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Abstract
Maternal obesity and excess gestational weight gain with compromised metabolic fitness

predispose offspring to lifelong obesity and its comorbidities. We demonstrated that com-

pared to offspring born before maternal gastrointestinal bypass surgery (BMS) those born

after (AMS) were less obese, with less cardiometabolic risk reflected in the expression and

methylation of diabetes, immune and inflammatory pathway genes. Here we examine rela-

tionships between gestational obesity and offspring gene variations on expression levels.

Methods

Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS

offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and

HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interac-

tions between offspring gene variations and maternal surgical status on offspring gene ex-

pression levels. Altered biological functions and pathways were identified and visualized

using DAVID and Ingenuity Pathway Analysis.

Results

Significant interactions (p� 1.22x10-12) were found for 525 among the 16,060 expressed

transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis dem-

onstrated enrichment of transcription and of cellular metabolism functions and overrepre-

sentation of cellular stress and signaling, immune response, inflammation, growth,

proliferation and development pathways.
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Conclusion

We suggest that impaired maternal gestational metabolic fitness interacts with offspring

gene variations modulating gene expression levels, providing potential mechanisms ex-

plaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated ma-

ternal lipid and carbohydrate metabolism.

Introduction
Epidemiological studies demonstrate that parental obesity increases obesity risk in offspring
and suggest an important role of the intrauterine environment owing to stronger associations
between maternal than paternal body mass index (BMI) with offspring obesity [1, 2]. Maternal
obesity, excess gestational weight gain, high inter-pregnancy BMI and gestational diabetes in-
crease risks of offspring obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease
(CVD) and fatty liver [3–5]. Environmental and genetic factors mediate the link between pa-
rental obesity and increased risk of obesity in offspring [2, 6]; family and twin studies demon-
strate heritability of obesity and CVD risk factors [7, 8].

Large-scale genome-wide association studies (GWAS) have consistently revealed the pres-
ence of specific genes in metabolic diseases such as type 1 and T2DM [9, 10] and obesity
[7, 11]. GWAS on expression traits identified variations regulating gene expression (expression
quantitative trait loci; eQTL) and demonstrated that gene expression levels show complex in-
heritance patterns [12, 13]. Such studies elucidate basic processes of gene regulation and may
identify the pathogenesis of prevalent diseases adding information to associations identified by
GWAS.

Gene expression levels are greatly affected by genetic and environmental factors [14] where
gene variations have the potential to attenuate or amplify environmental effects. An adverse in-
trauterine environment has long been known to contribute to metabolic and cardiovascular
diseases [15] where differences in expression levels between offspring born under different ma-
ternal conditions were reported for specific genes and at genome-wide level [16–19]. Several
loci associated with specific traits interact with intrauterine environment [20–22]. A striking
example of such gene-environment interaction is the association of SIRT1 SNPs with lower
prevalence of type 2 diabetes observed in individuals prenatally exposed to famine in utero but
not in those not exposed to famine.

Bariatric bypass operations improve glucose and lipid metabolism and treat and/or prevent
hypertension, dyslipidemia, T2DM and fatty liver disease [23–25]. Similar to weight loss
[26, 27], bariatric surgery results in changes in gene expression levels [28, 29]. Our studies
uniquely demonstrated that offspring born after maternal gastrointestinal bypass surgery
(AMS) exhibit lower prevalence of severe obesity, greater insulin sensitivity and improved
lipid profiles compared to offspring born before maternal surgery (BMS) [30, 31]. Recently,
we demonstrated that these improvements are associated with differences in gene expression
and methylation of genes involved in diabetes and immune and inflammatory pathways
[17, 32].

In order to further explore the role of the intrauterine environment in the determination of
offspring phenotype and to provide molecular mechanisms explaining changes in cardiometa-
bolic risk markers of AMS vs. BMS offspring, we studied the combined influence of maternal
surgical status and offspring gene variations on offspring gene expression levels.
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Materials and Methods

Subjects
Women from Quebec City and surrounding areas (administrative regions of Capitale-Natio-
nale, Mauricie and Chaudière-Appalaches) who had given birth before and after biliopancrea-
tic diversion with duodenal switch [25] for severe obesity were eligible. We recruited a subset
of 19 unrelated mothers aged 34–51 years having offspring aged 2–23 years, 22 born before
and 23 after maternal operations. Between July and October 2010 mothers and offspring visited
the Quebec Heart and Lung Institute (Quebec City, Quebec, Canada) or a regional hospital for
clinical evaluation and blood sampling. There were 15 mothers with siblings born before and
after surgery (21 BMS and 18 AMS), one with BMS offspring only (1 BMS) and 3 mothers with
only AMS offspring (5 AMS).

