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Abstract

Soil acidification is the main problem in the current rice production. Here, the effects of low
pH on the root growth, reactive oxygen species metabolism, plasma membrane functions,
and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa
L.) in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this
trial, including Yongyou 12 (YY12, a japonica hybrid) and Zhongzheyou 1 (ZZY1, an indica
hybrid). Higher H* activity markedly decreased root length, the proportion of fine roots, and
dry matter production, but induced a significant accumulation of hydrogen peroxide (H>O,),
and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of
copper/zinc superoxide dismutase 1 (Cu/Zn SOD1), copper/zinc superoxide dismutase 2
(Cu/Zn SOD2), catalase A (CATA) and catalase B (CATB) genes in YY12 and ZZY1 roots
were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a signifi-
cant decrease was observed in the expression of the P-type Ca®*-ATPases in roots at pH
3.5. The activities of antioxidant enzymes (SOD, CAT) and plasma membrane (PM) Ca®*-
ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification.
However, the expression levels of ascorbate peroxidase 1 (APX1) and PM H*-ATPase iso-
form 7 were up-regulated under H* stress compared with the control. Significantly higher ac-
tivities of APX and PM H*-ATPase could contribute to the adaptation of rice roots to low pH.

Introduction

Soil acidification is one of the most serious environmental problems in intensive agricultural
systems, mainly because of the excessive use of acidic and physiologically acidic nitrogen fertil-
izers and the acid rain caused by environmental pollution [1-3]. The pH value of most acidic
soil significantly declined from the 1980s to the 2000s in the South China, and the pH is under
4.0 in some highly acidic soils [3]. Along with decreased crop productivity caused by low pH
levels, the common causes of reduced yields include aluminum, manganese and hydrogen (H")
ions toxicities, and deficiencies in nutrients such as phosphorus, molybdenum, calcium, and
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magnesium [4]. Among these constraints, proton toxicity (low-pH stress) is considered to be
one of the major stresses limiting plant growth in acid soils [5].

Low pH levels directly inhibited plant growth via high H" activity [6, 7]. A high concentra-
tion of H" triggers typical oxidative stress on plants by inducing the accumulation of excess re-
active oxygen species (ROS), such as superoxide radicals (O, «) and hydrogen peroxide
(H,0,) in plant tissues [8, 9]. To counteract oxidative damage, plants have evolved complex
antioxidant systems including antioxidant enzymes such as superoxide dismutase (SOD), cata-
lase (CAT), peroxidases (POD), ascorbate peroxidase (APX), glutathione reductase (GR),
dehydroascorbate reductase (DR), and antioxidants such as a-tocopherol, ascorbate, reduced
glutathione [10, 11]. Studies have indicated that higher activity levels of antioxidant enzymes
may contribute to better H" tolerance by increasing the protective capacity against oxidative
damage [12, 13].

The plasma membrane (PM) is an important barrier for plants to transport ions into root
cells [14]. Plant PMs contain an H*-ATPase that plays an important role in the modulation of
many environmental factors, including toxins, light, injury, mineral nutrients and other biotic
and abiotic constrains [15-18]. The enzyme acts as a primary transporter by pumping protons
out of the cell, and generates an H" electrochemical gradient, thereby providing the driving
force for the active influx and efflux of ions and metabolites across the plasma membrane [19].
Additionally, H"-ATPase contributes to keeping the cytoplasmic pH steady [16, 20]. Under
stress conditions, the expression of different isoforms of PM H*-ATPase may be responsible
for the pumping of H" against the higher H" electrochemical gradient at the low pH [18, 21].

Rice (Oryza sativa L.) is one of the main grain crops and is the staple food of over half the
world’s population. Soil acidification is becoming the main barrier to rice production, and thus
research on the regulation of rice root growth at low pH has great theoretical and practical
value. In the present study, we analyzed the changes in root length and biomass, H,O, content,
antioxidative enzyme activities and lipid peroxidation at different pH levels. Additionally, to
better understand the adaptation to a low pH medium, plasma membrane was isolated, and the
roles of PM H*-ATPase, Ca**-ATPase in rice (Oryza sativa L.) were also studied. The tran-
scriptional levels of genes encoding PM H*-ATPase, Ca>*-ATPase and anti-oxidative enzymes
were investigated by real-time quantitative PCR. An attempt was made to reveal the physiologi-
cal mechanisms involved in the acclimation of monocotyledonous plant cells to low pH levels.

