0+ln(xi) inside the reaction network
for different strengths of the boundary condition. In Fig. 4 (B) the distributions P(μ) are shown
for the simulated Barabási-Albert (BA) reaction networks with boundary species distance d of
3. The distributions in general are localized between the chemical potentials of the boundary
species μb1 = ln(xb1) and μb2 = ln(xb2) (remember that μ0 for boundary species is set to zero).
While the distributions are almost uniform in this range for low flows, at higher flows the dis-
tributions are more shifted towards the upper part. Normalizing the standard deviation σμ by

Fig 3. The flow v through the network depending on boundary species distance d. All networks are
simulated with a boundary concentration difference of jc1−c2j = 0.9 and a base concentration of min(c1,c2) =
0.1. Filled (grey) symbols represent linear networks, empty (white) the nonlinear ones. Error bars show the
standard error of the mean.

doi:10.1371/journal.pone.0117312.g003
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Δμ = jμb2−μb1j confirms this finding (Fig. 4 (D)) and shows a narrower distribution relative to
the chemical potentials of the boundary species.

The distributions of dissipation values of the reactions are to noisy to find out if they also
get narrower for higher flows. Thus, we calculate the fraction of the dissipation explained by
the 10% of reactions with the highest dissipation, fσ(0.1). We see that with higher flows the frac-
tion of dissipation explained by these 10 percent of the network decreases (Fig. 4 (C)). The net-
works generated from the Watts-Strogatz (WS) and the Pan-Sinha (PS) networks show an
increase of fσ(0.1) for lower values, but above a flow of around 5 they also decrease. Explained
differently, for higher flows one needs a larger part of the network to explain a given fraction of
its dissipation. Together with the narrower distribution of chemical potentials we interpret this
as the thermodynamic disequilibrium leading to a tighter coupling of the reaction network.
This coupling leads to the chemical potential of different species to be closer and to the dissipa-
tion being more evenly distributed among reactions.

Flow Dependency of Cycle Number in Nonlinear Networks
There are many indicators that cycles have an important function in networks [9–11]. Cycles
function as feedback mechanisms and stabilize the dynamics of the system against perturba-
tions. Also cyclicity has been related to thermodynamic efficiency [29]. To check if there is a

Fig 4. Varying flow through nonlinear networks. Each data point is the average of all simulations with specific boundary species concentration (c1 = 0.1 c2
= 0.2. . .60) and a shortest path between boundary species of 3. (A) Dependency of flow from concentration difference. Pan-Sinha results are not shown as
they overlap with the Erdős-Rényi ones. (B) Distribution of species chemical potential μi for different boundary condition strengths of BarabsiAlbert (BA)
networks. (C) The fraction of dissipation in the network explained by the most dissipating 10 percent of reactions, fσ(0.1). (D) Standard deviation of chemical
potentials σμ normalized by difference between boundary species’ potentials Δμ = jμb2

−μb1
j shows a more localized distribution of chemical potentials for

larger flows.

doi:10.1371/journal.pone.0117312.g004
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dependency of the number of cycles on the flow through the networks we count the number of
small cycles (2- and 4-cycles) in the directed substrate graph for different values of v. Note, that
even if the simulated reactions do not change, a change in the effective flow of a reaction can
imply a change of direction and by this a change in the directed substrate graph.

The number of small cycles is dependent on local topological properties of the network
models. Thus, for evaluation we subtract the number of cycles found in networks with random-
ly chosen reaction directions (Table 1). For all network types we find a clear increase in the
number of cycles with increasing flow (Fig. 5). This formation of additional cycles can be un-
derstood as the network self-organizes in thermodynamic disequilibrium to increase its flow
and dynamic stability. Note that this supports the idea of the previous section of a closer cou-
pling of the network with higher degree of disequilibrium.

Distribution of Entropy Production Rates
To see how dissipation is distributed inside of the networks, we calculate the entropy produc-
tion rate for the individual reactions σ (Eq. 5) and look at their distribution for specific network
topologies and boundary conditions. To better see the power law dependency, we plot the

Fig 5. Number of 2- and 4-cycles in the (directed) substrate graphs of the nonlinear reaction networks. The plots show the number of additional cycles
depending on the flow through the network in comparison to the same network with random reaction directions (Table 1). Each data point is the average of all
simulations with boundary points distance of 3 and fixed boundary concentrations (c1 = 0.1 c2 = 0.2. . .60).

doi:10.1371/journal.pone.0117312.g005

Thermodynamics of RandomReaction Networks

PLOS ONE | DOI:10.1371/journal.pone.0117312 February 27, 2015 11 / 16



cumulative distribution 1� R s

�1 Pðs0Þds0, which describes the probability of the entropy pro-

duction rate being higher than σ[30] instead of P(σ).
The distributions show no large qualitative differences between the different network mod-

els (Fig. 6). The power law in the intermediate regime is differently pronounced in its extent for
different network types but the greatest difference is clearly seen between the slopes of linear
and nonlinear networks. Assuming that P(σ) follows a power law, we get an exponent of about
−1.5 for linear networks and of −1.66 for nonlinear networks. The steeper slope of the nonline-
ar networks can be interpreted as an effect of their reactions being better coupled. This can be
seen by the fact that nonlinear (A+B⇋C+D) reactions are not depleting a potential between
two species directly but there is always the probability that they increase the potential between
two other species. The coupling implies a stronger connection of the flow between individual
reactions and by this a stronger connection with the magnitude of dissipation.