Maternal pre-surgical data were obtained from medical records. At the office visit weight
and percent body fat were determined for individuals aged 6 years or more (BMS, N = 21;
AMS, N = 15) using bioelectric impedance analysis (Tanita; Arlington Heights, IL). Height and
resting systolic (SBP) and diastolic (DBP) blood pressure were obtained using standardized
procedures. BMI was calculated for mothers and adults and BMI percentiles for children were
obtained from the National Health and Nutrition Examination Survey 2000 chart [33].
BMI Z-score was calculated for children using charts from the Centers for Disease Control and
Prevention [34]. Fasting whole blood samples were collected from an antecubital vein into
tubes containing EDTA and PAXgene Blood RNA collection tubes (Qiagen, Valencia, CA,
USA). Plasma lipid, glucose and insulin concentrations were measured as previously described
[35]. Lipid and glucose levels values from 3 AMS non-fasting offspring were excluded. The ho-
meostatic model assessment of insulin resistance (HOMA-IR) index was calculated as fasting
glucose x insulin/22.5. Levels of high-sensitivity C-reactive protein (CRP) were measured with
a BN ProSpec nephelometer (Siemens Canada Limited, Oakville, Ontario, Canada) [36]. CRP
values under the detection limit (< 0.17 mg/L) were arbitrarily set at detection limit.

Ethics Statement
This study was approved by the Quebec Heart and Lung Institute Ethics Committee. Written
informed consent was obtained from mothers and adult offspring and assent from minor off-
spring were obtained from mothers.

Gene expression analysis
Gene expression levels of the 45 offspring analyzed here were obtained from previous studies
from our group evaluating differences in gene expression and methylation of genes involved in
diabetes, immune and inflammatory pathways [17, 32]. Briefly, total RNA was isolated and pu-
rified from offspring whole blood using PAXgene Blood RNA Kit (Qiagen). The quality and in-
tegrity of the purified RNA was assessed using both the NanoDrop (Thermo Scientific,
Wilmington, DE, USA) and the 2100 Bioanalyzer (Agilent Technologies, Cedar Creek, TX,
USA). Expression levels were measured using the HumanHT-12 v4 Expression BeadChip (Illu-
mina Inc., San Diego, CA) with 250 ng of total RNA and processed at the McGill University
and Genome Quebec Innovation Centre (Montreal, Canada). Expression data were visualized
and analyzed using the FlexArray software [37] (version 1.6) and the lumi R package was used
for expression data analysis and normalization. To be considered as expressed, a probe had to
show a detection p-value� 0.05 in at least 25% of samples of a group. Among the 47,323
probes on the microarray, 16,060 (33.9%) showed significant gene expression in blood and
were used as dependent expression phenotypes (expression traits) for analysis of interactions
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between offspring gene variations and maternal obesity status (GEO accession number
GSE44407).

DNA extraction and genome-wide genotyping
Genomic DNA was isolated from offspring blood buffy coat using the GenElute Blood Geno-
mic DNA kit (Sigma, St Louis, MO, USA). Quantification and verification of DNA quality
were conducted via both NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE,
USA) and PicoGreen DNAmethods. Genotyping was performed at McGill University and Ge-
nome Quebec Innovation Centre (Montreal, Canada) using Illumina HumanOmni-5-Quad
BeadChip (Illumina Inc., San Diego, CA), according to the manufacturer’s instructions. Each
HumanOmni-5-Quad BeadChip contained 4,301,331 markers.

SNPs and sample quality control
Calculations of allele frequencies and tests of SNP data for Hardy-Weinberg equilibrium
(HWE) were performed using PLINK [38] (version 1.07). Standard quality control exclusion
criteria for the SNPs were used: call rate< 95%, genotype distribution deviating from Hardy-
Weinberg Equilibrium (p-values less than 10–7) and monomorphic SNPs or those with a
minor allele frequency (MAF)< 0.01 [39]. A total of 1,751,034 SNPs were excluded leaving
2,550,297 SNPs for statistical analyses. All samples were tested for call rate (> 90%), ethnicity
(Caucasian; HapMap) and gender mismatch based on genotyping data. No subjects were ex-
cluded: all 45 samples were used in further analysis.