Materials and Methods
Plant culture and experimental design

All experiments were conducted at the experimental base of the China National Rice Research
Institute in Fuyang City, China (30°03'N 119°57'E). Two hybrid rice (Oryza sativa L.) cultivars
were used, Yongyou 12 (YY12, a japonica hybrid) and Zhongzheyou 1 (ZZY1, an indica hy-
brid). Rice seeds were obtained from a commercial company (Zhejiang Wuwangnong Seeds
Co., LTD, Hangzhou, China). The seeds were surface-sterilized with 30% (v/v) H,O, for 20
min and soaked for 12 h in distilled water. They were then germinated on moist filter paper in
the dark for 2 days at 32°C. The germinated seeds were cultured in wrapped filter paper in dis-
tilled water until three leaves were visible. Uniform seedlings were selected and then trans-
planted into 5-L black plastic pots with five seedlings in each pot. The seedlings were cultured
using Yoshida rice nutrient solution [22]. The nutrient solution was replaced every 3 days.
Treatments were given after the plants were pre-cultured for 2 weeks. The seedlings were
cultured in the solution adjusted to pH 5.5 (the control), 4.5, and 3.5 by the addition of 0.1 M
NaOH to raise, or 0.05 M H,SOy, to lower the pH. The pH was modified twice every day. Three
biological replicates were performed for each treatment. The pots were arranged randomly in
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the glasshouse and re-positioned randomly every week. The experiment was carried out under
natural conditions with an air temperature of 22-30°C during the day and 15-20°C during the
night. All plants were sampled after 2 weeks of treatment. Samples for enzyme assays and RNA
extraction were frozen immediately in liquid nitrogen, and stored at —80°C.

Root sampling and analysis

Roots were carefully washed and then scanned with a scanner (Epson V700, China). During
scanning, the roots were placed in a glass dish containing water to untangle them and minimize
root overlap. Large root systems were divided into several root subsamples for adequate scan-
ning. Root length and root surface area were quantified from digital images using WinRHIZO
PRO 2013 (Regent Instruments, Quebec, Canada). Scanned roots were dried and weighed.

H->0, and malondialdehyde (MDA) contents assays

The H,0, concentration was determined according to Patterson et al. [23]. This assay is based
on the absorbance change of an H,O,-titanium complex at 415 nm, which is formed by the re-
action of tissue-H,O, with titanium tetrachloride. The level of lipid peroxidation in fresh leaves
and roots was expressed as the MDA concentration and determined from 2-thiobarbituric acid
(TBA) reactive metabolites [24].

Antioxidant enzyme extraction and assay

Antioxidant enzyme activities were determined in 0.3 g of roots homogenized in 3 mL of an ex-
traction solution containing 50 mM Na,HPO,-NaH,PO, buffer (pH 7.8), 0.2 mM EDTA and
2% insoluble polyvinylpyrrolidone in a chilled pestle and mortar. The homogenate was centri-
fuged at 12,000 x g for 20 min and the supernatant was used to determine enzyme activity. The
entire extraction procedure was carried out at 4°C. All spectrophotometric analysis was con-
ducted on a Beckman DU-800 spectrophotometer. Total SOD activity was assayed by the pho-
tochemical method described by Rao and Sresty [25]. One unit of enzyme activity was defined
as the amount of enzyme required for 50% inhibition of the rate of nitro blue tetrazolium re-
duction measured at 560 nm. CAT activity was measured according to the method of Cakmak
and Marschner [26] by measuring the decrease in absorbance at 240 nm to determine the dis-
appearance of H,0,. The reaction mixture contained 25 mM phosphate buffer (pH 7.0), 10
mM H,0, and 0.1 ml enzyme extract. APX activity was measured according to Nakano and
Asada [27] by monitoring the rate of ascorbate oxidation at 290 nm. The assay mixture con-
tained 0.25 mM AsA, 1.0 mM H,0,, 0.1 mM EDTA, and 0.1 ml enzyme extract in 25 mM
phosphate buffer (pH 7.0).

