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Abstract

While available evidence supports the role of genetics in the pathogenesis of

placental abruption (PA), PA-related placental genome variations and maternal-

placental genetic interactions have not been investigated. Maternal blood and

placental samples collected from participants in the Peruvian Abruptio Placentae

Epidemiology study were genotyped using Illumina’s Cardio-Metabochip platform.

We examined 118,782 genome-wide SNPs and 333 SNPs in 32 candidate genes

from mitochondrial biogenesis and oxidative phosphorylation pathways in placental

DNA from 280 PA cases and 244 controls. We assessed maternal-placental

interactions in the candidate gene SNPS and two imprinted regions (IGF2/H19 and

C19MC). Univariate and penalized logistic regression models were fit to estimate

odds ratios. We examined the combined effect of multiple SNPs on PA risk using

weighted genetic risk scores (WGRS) with repeated ten-fold cross-validations. A

multinomial model was used to investigate maternal-placental genetic interactions.

In placental genome-wide and candidate gene analyses, no SNP was significant

after false discovery rate correction. The top genome-wide association study

(GWAS) hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A) and

rs13055470 (ZNRF3) (p-values: 1.11e-05 to 3.54e-05). The top 200 SNPs of the
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GWAS overrepresented genes involved in cell cycle, growth and proliferation. The

top candidate gene hits were rs16949118 (COX10) and rs7609948 (THRB) (p-

values: 6.00e-03 and 8.19e-03). Participants in the highest quartile of WGRS based

on cross-validations using SNPs selected from the GWAS and candidate gene

analyses had a 8.40-fold (95% CI: 5.8–12.56) and a 4.46-fold (95% CI: 2.94–6.72)

higher odds of PA compared to participants in the lowest quartile. We found

maternal-placental genetic interactions on PA risk for two SNPs in PPARG

(chr3:12313450 and chr3:12412978) and maternal imprinting effects for multiple

SNPs in the C19MC and IGF2/H19 regions. Variations in the placental genome and

interactions between maternal-placental genetic variations may contribute to PA

risk. Larger studies may help advance our understanding of PA pathogenesis.

Introduction

Placental abruption (PA), the premature separation of the placenta from the

uterine wall prior to delivery of the fetus, complicates about 1% of pregnancies

and is an important cause of maternal and neonatal morbidity and mortality [1–

7]. Evidence from studies conducted during the last three decades suggests that

hypertensive disorders, advanced maternal age, grand-multiparity, thrombophilia,

cigarette smoking, illicit drug use and external trauma to the abdomen are

associated with an increased risk of PA [8–13]. In addition, other putative risk

factors have also been recently described for PA, including maternal iron

deficiency anemia, hyperhomocystinemia, mood and anxiety disorders, migraine

and headache disorders, maternal infection and/or inflammation [4, 14–21].

Pathophysiologic mechanisms involved in PA include uteroplacental under-

perfusion, chronic hypoxemia, uteroplacental ischemia and infarctions, and

thrombosis [5, 13, 22–23].

As a multi-factorial disorder of complex origin, PA aggregates in families of

women with the condition [24], suggesting a strong role for genetic predisposi-

tion, a thesis supported by a number of candidate gene studies [25–29]. Findings

from recent PA-related genome-wide association studies (GWAS) and candidate

gene association studies (mitochondrial biogenesis and oxidative phosphorylation

pathway genes) in the maternal genome by our group provided suggestive

evidence supporting associations of variation in maternal cardiometabolic genes

with risk of PA [30, 31]. Given these findings indicative of the importance of

genetic susceptibility factors in PA and the evidence highlighting the central role

of placental pathology in PA [5, 28, 32], we hypothesized that genetic variations in

the placental genome, particularly those variants in mitochondrial biogenesis

(MB) and oxidative phosphorylation (OP) pathways, are associated with PA risk.

Further, using data from both maternal and placental genomes, we examined

interactions between placental and maternal genetic variations (in MB-OP

pathway genes and imprinted regions) on risk of PA.
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Materials and Methods

Study Setting and Study Population

The current study was conducted in the setting of the Peruvian Abruptio

Placentae Epidemiology (PAPE) study that has been described before [30, 31].