Statistical analysis
Anthropometric and clinical data were expressed as mean ± SD. Maternal treatment effect on
anthropometric-, blood pressure-, lipid profile- and glucose-related variables was assessed
using a within-subject, paired t-test. Differences between BMS and AMS offspring were tested
using analysis of variance (general linear model, type III sum of squares) and adjusted for the
effects of sex and puberty. BMI percentile and BMI Z-score being obtained from age- and sex-
specific charts, no further adjustments for age and sex were made to test for differences be-
tween BMS and AMS offspring for those adiposity measurements. Severe obesity in offspring
was defined as BMI percentile > 98% and Z-score> 3. Transformations were applied to non-
normally distributed variables (log10 transformed for insulin and HOMA-IR; negative inverse
transformed for C-reactive protein). In the absence of Tanner scores, we arbitrarily defined pu-
berty as 12 years for female and 14 years for male offspring based on Canadian sex-specific
probabilities of having entered puberty [40]. Differences in severe obesity between BMS and
AMS offspring were evaluated using BMI percentile and BMI Z-score and tested using Fisher’s
exact test. P-values for CRP were adjusted for the effects of sex, puberty and BMI percentile.
Statistical analyses were done using the SAS software version 9.2 (SAS Institute Inc). Statistical
significance was defined as p� 0.05. Interactions between offspring gene variations and mater-
nal surgical status were tested on offspring gene expression levels in whole blood using PLINK.
Differences in regression slopes obtained from additive model were then tested between
BMS and AMS offspring. Bonferroni correction was applied to correct for multiple testing
of offspring gene variation x environment interactions thus leading to a p-value cutoff of
p� 1.22x10–12 (as calculated with 0.05/ (2,550,297 SNPs x 16,060 transcripts)) to claim statis-
tical significance. Linkage disequilibrium (LD; r2) between SNPs demonstrating significant in-
teractions was calculated using Haploview [41] to assess the number of independent (non-
linked) SNPs. The tagger algorithm implemented in Haploview was used to identify tag SNPs
among the significant polymorphisms (r2 threshold = 0.8).
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Gene functions and pathways analysis
Two independent function and pathway analysis tools were employed to identify potentially
enriched functions and overrepresented pathways from the list of transcripts demonstrating
significant interactions, namely the Database for Annotation, Visualization, and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov) bioinformatics resources [42, 43] and Inge-
nuity Pathway Analysis (IPA). DAVID provided annotation for the list of transcripts and com-
puted annotation term enrichment to highlight the most relevant functions from the list of
transcripts. Similarly, IPA classified each transcript from this list according to function and
pathway. Using a right-tailed Fisher’s exact test, IPA measured the likelihood that transcripts
from the list participate in each function/pathway solely due to chance and calculated p-values.
Enriched functions and overrepresented pathways were then obtained from transcripts show-
ing interactions.

Results

Characteristics of 19 mothers and their 45 offspring
Mean postoperative follow-up for the mothers after bilio-pancreatic diversion surgery was
12 years 7 months (range: 4 years 11 months to 22 years 4 months). Preoperative weight was
121.6 ± 18.7 kg (BMI = 45.1 ± 7.4) and 74.9 ± 12.2 kg (BMI = 27.6 ± 4.9) at follow-up, a mean
loss of 46.7 kg, associated with significant, clinically important improvements in fasting plasma
lipids (p� 0.005 for TG, HDL-C, LDL-C, total-C and total-C/HDL-C ratio), glucose levels
(5.81 ± 2.41 vs. 4.68 ± 0.32; p = 0.048) and blood pressure (SBP and DBP; p� 0.001) were ob-
served (S1 Table).

Offspring ages varied between 2 years 8 months and 23 years 9 months, with similar sex dis-
tributions in the two groups (41% male in BMS vs. 43% in AMS; Table 1). BMS offspring were
born 3 years 4 months (40.2 ± 28.0 months) before and AMS 3 years 9 months (44.9 ± 26.6
months) after maternal surgery. BMS offspring were older than AMS at follow-up (14.5 ± 5.7
vs. 9.0 ± 5.0 years; p = 0.001; BMS range: 5 years 9 months to 23 years 9 months; AMS range:
2 years 8 months to 19 years 6 months). Severe obesity was less prevalent in AMS using BMI
percentile (p = 0.01) or BMI Z-score (p = 0.02). Adjusting for sex and puberty, AMS offspring
exhibited trends toward lower fasting insulin levels and HOMA-IR index, and lower diastolic
blood pressure (p< 0.10 for all).

Interactions effects between offspring gene variations and maternal
surgical status
Testing interactions between 2,550,297 offspring SNPs and maternal status on 16,060 expres-
sion phenotypes in offspring demonstrated 102,129 interactions reaching statistical signifi-
cance (representing 0.00025% of all tests; p� 1.22x10–12). The top significant interactions are
shown in Table 2. These represent 48,156 unique SNPs (1.9% of the SNPs tested), 33.6%
(16,184) of which demonstrated statistically significant interactions for multiple transcripts.
Identified SNPs were mainly in intergenic regions (61%) while intronic, exonic and untranslat-
ed region SNPs represented a minority (35%, 2% and 2% respectively). SNP rs35447805
(kgp1360358) located at chr8:85131756 within the RALYL gene (NM_001100391) demonstrat-
ed the most statistically significant interaction with treatment for expression level of SEPT4
(NM_080415) and IFI35 (NM_005533), both located on chromosome 17 (Table 2). As an ex-
ample, interaction effect for rs35447805 on SEPT4 expression levels manifested in a 2.5 fold in-
crease in expression for AMS heterozygous carriers and slight decrease (0.9 fold) for BMS
heterozygous carriers (S2 Table). SNPs located in the interferon (alpha, beta and omega)

Maternal Bariatric Surgery and Offspring Gene Expression

PLOS ONE | DOI:10.1371/journal.pone.0117011 January 20, 2015 5 / 17

http://david.abcc.ncifcrf.gov


receptor 1 (IFNAR1)—interleukin 10 receptor, beta (IL10RB) gene region and those near trans-
membrane protein, adipocyte associated 1 (GPR175, also known as TPRA1), BARX homeobox
2 (BARX2) transcription factor and heparan sulfate (glucosamine) 3-O-sulfotransferase 4
(HS3ST4) demonstrated several significant interactions (S3 Table).