Plasma membrane isolation and ATPase activity assay

The PM was isolated from rice roots according to Kasamo [28]. Roots were ground in ice-cold
homogenization buffer with a mortar and pestle. The homogenization buffer contained 25 mM
HEPES-Tris (pH 7.2), 250 mM mannitol, 5 mM EDTA, 5 mM EGTA, 1 mM DTT and 1.5%
(w/v) PVP. The isolation procedures were carried out at 4°C. The homogenate was filtered
through four layers of cheesecloth and centrifuged at 560 x g for 12 min, and the supernatant
was centrifuged at 10,000 x g for 15 min. The resulting supernatant was then centrifuged at
60,000 x g (Optima L-80 XP Ultracentrifuge; Beckman Coulter, Brea, CA, USA) for 30 min to
yield a crude membrane fraction. The pellet was re-suspended with 1mL of a gradient buffer
containing: 20 mM HEPES-Tris (pH 7.5), 5 mM EDTA, and 0.5 mM EGTA. The supernatant
was layered on top of a step gradient consisting of ImL of 45% and 33% (w/w) sucrose, and then
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centrifuged for 2 h at 70,000 x g. The PM-enriched fraction was collected at the 33%/45% su-
crose interface. Each fraction was centrifuged for 1 h at 100,000 x g. The resulting pellet was re-
suspended in a medium containing 20 mM HEPES-Tris (pH 7.5), 3 mM MgCl,, 0.5 mM EGTA,
and 300 mM sucrose, and then quickly frozen in liquid nitrogen and stored at —70°C until used
for enzyme assays. The protein was quantified according to the method of Bradford [29].

PM H'-ATPase activity was assayed as described by Briskin et al. [30]. The assay medium
used for the present study contained 36 mM Tris-Mes (pH 6.5), 30 mM ATP-Na,, 3 mM
MgSO,, 1 mM NaN3, 50 mM KNO3, 1 mM Na,MoO,, and 0.02% (v/v) Triton X-100, in the
presence or absence of 2.5 mM Na;VO,. The reaction was started by adding 50 uL PM vesicles.
After 30 min incubation at 37°C, the reaction was quenched by the addition of 55% (w/v) TCA.
The H"-ATPase activity was determined by measuring the release of P; [31]. PM Ca®*-ATPase
activity was measured on the basis of the methods of He et al. [32]. Activity was expressed in
umol P; mg ™" protein h™".

Total RNA extraction and real-time quantitative PCR (RT-qPCR)

Total RNA was isolated from frozen plant samples of all treatments using Trizol reagent
(Takara, Tokyo, Japan). Purified RNA was quantified spectrophotometrically (Nanodrop 2000,
Thermo Scientific, Wilmington, DE, USA). cDNA synthesis was performed with 2 g of total
RNA, oligo-dT(18), and superscript II reverse transcriptase (Promega, Madison, WI, USA) ac-
cording to the manufacturer’s protocol in a total volume of 25 pL.

RT-qPCR was performed using a 7300 Real Time PCR System (Applied Biosystems, Foster
City, CA, USA) and a SYBR Green PCR Master Mix Kit (Toyobo Co., Osaka, Japan). Specific
primer pairs were designed using Primer3 Input 0.4.0 (http://frodo.wi.mit.edu/primer3/) to
amplify fragments between 150 and 200 bp in the non-conserved region. To quantify the ex-
pression level of antioxidative enzymes (SOD, CAT and APX), as well as PM H*-ATPase and
Ca®"-ATPase, the rice actin gene (NM 197297) was used as an endogenous control gene. The
specific primers for actin were forward 5’-TTATGGTTGGGATGGGACA-3’ and reverse 5’-
AGCACGGCTTGAATAGCG-3’. The sequences of the genes OsCu/Zn SOD1, OsCu/Zn SOD2,
OsAPX1, OsAPX2, OsACA1, OsACA2, OsACA3, OsACA4, OsACA6, OsACA7, OsACAS,
OsACA11, and OsACA12 were obtained from the Rice Genome Annotation Project (RGAP;
http://rice.plantbiology.msu.edu/index.shtml). The gene sequences of OsCATA, OsCATB,
OsAl, OsA2, OsA3, OsA7, OsA8, and OsA9 were obtained from the National Center for Bio-
technology Information (NCBI; www.ncbi.nlm.nih.gov). The primers used in RT-qPCR are
provided in S1 Table. PCR reactions were prepared in 25-pL volumes containing 2 pL of 10-
fold diluted synthesized cDNA, 13 uL SYBR Green Realtime PCR Master Mix, 1 pL 10 uM for-
ward primer, 1 uL 10 pM reverse primer, and 8 uL sterile distilled water. Four replications per
sample were carried out in parallel, and data analysis was performed as described by Pfaffl [33].