Connectivity Dependence of Dissipation
To evaluate how the dissipation of a reaction depends on the connectivity of the involved spe-
cies, for every species we calculate the mean dissipation of all reactions connected to it. Plotting
the mean dissipation depending on the degree centrality of the species (in the substrate graph)
shows a relatively high dissipation for reactions adjacent to lowly connected species (Fig. 7).
This effect is more pronounced for nonlinear networks. When looking for reactions with high
dissipation we should search in the vicinity of lowly connected species. This can be explained
by the stronger connection between reactions generating and consuming the species. When the
rate of a reaction that produces a species is increased, the additional flow has to be distributed
over the consuming reactions. If there are many consuming reactions, there are more potential
pathways to forward the flow while keeping the mean dissipation rate low.

Fig 6. Cumulative distribution of the entropy production of the reactions. All simulations are performed with boundary concentration values of c1 = 0.1,
c2 = 1.0 and a shortest path between boundary species of length 4. (A) Distributions for Barabási-Albert (BA) and Erdős-Rényi (ER) networks. (B)
Distributions for Watts-Strogatz (WS) and Pan-Sinha (PS) networks.

doi:10.1371/journal.pone.0117312.g006
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Conclusions
We have simulated random reaction networks under thermodynamic constraints in order to
provide insight into how energy is dissipated in complex reaction networks in thermodynamic
disequilibrium. We observe a clear difference between linear and nonlinear networks. The
power law has an exponent of� −1.5 for linear and a slightly lower exponent of� −1.66 for
nonlinear networks. However, there are no qualitative differences between the distributions of
entropy production rate for different complex network models like Erdős-Rényi, Barabási-Al-
bert, etc. (Fig. 6). The differences between thermodynamic reaction networks of different topol-
ogies are more pronounced in the flow (Fig. 3) than in the other properties investigated.

We found that a greater disequilibrium in nonlinear reaction networks is associated with a
more tightly coupled network. For a greater flow, the network self-organizes and maintains a
greater number of cycles (Fig. 5). A greater flow also leads to a narrower distribution of chemi-
cal potentials (Fig. 4 (B), (D)). This is associated with results that suggest that for higher flows,
a larger fraction of the network is necessary to explain a given fraction of its dissipation (Fig. 4
(C)). We interpret this as an increase in the system’s complexity that comes along with a higher
thermodynamic disequilibrium.

Finally, we found that reactions involving lowly connected species tend to dissipate more
energy, which is more pronounced in nonlinear networks, but is also found in linear networks

Fig 7. Mean entropy production σ associated with nodes of degree f. Values are normalized by mean entropy production in the sample network. Grey
filled points show nonlinear networks, white filled points show linear networks. Data was taken from all simulation runs of the specified network type with min
(c1,c2) = 0.1, jc1−c2j = 0.9 and shortest path d = 4.

doi:10.1371/journal.pone.0117312.g007
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(Fig. 7). This might help to identify reactions that play central roles in the energy dissipation of
a complex reaction network.

We also showed how our artificial networks share topological properties with real reaction
networks. The artificial networks are toplogically more similar to Earth’s atmospheric chemis-
try and Yeast’s metabolism than to the two investigated combustion chemistries. The main dis-
criminating factor here is the high density of those two combustion chemistries. The
distribution of thermodynamic parameters in the artificial networks only roughly matches data
from reactions of glycolysis (Fig. 2 (B)). Obviously, the amount of thermodynamic data (37 re-
actions) is quite limited. Current progress in bioinformatic methods to reconstruct thermody-
namic data [31–33] may improve the availability of such data in future and allow a
better analysis.

Nevertheless, a fundamental problem of such a comparison remains. It is the way the data
of reaction networks is obtained. In networks from chemical models, experimentalists and
modelers have made a decision on which reactions are relevant. Experimentalists only find re-
actions that are occurring and are measurable in the systems they investigate. Also the model-
ers might just decide to exclude reactions with low reaction rates from their models. Hence, the
reaction network taken from a model is already biased with respect to the model’s intention.
Our approach with artificial networks, however, assumes the artificial network is a set of (hypo-
thetically) possible reactions; which reactions become important emerges from the dynamics
and can be different depending on the boundary conditions.

Thus, we suggest to investigate such emergent phenomena in the future. This is possible by
taking smaller artificial reaction networks and then looking at their reaction pathways using el-
ementary flux modes [34]. This would also allow to test the relationship between the rate of an
elementary mode and its entropy production [35, 36]. The thermodynamics of reaction net-
works and of cycling processes therein may also provide insight into the origins of life. Reveal-
ing how thermodynamics constraints the behavior of complex reaction networks will be an
important ingredient in understanding the role of thermodynamics in domains like prebiotic
chemistry [11, 37], biogeochemistry, and cellular systems.
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