Statistically significant offspring SNP-by-maternal surgical status interactions identified for
the 48,156 unique SNPs involved 525 unique transcripts (3.3%) thus implying that a single
transcript might be under multiple genetic constraints. Indeed, 375 of these 525 unique tran-
scripts (71.4%) demonstrated multiple (�2) significant interactions. The most highly repre-
sented transcripts from significant interactions are shown in Table 3, including transcripts
encoding genes involved in regulation of gene expression per se, immune and inflammatory

Table 1. Offspring characteristics.

BMS AMS p-values1

N (males) 22 (9) 23 (10)

Age (years) 14.5 ± 5.7 9.0 ± 5.0 0.001

Anthropometric data

Fat percent2 29.6 ± 14.4 22.7 ± 10.3 0.28

BMI percentile 68.7 ± 41.5 69.7 ± 30.9 0.93

BMI Z-score3 1.93 ± 2.18 0.90 ± 1.48 0.08

Severe obesity

BMI percentile > 98% (N) 11 3 0.01

BMI Z-score > 3 (N) 7 1 0.02

Blood pressure

SBP (mm Hg) 110.5 ± 14.9 96.7 ± 14.8 0.13

DBP (mm Hg) 64.3 ± 10.5 52.8 ± 13.2 0.06

Lipid profile4

TG (mmol/l) 1.03 ± 0.44 0.81 ± 0.38 0.29

LDL-C (mmol/l) 2.66 ± 0.56 2.53 ± 0.59 0.67

HDL-C (mmol/l) 1.30 ± 0.31 1.30 ± 0.26 0.76

Total-C (mmol/l) 4.44 ± 0.67 4.20 ± 0.59 0.39

Total-C / HDL-C 3.58 ± 0.97 3.37 ± 0.87 0.76

Glucose metabolism4

Fasting glucose (mmol/l) 4.94 ± 0.44 4.77 ± 0.37 0.54

Insulin (μU/ml) 19.98 ± 12.54 11.45 ± 7.50 0.06

Homa-IR 4.55 ± 3.34 2.49 ± 1.74 0.08

CRP (mg/L)5 5.54 ± 8.34 1.54 ± 3.69 0.12

Values are presented as mean ± SD.

1. P-values adjusted for sex and puberty except for BMI percentile and BMI Z-score and obtained from

comparison of all BMS (N = 22) and AMS (N = 23) offspring.

2. Fat percent at 6 years or more (BMS, N = 21; AMS, N = 15).

3. BMS, N = 19; AMS, N = 22.

4. BMS, N = 22; AMS, N = 20.

5. P-values for CRP were adjusted for the effects of sex, puberty and BMI percentile. Abbreviations: BMS,

before maternal surgery; AMS, after maternal surgery; BMI, body mass index; SBP and DBP, systolic

diastolic and systolic blood pressure; TG, triglycerides; LDL-C; low-density lipoprotein cholesterol; HDL-C,

high-density lipoprotein cholesterol; Total-C, total cholesterol; CRP, C-reactive protein; SD, standard

deviation.

doi:10.1371/journal.pone.0117011.t001
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Table 2. Most significant SNP-by-maternal treatment interactions.