Briefly, PAPE study participants were recruited and enrolled among patients

admitted for obstetrical services to the Hospital Nacional Dos de Mayo, Instituto

Especializado Materno Perinatal, and Hospital Madre-Niño San Bartolomé in

Lima, Peru, between August 2002 and May 2004 and between September 2006 and

September 2008. Hospital admission and delivery logs were monitored daily to

identify PA cases among new admissions to antepartum, emergency room, and

labor and delivery wards of participating hospitals. PA was diagnosed based on

evidence of retroplacental bleeding (fresh blood) entrapped between the decidua

and the placenta or blood clots behind the placenta and any two of the following:

(i) vaginal bleeding in late pregnancy not due to placenta previa or cervical

lesions; (ii) uterine tenderness and/or abdominal pain; and, (iii) non-reassuring

fetal status or death. Controls were selected from among pregnant women who

delivered at participating hospitals during the study period and did not have a

diagnosis of PA in the current pregnancy. For the current study, investigating

associations of placental genome with risk of PA, 280 PA cases and 244 controls

who provided placental samples at delivery were included. A subset of these cases

and controls that also provided blood samples (222 PA cases and 198 controls)

were also included in the maternal-placental genetic interaction investigations.

Ethical approval for the study was granted by the Institutional Review Boards

(IRB) of Hospital Nacional Dos de Mayo, Instituto Especializado Materno

Perinatal, Hospital Madre-Niño San Bartolomé in Lima, Peru and the IRB of

Swedish Medical Center, Seattle, WA. All participants provided written informed

consent in accordance with the principles of the declaration of Helsinki.

Data collection

Standardized structured questionnaires administered by trained research per-

sonnel were used to collect information on socio-demographic characteristics

(including maternal age, marital status, employment status during pregnancy, and

smoking and alcohol consumption before and during pregnancy), and medical

history. A brief physical examination was conducted to measure maternal height,

weight, and mid-arm circumference. Medical records were reviewed to abstract

information on course and outcomes of the pregnancy. At delivery, placental

samples were collected for DNA extraction and genotyping as described below.

Placental sample collection, DNA extraction, and genome-wide

genotyping

Placentas were collected immediately after delivery. Placentas were weighed,

double bagged and transported in coolers. The chorionic plate and overlying

membranes were stripped and tissue biopsies (approximately 0.5 cm3 each) were
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obtained from 8 sites (4 maternal and 4 fetal). For this study, biopsy samples

taken from the fetal side were sampled for genomic DNA extraction. Biopsies were

placed in cryotubes, snap frozen in liquid nitrogen, and stored at 280 C̊ until

analysis. The Gentra PureGene Cell kit for DNA preparations (Qiagen, Hilden,

Germany) was used to extract DNA from placental samples. Genotyping was

conducted using the Illumina Cardio-Metabochip (Illumina Inc, San Diego, CA)

platform [30], a high-density custom array designed to include 217,697 SNPs that

represent DNA variations at regions previously related to diseases and traits

relevant to metabolic and atherosclerotic-cardiovascular endpoints [33, 34].

During the assay manufacturing process 20,972 SNPs (9.6%) failed, resulting in

196,725 SNPs available for genotyping, downstream quality control and statistical

analyses [34, 35].

Candidate gene/SNP selection

For the candidate association study, 32 genes that were involved in mitochondrial

biogenesis and oxidative phosphorylation were selected based on literature [31]

and a total of 333 SNPs belonging to these genes and found in the Cardio-

MetaboChip were included in the candidate gene association analyses. For the

maternal-placental genetic interaction study, 325 of these SNPs that also passed

quality control in maternal blood genomes, as well as SNPs in imprinted regions

(5 SNPs in IGF2/H19 and 33 SNPs in C19MC) included in the Cardio-

MetaboChip were analyzed.

Data quality control

Quality control and preprocessing were performed on the genotype data.

Individuals with genotyping failure in more than 10% of SNPs were removed

(n52). SNPs with minor allele frequency (MAF) less than 1% or that failed to be

genotyped in more than 10% of the study samples were removed (n577, 276), as

well as SNPs not in Hardy-Weinberg equilibrium (HWE) among controls

(n5667). After these quality control procedures, a total of 118,782 genome-wide

SNPs were examined among 280 PA cases and 244 controls. Similar quality

control procedures were performed on the maternal blood genotype data,

resulting in 222 PA case and 198 controls among maternal-placental pairs.