Statistics

Data were analyzed by one-way analysis of variance with a general linear model using SAS ver-
sion 9.1 (SAS Institute, Cary, NC, USA). Means were presented with standard errors to indicate
variation. Differences between means were determined by ¢-tests (P<0.05).

Results
Effects of different pH levels on the growth and root morphology of rice

The growth of rice was markedly inhibited by high H" activity (low pH) in the medium
(Table 1). Low pH significantly decreased the root dry weight, root length and root surface area
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Table 1. Biomass and root morphology of rice (Oryza sativa L.) seedlings grown at different pH levels.

pH Shoot dry weight Root dry weight Root length Root surface area specific root length
Treatment (g plant™) (g plant™) (cm) (cm?) (mg™)
YY12 3.5 0.31+0.015b 0.022+0.0012¢ 717+39c¢ 40+42.35b 331+4.38b
4.5 0.37+0.027b 0.033+0.003b 1226+83b 69+6.98b 366+10.79a
5.5 0.47+0.023a 0.050+0.002a 1821+135a 100+11.40a 363+6.40a
Z7Y1 35 0.49+0.025b 0.034+0.002b 542+81c 33+5.31b 15545.39¢c
4.5 0.57+0.033b 0.044+0.005b 950+115b 57+9.19b 209+21.26b
5.5 0.69+0.013a 0.065+0.005a 1947+93a 117+7.46a 300+10.12a

Note: Each value is the mean * standard error of three replicates. Different letters for each cultivar indicate means that differ significantly (P < 0.05).

doi:10.1371/journal.pone.0116971.t001

of YY12 and ZZY1 compared with the control (pH 5.5; P < 0.05). Excess H" significantly re-
duced the production of fine roots in the two rice varieties (Table 1 and Fig. 1). The proportion
of roots in YY12 and ZZY1 with a diameter < 0.1 mm was 10% and 11% less in pH 3.5 medium
than in pH 5.5 medium (Fig. 1). The proportion of roots in the diameter class 0.1-0.4 mm was
greater in pH 3.5 medium compared with pH 5.5 medium (Fig. 1). No difference was found be-
tween pH 4.5 and pH 5.5 in the proportion of roots in each of the three diameter classes.

Effects of different pH levels on H,O, production and lipid peroxidation in

roots

Low pH values of the root medium caused an increase in ROS generation in the rice. Compared
with pH 5.5, the H,O, content of YY12 and ZZY1 roots grown at pH 3.5 was significantly
higher (by 45% and 47%, respectively), and increased with increasing H" concentration

(Fig. 2). The level of lipid peroxidation in low pH-treated rice plants was measured by the
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Fig 1. Proportion of rice (Oryza sativa L. A, YY12; B, ZZY1) root lengths in different diameter classes
at three pH levels. Each value is the mean + standard error of three replicates. Different letters for each
cultivar indicate means that differ significantly (P < 0.05) within a given diameter class.

doi:10.1371/journal.pone.0116971.9001
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doi:10.1371/journal.pone.0116971.9002

MDA content. Compared with pH 5.5, the low pH significantly increased the MDA content in
YY12 and ZZY1 roots by 48% and 74%, respectively.

Effects of different pH levels on antioxidant enzyme activities and related
gene expression levels in rice roots

Compared with pH 5.5 medium, the SOD activity of YY12 and ZZY1 in pH 3.5 medium were
decreased by 48% and 42%, respectively, and the CAT activity of the rice roots in pH 3.5 medi-
um were decreased by 22% and 48%, respectively. Contrary to the change of SOD and CAT ac-
tivities, APX activity in YY12 and ZZY1 roots were markedly enhanced by 51% and 69%
respectively, on the 14th day of treatment under low pH (Fig. 3).