SNP Transcript

SNP ID1 rs number Chr Position2 Accession Gene3 Chr P-value4

kgp11796917 rs146836802 14 30685942 NM_194323 OTOF 2 1.09x10–57

kgp30566776 rs73229805 X 67014865 NM_001010927 TIAM2 6 3.53x10–45

kgp8430951 rs78240927 6 163766098 NM_001100422 SPATS2L 2 2.37x10–37

kgp11155608 rs12059564 1 159000779 NM_015913 TXNDC12 1 7.81x10–32

kgp1360358 rs35447805 8 85131756 NM_080415 SEPT4 17 4.70x10–30

kgp6389054 rs78957751 16 34886264 NM_001006630 CHRM2 7 4.14x10–27

rs4764191 rs4764191 12 15560196 NM_001032295 SERPING1 11 4.43x10–27

kgp11709552 rs62227091 22 47811418 NM_001011724 HNRNPA1L2 13 3.15x10–26

kgp30620929 rs140547157 X 27936207 XM_945614 PMS2L1 7 3.32x10–26

kgp11042611 rs79592528 3 122772698 XM_938400 LOC142937 10 3.97x10–26

kgp8787288 rs940676 2 121235234 NM_003733 OASL 12 8.00x10–25

kgp4545030 rs78211484 12 59934484 CK299576 HS.528210 3 5.46x10–24

kgp18518 rs17757256 2 19650629 NM_001007524 F8A3 X 1.19x10–23

kgp2333358 rs1461092 12 41556961 NM_005419 STAT2 12 4.89x10–23

kgp8581526 rs36117773 5 11939359 NM_025126 RNF34 12 1.15x10–22

kgp494941 rs79270474 12 12338554 NM_002535 OAS2 12 1.59x10–22

kgp6448962 rs57573303 9 28322259 NM_001012978 BEX5 X 5.84x10–22

rs3803712 rs3803712 16 26074500 NM_001712 CEACAM1 19 7.21x10–22

kgp36317 rs2247335 6 106992592 NM_001007234 ERCC8 5 8.83x10–22

kgp4630305 rs59557850 8 78148122 NM_003728 UNC5C 4 1.10x10–21

rs9655226 rs9655226 7 22598742 NM_170695 TGIF1 18 3.07x10–21

kgp10592712 rs73063011 19 52338183 NM_024032 C17ORF53 17 8.71x10–21

kgp237322 rs539822 5 176310164 XM_001721497 LOC100132457 2 1.02x10–20

rs11053624 rs11053624 12 10283711 NM_015589 SAMD4A 14 1.51x10–20

kgp11540460 rs144298037 6 45434746 NM_001004349 FLJ45422 6 1.56x10–20

kgp11526978 rs4711691 6 12404895 NM_014453 CHMP2A 19 3.55x10–20

kgp11514400 rs35833993 6 165457847 NM_006918 SC5D 11 5.65x10–20

kgp3001132 rs9606166 22 19811720 NM_006704 SUGT1 13 6.90x10–20

kgp9305036 rs943009 6 11243891 NR_002940 LRRC37A4 17 1.59x10–19

kgp8789955 rs62576233 9 84337468 NM_005792 MPHOSPH6 16 1.63x10–19

kgp1173427 rs61733660 6 151148947 XM_925998 SRA1 5 1.82x10–19

rs29684025 rs29684024 16 21947480 NM_014598 SOCS7 17 3.16x10–19

kgp12304307 rs13298711 9 83820909 NM_002256 KISS1 1 3.45x10–19

rs11636802 rs11636802 15 56775597 DA276856 HS.576243 1 3.53x10–19

kgp12481432 rs4407201 2 130522894 NM_016134 CPQ 8 4.88x10–19

kgp31122632 rs138131809 X 116143012 NR_024524 LOC100129055 10 6.25x10–19

rs7149078 rs7149078 14 32844576 CD369504 HS.540642 16 6.57x10–19

kgp4554682 rs1108962 4 100663492 AI274046 HS.555512 14 8.86x10–19

kgp8947215 rs73030956 12 1675847 NM_018271 FLJ10916 2 9.40x10–19

kgp7059559 rs1831464 13 92902619 NM_019062 RNF186 1 9.67x10–19

kgp4609959 rs13284671 9 824742 NM_002720 PPP4C 16 1.02x10–18

kgp2913569 rs36067040 1 224238495 NM_001017977 DCAF6 1 1.32x10–18

kgp1360358 rs35447805 8 85131756 NM_005533 IFI35 17 1.67x10–18

kgp6643156 rs79321471 14 101498881 NM_017831 RNF125 18 1.81x10–18

kgp619464 rs4292995 1 30738298 NM_022148 CRLF2 Y 2.36x10–18

rs6074541 rs6074541 20 12978517 NM_006286 TFDP2 3 2.87x10–18

(Continued)

Maternal Bariatric Surgery and Offspring Gene Expression

PLOS ONE | DOI:10.1371/journal.pone.0117011 January 20, 2015 7 / 17



responses and lipid biosynthesis from which examples for STAT2 (NM_005419), IFI35
(NM_005533) and DGKZ (NM_003646) are shown in S1 Fig. LD was found between SNPs, re-
sulting in multiple significant interactions with an identical transcript: 14,676 interaction tag-
ging SNPs (tSNPs) were identified among the 48,156 unique SNPs showing significant
interactions. Limiting analysis to these tSNPs led to the identification of 56.2% of the tran-
scripts showing multiple statistically significant interactions.

Gene functions and pathways
Clustering of the 525 transcripts showing significant interactions based on ontology using
DAVID identified 5 over-represented functional categories (-log group enrichment score> 1.30;
p-value for group enrichment score< 0.05): 1) transcription, 2) metabolic process, 3) guanine
nucleotide exchange factor, 4) death/ZU5 domain and 5) zinc finger domain (S4 Table). IPA
analysis revealed infectious disease, inflammatory response, gene expression, and cellular growth
and proliferation among the over-represented functional categories from the list of transcripts
demonstrating statistically significant interactions, thus highlighting transcription and cellular
metabolism functions using both function analysis tools. Similarly, IPA revealed 18 pathways en-
riched for these transcripts, including 12 related to cellular stress and signaling, immune re-
sponse and inflammation, and growth, proliferation and development. Importantly, DNA
Double-Strand Break Repair by Homologous Recombination was the most overrepresented
pathway (p = 0.001) and carbohydrate and lipid biosynthesis/degradation pathways were also
identified (Fig. 1).