Statistical analyses

Univariate logistic regression model was used to estimate odds ratio (OR) and

95% confidence interval (95% CI) relating each SNP with risk of PA, in the

genome-wide and candidate gene analyses. For multiple testing correction, a false

discovery rate (FDR) procedure was used [36]. Functions and functional

relationships of genes represented by the top 200 genome-wide SNPs were

obtained by pathway analysis using the Ingenuity Pathway Analysis (IPA,

Ingenuity Systems, www.ingenuity.com) software. Gene-enrichment network
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score based on a modified Fisher’s exact test were calculated to rank biological

significance of networks in relation to PA.

In multivariable analyses, we applied penalized logistic regression models to

identify sets of SNPs that are jointly associated with the risk of PA. These

penalized approaches have previously been applied in the context of GWAS and

have shown promising results [37–38]. These methods allow the selection of

relevant variables or groups of variables and the estimation of their regression

coefficients [39]. The number of selected variables is guided by a penalty

parameter: the larger the parameter, the smaller the selected subset. A 20-fold

cross-validation approach was performed to select the penalty parameter and the

value yielding the smallest prediction error was used. For the genome-wide SNP

analysis, we applied a lasso regression [39]. One characteristic of lasso regression is

that it selects a single variable among a set of correlated variables. To circumvent

this, SNPs in high linkage disequilibrium with a selected SNP were also considered

using an r2 threshold of 0.8 within 500 kb. For SNPs in the candidate gene

analyses, a group penalty approach was used to account for the membership in a

gene [40]. Furthermore, we considered a bi-level selection approach that uses a

composite minimax concave penalty [41, 42] to select candidate genes associated

with PA as well as relevant SNPs within those genes. These penalized regression

methods do not accommodate missing values and the software BEAGLE version

3.3.2 [43] was used to impute missing genotypes.

For weighted genetic risk score (WGRS) analyses [44], a 10-fold cross-

validation procedure was implemented to protect against model over-fitting,

which arises from using the same data to estimate the regression parameters used

in computing WGRS and to evaluate the association between PA risk and WGRS

[45]. The procedure consisted of randomly partitioning the data into 10 equal size

subsamples, using nine of the subsamples as training set and the left-out one as

validation set, with each subsample being used in turn as a test set. For each fold, a

multivariate logistic regression model was fit on the training set using the SNPs

selected from multivariate analyses. A weighted approach was then used to

compute Genetic Risk Scores (GRS) in the validation set by multiplying the

number of risk allele for each locus by its associated effect size estimated from the

training set. Once the WGRS were obtained for all individuals, the subjects were

categorized into four groups defined by the quartiles in the control. A logistic

regression model was then fit to examine the association of the WGRS with PA

risk using the lowest quartile (Group 1) as a reference and adjusting for infant sex

and population admixture. This 10-fold cross-validation procedure was repeated

1000 times to account for the variability in randomly partitioning the data into

subsamples. The receiver operating characteristics (ROC) curve for each of the

replicates was evaluated. The estimated effect sizes and AUCs over the 1000

replicates were used to obtain the respective point estimates and confidence

intervals.

Maternal-placental interaction analyses (for candidate genes and imprinted

regions) were performed using a multinomial model proposed by [46] and

implemented in the EMIM and PREMIM software tools [47]. The method

Maternal-Placental Genome Interactions and PA Risk
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requires some biological assumptions, such as Hardy-Weinberg equilibrium

(HWE), random mating, and rare disease. For each SNP, four models were

considered and a model selection procedure based on the Bayesian information

criterion (BIC) was applied. The four models correspond to allele effects operating

only at the fetal level (Model F), allele effects operating only at the maternal level

(Model M), an additive effect of maternal and fetal effects (Model M+F), and a

model that includes a maternal-placental interaction effect (Model I). For the

latter, we used a parametrization that introduces two interaction terms capturing

incompatibility between maternal and placental genotypes; the interaction effects

operate when the infant has one copy and the mother has either zero or two

copies of the risk allele [46, 48]. Maternal imprinting effect, which corresponds to

the factor multiplying the disease risk if the infant inherits a risk allele from the

mother, was tested using a likelihood ratio test [46, 49].

Adjustment for the first four principal components was done for all univariate

and multivariable logistic regression models to take into account population

stratification. The various statistical analyses were conducted using a combination

of software tools: PLINK, PREMIM, EMIM, Haploview, and R. As for

multivariable approaches the R packages ncvreg and grpreg were used [41, 50].

The pathway analyses were conducted using the Ingenuity Pathway Analysis (IPA)

software.