To further clarify the effects of protons on antioxidant enzymes, the mRNA expression lev-
els of OsCu/Zn SOD, OsCAT and OsAPX genes were analyzed with RT-qPCR. The results re-
vealed that the transcript levels of OsCu/Zn SOD1, OsCu/Zn SOD2, OsCATA and OsCATB in
YY12 and ZZY1 roots decreased under the low pH treatment. However, as shown in Fig. 4, a
significant increase was found in the relative expression levels of the OsAPX1 gene in YY12
and ZZY1 roots exposed to low pH treatment compared with the control. There was no signifi-
cant change in the relative expression levels of OsAPX2 in ZZY1 roots exposed to the low pH.

Effects of different pH on PM ATPase activities and related gene
expression levels in roots

PM H*-ATPase and Ca®*-ATPase activities in rice roots were measured on the 14th day of
treatment and showed different change tendencies. Compared with the control, the PM H*-
ATPase activities of YY12 and ZZY1 increased significantly (P < 0.05) under low pH; howev-
er, excess H significantly inhibited PM Ca**-ATPase activities in the roots of both varieties
(Fig. 5).

As shown in Fig. 6, the expression levels of six PM H"-ATPase genes in rice roots were as-
sayed by RT-qPCR. The expression levels of OsA2, OsA3, OsA8 and OsA9in YY12 and ZZY1
roots was decreased under low pH compared with the control. The expression of OsA7 in roots
was about 10-20 times higher than the other isoforms. The expression level of OsA7 in YY12
and ZZY1 under the low pH treatment was markedly higher than in the control. Ten PM Ca**-
ATPase genes were detectable, and the expression levels of all 10 (OSACA1, OSACA2,
OsACA3, OsACA4, OsACA6, OsACA7, OsACAS8, OsACA10 OsACA1I and OsACA12) were
down-regulated in YY12 roots at pH 3.5 compared with pH 5.5 (Fig. 7). The expression levels
of OSACA2, OsACA4, OsACA7 and OsACA11 were down-regulated in ZZY1 roots at pH 3.5
compared with pH 5.5. No significant changes were detected in the relative expression levels of
OSACAI, OsACA3, OsACA6, OsACA8 and OsACA11 in ZZY1 roots exposed to low pH.
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Discussion

Highly acidic soil pH is one of the major limiting factors in acid soils, and severely inhibits
world rice production [5]. In the present study, when treated with a low pH solution, pro-
nounced symptoms were observed in the root system, and the root growth of rice was markedly
depressed (Table 1). The root length of YY12 and ZZY1 was reduced and the development of
fine roots was suppressed under low pH (Fig. 1). Excess H" not only prohibited metabolic pro-
cesses, but also affected detrimental oxidative processes in the tissue [12, 34].

It has been reported that abiotic stress often causes symptoms associated with oxidative
stress and membrane lipid peroxidation, which can result in the accumulation of ROS and
MDA [17, 35, 36]. Here, we found that exposure to low pH significantly increased the H,O,
content in the roots of YY12 and ZZY1 rice seedlings (Fig. 2). Chen et al. [37] reported that the
H,0, accumulation in roots could be one reason for leading to the reduction of root elonga-
tion. The accumulation of ROS can damage cellular membranes by lipid peroxidation [8, 13,
35]. MDA content is widely used as an indicator for lipid peroxidation [9, 38]. In this study,
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Fig 3. The activities of SOD (A), CAT (B) and APX (C) in roots of rice (Oryza sativa L.) grown at three
pH levels. Each value is the mean + standard error of three replicates. Different letters for each cultivar
indicate means that differ significantly (P < 0.05).

doi:10.1371/journal.pone.0116971.g003
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low pH stress triggered an increase of MDA in the roots of both rice varieties (Fig. 2). These re-
sults suggest that lipid peroxidation in rice is an important cue for the inhibition of root elon-
gation and the growth of shoots.