Discussion
In a unique offspring cohort born discordant for maternal biliopancreatic bypass surgery af-
fecting maternal metabolic fitness we extend observations that an adverse dysmetabolic intra-
uterine environment is associated with subsequent obesity and cardiometabolic risk [30, 31]
related to gene expression levels [16, 18, 19]. Using a cohort in which gene expression and

Table 2. (Continued)

SNP Transcript

SNP ID1 rs number Chr Position2 Accession Gene3 Chr P-value4

kgp12299095 rs35007051 2 188415764 NM_002164 IDO1 8 3.76x10–18

kgp12307971 rs76107005 10 85534815 NM_002201 ISG20 15 4.36x10–18

kgp10871570 rs115462216 21 22882926 U43604 HS.550193 5 4.78x10–18

rs3025651 rs3025651 6 29539914 NM_003646 DGKZ 11 6.03x10–18

List of the top 50 significant interactions. Regulated transcripts and respective p-values are shown.

SNP with the most significant association obtained from comparison of all BMS (N = 22) and AMS (N = 23)

offspring was shown for each transcript.

1. SNP ID as defined by Illumina HumanOmni-5-Quad BeadChip annotation.

2. Genome build 37.

3. RefSeq or UniGene nomenclature.

4. P-values for differences between regression slopes (BMS vs. AMS) obtained from an additive model.

5. SNP mapped at two locations (chr16:21947480 and chr16:29119905). Abbreviations: SNP, single

nucleotide polymorphism; Chr, chromosome.

doi:10.1371/journal.pone.0117011.t002
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Table 3. Most represented transcripts from the list of significant interactions.

Transcript1 Accession Significant interactions (N) Most significant p-value2

SEPT4 NM_080415 8492 4.70x10–30

OTOF NM_194323 8473 1.09x10–57

SPATS2L NM_001100422 8465 2.37x10–37

TXNDC12 NM_015913 8172 7.81x10–32

LOC142937 XM_938400 6690 3.97x10–26

HNRNPA1L2 NM_001011724 6151 3.15x10–26

HS.528210 CK299576 5804 5.46x10–24

TIAM2 NM_001010927 5204 3.53x10–45

OAS2 NM_002535 4396 1.59x10–22

SERPING1 NM_001032295 4168 4.43x10–27

OASL NM_003733 2964 8.00x10–25

HS.550193 U43604 2886 4.78x10–18

FLJ45422 NM_001004349 2659 1.56x10–20

TCP1 NM_030752 1823 3.15x10–17

RNF125 NM_017831 1762 1.81x10–18

CEACAM1 NM_001712 1728 7.21x10–22

SRA1 XM_925998 1545 1.82x10–19

IFI35 NM_005533 1474 1.67x10–18

STAT2 NM_005419 1371 4.89x10–23

HS.391327 BX110374 1352 1.39x10–16

PMS2L1 XM_945614 1080 3.32x10–26

SAMD4A NM_015589 949 1.51x10–20

DGKZ NM_003646 840 6.03x10–18

ISG20 NM_002201 798 4.36x10–18

LOC649009 XM_941706 701 2.41x10–17

HS.553068 BX103476 533 1.32x10–15

F8A3 NM_001007524 502 1.19x10–23

BEX5 NM_001012978 475 5.84x10–22

LRRC37A4 NR_002940 462 1.59x10–19

LOC401525 XM_376869 447 8.58x10–18

LOC649143 XM_944822 403 6.06x10–18

SUGT1 NM_006704 400 6.90x10–20

FANCA NM_000135 366 6.50x10–18

PPP4C NM_002720 321 1.02x10–18

GOLM1 NM_177937 317 5.85x10–17

PIGC NM_153747 295 4.51x10–17

TAPBP NM_172209 274 1.56x10–16

ATF3 NM_001040619 216 3.66x10–17

RNF34 NM_025126 194 1.15x10–22

HS.539736 AI979341 192 9.90x10–18

LOC100132347 XM_001713703 186 2.06x10–15

LOC100132457 XM_001721497 168 1.02x10–20

CPQ NM_016134 165 4.88x10–19

UBXD7 XM_936412 146 4.18x10–15

FAT3 XM_926199 145 1.15x10–15

RNF186 NM_019062 139 9.67x10–19

ZBP1 NM_030776 134 1.16x10–14

(Continued)
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methylation levels were previously evaluated in regards to metabolic differences between BMS
and AMS offspring [17, 32], the current study focusing on a different aspect (gene-environ-
ment interactions) demonstrated modulatory effects of maternal fitness on the association be-
tween genotype and gene expression in offspring. In this study we tested gene expression levels
(expression traits) for interactions between offspring SNPs and maternal treatment. By analyz-
ing the offspring genotypes and gene expression at the genome-wide level combined with the
impact of maternal status, we provide an objective insight into the relation between maternal
status and offspring cardiometabolic risk profile and have the potential to elucidate the func-
tional basis of known associations identified previously.

Overlapping SNPs identified here with those previously associated with specific phenotypes
and metabolic variables in GWAS has the potential to elucidate mechanisms for previously re-
ported associations. Systematic comparison of SNPs and regulated transcripts with results
from GWAS was then conducted. Our top interactions (Table 2) identified SNP rs57573303 in
the gene LINGO2 and SNP rs3803712 located inHS3ST4. The former was associated with

Table 3. (Continued)

Transcript1 Accession Significant interactions (N) Most significant p-value2

OPRL1 NM_000913 131 9.08x10–15

LOC645253 XM_944197 127 1.79x10–15

HIST1H4H NM_003543 125 7.54x10–16

1. RefSeq or UniGene nomenclature.

2. P-values for differences between regression slopes (BMS vs. AMS) obtained from an additive model. Abbreviation: N, number.

doi:10.1371/journal.pone.0117011.t003

Figure 1. Pathways enriched from transcripts demonstrating significant interactions. The number of submitted transcripts in each pathway is reported
in histogram bars. Histogram bars for pathways related to cellular stress and signaling (black), immune response and inflammation (dark grey), and growth,
proliferation and development (light grey) are highlighted. Unrelated pathways are shown in white.

doi:10.1371/journal.pone.0117011.g001
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BEX5 expression levels, a brain expressed X-linked gene family member regulating differentia-
tion of dopamine neurons involved in food reward signaling [44]. The latter we found was as-
sociated with CEACAM1 gene expression levels encoding a cell-cell adhesion molecule
involved in differentiation, apoptosis and modulation of innate and adaptive immune response
consistent with decreased liver CEACAM1 expression reported in severely obese patients [45].
In regards to the interaction identified here, increased CEACAM1 expression was observed in
heterozygous AMS offspring while BMS rare allele carriers demonstrated lower CEACAM1 ex-
pression. SNPs in LINGO2 and HS3ST4 were previously found to be associated with children
BMI z-score and % fat mass, respectively [11]. Associations between rs10968576, also in
LINGO2, and fasting plasma cholesterol levels and BMI were found in different populations
[46, 47]. We identify here rs115462216 SNP (kgp10871570) in NCAM2 for which rs11088859
has been associated with waist circumference [48]. In addition, the presence of neurological
(ERCC8, KISS1, IDO1, OTOF, SEPT4, SERPING1, SOCS7, STAT2, TGIF1, TIAM2) and endo-
crine system development (CHRM2, SC5D, SOCS7) genes among the regulated transcripts
(Table 2) suggest a mechanistic role in offspring programming under varying maternal condi-
tions [19, 49]. Taken together, the identification of SNPs located in genes previously reported
by others to be associated with obesity traits support our results and is consistent with studies
showing that SNPs associated with complex traits are more likely to be eQTLs [50, 51].

The limited number of transcripts for which we found offspring gene variation-by-maternal
status interactions and the large number of SNPs suggest that single transcripts may be under
multiple genetic constraints, coherent with previous studies conducted on larger cohorts
[52–54]. Among the numerous SNPs we identified with significant interactions, many were spe-
cifically associated with the inflammatory, insulin-resistant, dysmetabolic diathesis of diabesity
such as SNPs in the IFNAR1—IL10RB gene region forming the class II cytokine receptor gene
cluster (S3 Table). Those genes involved in IL10-induced signal transductions were associated
with inflammatory diseases and ischemic stroke with hypertension [55–57]. We also observed
significant interactions for SNPs located near the GPR175 (TPRA1) gene, expression level of
which was previously demonstrated to be associated with plasma lipid levels [58]. Furthermore,
we found interactions of SNPs near BARX2, a member of the homeobox transcription factor
family known to influence cellular processes controlling cell adhesion and remodeling actin
cytoskeleton. Others previously found such associations with T2DM and end-stage renal
disease [59].