Plants have developed antioxidative systems to minimize the oxidative damage under unfa-
vorable environmental conditions. Here, the SOD and CAT activities in YY12 and ZZY1 roots
were obviously down-regulated under low pH. However, the APX activities of YY12 and ZZY1
roots were significantly up-regulated by low pH (Fig. 3). These results imply that APX may
play an important role in enhancing plant resistance to low pH by abolishing H,O, accumula-
tion. Previous reports have shown that low pH stress also decreases the activities of SOD and
CAT in cucumber [8]. Decreased SOD and CAT activities indicate that the ability to scavenge
singlet oxygen and H,0, in rice is weakened by low pH stress, which may result in free radical-
mediated damage, including lipid peroxidation in membranes [39]. In this study, genes encod-
ing antioxidant enzymes exhibited different expression patterns in response to H stress. The
transcript levels of OsCu/Zn SODI, OsCu/Zn SOD2, OsCATA and OsCATB were significantly
inhibited in YY12 and ZZY1 roots, whereas the expression of OsAPXI was strongly enhanced
by H" stress (Fig. 4). It seems likely that the induction of OsAPX expression has an important
function in removing H,O, and minimizing oxidative damage. Rossel et al. [40] reported that
an Arabidopsis thaliana gain-of-function mutant with constitutively higher OsAPX2 expres-
sion was more drought-tolerant than wild-type plants.
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PM H'-ATPase plays an important role in membrane potential maintenance during plant
responses to various environmental stresses [41]. When roots were exposed to low pH, the in-
side-negative PM electric potential becomes a driving force for H" uptake and inhibits the
growth of the plant. The activity of PM H*-ATPase is strongly dependent on pH changes with
the optimal pH around 6.6, and is altered at lower cytoplasmic pH [42]. In this study, the H"-
ATPase activities of YY12 and ZZY1 roots were increased, which implies that induction of H*-
ATPase activity might play a central role in rice root tolerance to H' stress. This may facilitate
the expulsion of excess H', promote cytoplasmic alkalinization and partly restore normal cell
activity. Plant PM H"-ATPase is encoded by a multigene family [16]. Among the six OsA genes
examined in the present study, OsA1, OsA2 and OsA3 belong to subfamily I, OsA7 belongs to
subfamily IT, and OsA8 and OsA9 belong to subfamilies V and III. The expression of six PM
H'-ATPase genes in rice roots may help regulate PM H'-ATPase activity under different envi-
ronmental conditions [20]. Four of these genes responded with a decrease in transcription rate
when the roots were exposed to low pH. However, the expression of OsA7 was enhanced and
resulted in an increase in enzyme concentration and higher H"-pumping activity (Fig. 6). Pre-
vious results have indicated that PM H'-ATPase is involved in the maintenance of cytosolic
pH, especially under long-term acid stress [43, 44]. In this experiment, the expression levels of
four PM Ca**-ATPase genes in YY12 and ZZY1 roots were down-regulated when exposed to
excess H' (Fig. 7), and low pH inhibited PM Ca**-ATPase activity. Our results suggest that se-
vere membrane lipid damage occurred in the rice roots under low pH stress. The membrane
lipid oxidative injury caused by ROS was markedly increased due to the lower activities of anti-
oxidative enzymes under H" stress. The lipid damage is one important factor exerting an effect
on Ca**-ATPase under stress conditions [45]. As a result of lipid peroxidation induced by ex-
cess H*, PM Ca**-ATPase proteins were disturbed.

In summary, we found that high H" concentrations significantly suppressed root growth,
reduced the development of fine (small diameter) roots and decreased the biomass of rice seed-
lings. Meanwhile, there were significant increases in lipid peroxidation and the H,O, concen-
tration in rice seedlings after low pH treatment for 2 weeks. The gene expression levels of
OsCu/Zn SOD1, OsCu/Zn SOD2, OsCATA, OsCATB and OsACA2, OsACA4, OsACA?7,
OsACA11 in rice roots were significantly down-regulated by strong rhizosphere acidification.
Meanwhile, the activities of SOD, CAT and PM Ca**-ATPase were markedly inhibited by
higher H" activity in the rice roots. However, increased H" induced higher expression of
OsAPX1 and OsA?7. Thus, the activation of APX and PM H*-ATPase activities in roots may
play a key role in scavenging ROS and contribute to the adaptation of rice roots to low pH.
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