Gene function analysis conducted with two independent tools highlighted genes related to
transcription and cellular metabolism. Combined with other overrepresented functional cate-
gories (guanine nucleotide exchange factor, death/ZU5 domain, zinc finger domain), these re-
sults suggested some potential effects of maternal metabolic fitness on offspring at both the
cellular and transcriptional levels. Our pathway analysis also identified pathways related to cel-
lular growth, proliferation and development, stress and signaling as well as carbohydrate and
lipid metabolism similar to others’ findings. Global gene expression analysis of amniotic fluid
cell-free fetal RNA identified lipid (apolipoprotein D) and transcriptional regulators (FOS and
STAT3) as well as apoptotic cell death-related genes among differentially expressed genes be-
tween fetuses of obese vs. lean pregnant women [16]. In conjunction with influences of mater-
nal obesity before conception reported on gene expression profiles of rat embryos, genes
related to cell cycle, carbohydrate metabolism, DNA repair and transcriptional regulator were
altered [60]. These results strengthen our observations pertaining to an overrepresentation of
cellular processes (cellular growth, proliferation and development), carbohydrate and lipid me-
tabolism pathways identified. The study on rat embryos [60] also supports overrepresentation
of immune response and inflammatory genes as well as DNA double-strand break repair-
related genes among transcripts with significant interactions. Similar to changes in expression
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previously observed in obese patients early after having undergone weight loss or bariatric sur-
gery [26, 27, 29], we found that inflammation-related transcripts were overrepresented. Global-
ly, overrepresentation of cellular signaling, carbohydrate metabolism and inflammatory
pathways identified here from the list of transcripts showing significant offspring gene varia-
tions by maternal surgical status interactions are in line with previous results from our group
comparing BMS and AMS offspring at gene methylation and expression levels [17, 32]. In ad-
dition, our results are consonant with murine studies showing effects of maternal gestational
obesity and high-fat diet on offspring with differences in gene expression levels for genes relat-
ed to inflammation and glucose homeostasis [61, 62] and for pathways related to cellular stress,
signaling, growth, proliferation, development and regulation of lipogenic pathways [63] of sig-
nificant pathogenic importance for the dysmetabolic diathesis of diabesity. Our pathway analy-
sis demonstrated involvement of carbohydrate and lipid metabolism pathways, in agreement
with results from maternal weight loss studies in sheep demonstrating an impact on insulin sig-
naling, glucose transport and glycogen synthesis pathways in offspring’ skeletal muscle [64] as
well as with previous studies demonstrating gene-by-maternal diet interactions in offspring
[21, 65].

Some of the modulating effects of gestational metabolic fitness may be confounded. Young
age of the offspring limits the potential contribution of different postnatal environments. How-
ever, it does not allow extrapolation over the life span stretching into mature adulthood when
most pathology emerges through the cumulative effects of environmental exposures. Neverthe-
less, the preponderance of literature on developmental origins of adult disease, specifically for
cardio-metabolic outcomes related to our findings demonstrates durability of effects over the
life-span [15]. The rarity of gastrointestinal biliopancreatic bypass surgery, low pregnancy rates
before and after maternal surgery, constraints of study design and the exclusive nature of the
molecular analyses all limited the size of our offspring population. The size of the study sample
limited the number of adjustments made to correct for confounding factors relating to off-
spring and maternal condition during pregnancy (breastfeeding, smoking, etc.). Adjustments
for confounding factors were thus limited to sex and puberty. Although metabolic parameters
in the offspring cohorts were not statistically significantly different owing to sample size, the
differences were clinically significant particularly for insulin resistance, dyslipidemia and CRP.
Studies from our group conducted on larger cohorts have previously demonstrated robust
group differences between BMS and AMS offspring [30, 31]. Our gene analyses were per-
formed on blood, more convenient to obtain and to justify sampling than other tissues in
healthy juvenile offspring. We and others have reported partial inter-tissue correlations
[54, 66–68]. The multicellular nature of blood constitutes an inherent limitation in our study;
tissue heterogeneity potentially influenced measurement of gene expression levels [69, 70].
Nonetheless, we assessed gene expression as representative of systemic biological differences
between BMS and AMS offspring to which multiple organs and tissues have contributed. Cau-
sality of identified variants cannot be determined: identified variants might be markers of geno-
mic regions or loci in which causal variants lie and allelic heterogeneity cannot be ruled out,
together necessitating much larger population studies than our unique but relatively small co-
hort study.

Strengths of our study are the unique genetically and phenotypically characterized offspring
cohort discordant for maternal gestational metabolic fitness, the efficacious standardized cur-
rently performed metabolic operation as a tool to alter the intrauterine milieu and an excep-
tionally high follow-up rate enabled by the national health insurance system. The
biliopancreatic bypass operation selectively increases steatorrhea, lowering maternal plasma
free fatty acids, reducing fatty infiltration of metabolically active tissues, reducing lipid peroxi-
dation and systemic lipotoxic inflammation altogether improving insulin action and glucose
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disposal approximating pre-obese levels. Although these durable effects were not replicated
quantitatively or qualitatively by other current bariatric operations, they add critical insight
into molecular mechanisms associated with the gene expression levels presented here.

Our results demonstrated influences of the intrauterine metabolic environment on associa-
tions between offspring genotype and gene expression levels. The lower prevalence of obesity
and cardiometabolic risk observed in AMS offspring argues for implementation of maternal
weight loss and improved metabolic fitness before pregnancy and provides potential
mechanisms for physiological improvements through regulation of gene expression in
offspring.
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