Results

Table 1 shows selected characteristics of PA cases and controls. Average maternal

age in both groups was around 27 years. Alcohol use during pregnancy and

preeclampsia/eclampsia were more common among PA cases than controls. As

expected, infant birthweight and gestational age at delivery were lower for PA

cases compared with controls.

In the GWAS analyses, we did not observe significant genomic inflation

(l51.17) (Fig. 1). None of the FDR-corrected p-values were lower than a 0.05

threshold (Table 2). The top GWAS hits were rs544201, rs1484464 (CTNNA2),

rs4149570 (TNFRSF1A) and rs13055470 (ZNRF3) (nominal p-values: 1.11e-05 to

3.54e-05) (Fig. 2 and Table 2). Functions of 56 genes represented by the top 200

SNPs from univariate GWAS analyses were examined using IPA. The top five

networks from these analyses with p-values less than 0.05 are shown in Table 3.

The top network enriched by these genes was a network of cell cycle, growth and

proliferation (score543, p-value52.12e-19) (Fig. 3). In the candidate gene

analyses, none of the FDR-corrected p-values were lower than a 0.05 threshold.

The top hits in these analyses were rs16949118 (COX10) and rs7609948 (THRB)

(nominal p-values: 6.00e-03 and 8.19e-03, respectively) (Table 4). In addition,

several SNPs in the PPARG gene were among the top hits in the candidate gene

analyses.

Among 118,782 SNPs included in the GWAS analyses, six SNPs were selected

using lasso regression (Table 5). All six SNPs were among the top 200 hits,

Maternal-Placental Genome Interactions and PA Risk
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including the top three hits, identified using the univariate logistic regression

analyses. When fitting a multiple logistic regression model with the selected SNPs,

all 6 SNPs had empirical p-values lower than 0.05. Using a group penalty and

Table 1. Socio-demographic and reproductive characteristics and infant outcomes in the study sample, Lima, Peru.

Maternal Characteristics Placental Abruption

Cases Controls

(n5280) (n5244) p-value**

Maternal age at delivery, years* 27.03 (6.5) 27.3 (6.6) 0.517

,35 239 (85%) 200 (82%) 0.337

$35 40 (14%) 43 (18%)

Nulliparous 115 (41%) 95 (39%) 0.655

Less than High school education 220 (79%) 186 (76%) 0.598

Employed during pregnancy 126 (45%) 108 (44%) 0.935

Planned pregnancy 114 (41%) 99 (.41%) 0.929

No prenatal vitamin 82 (29%) 65 (27%) 0.559

Smoked during pregnancy 12 (4%) 5 (2%) 0.216

Alcohol use during pregnancy 9 (3%) 0 (0) 0.004

Pre-pregnancy BMI, kg/m2* 23.5 (3.5) 23.9 (3.9) 0.228

,18.5 14 (5%) 8 (3%)

18.5–24.9 179 (64%) 149 (61%)

25.0–29.9 57 (2%) 56 (23%)

$30.0 13 (5%) 18 (7%)

Chronic hypertension 8 (3%) 4 (2%) 0.391

Preeclampsia or Eclampsia 58 (21%) 29 (12%) 0.005

History of placental abruption 2 (7%) 0 (0) 0.498

Infant birthweight, grams* 2357 (888) 3058 (825) 2.20E-16

Gestational age at delivery, weeks* 35 (4.3) 37.8 (3.5) 2.68E-15

*Mean (standard deviation), otherwise count (%).
**t-test and chi-square test respectively used for continuous and categorical variables.

doi:10.1371/journal.pone.0116346.t001

Fig. 1. Quantile-Quantile plot. Quantile-quantile plot (QQ-plot) of raw p-values from univariate GWAS
analysis adjusting for population stratification (genomic inflation factor l51.168).

doi:10.1371/journal.pone.0116346.g001
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bi-level selection approach, we identified 22 SNPs (in 14 genes) among the .300

SNPs included in the candidate gene analyses (Table 6). In multiple logistic

regression analysis that included these SNPs, 11 SNPs had empirical p-values less

than 0.05 (Table 6). WGRS were computed using SNPs selected from the

respective GWAS and candidate gene multivariable analyses (Table 7). Both

WGRSs were significantly associated with risk of PA (p-values,0.001).

Participants in the highest quartiles for cross-validated GWAS-based WGRS and

candidate gene-based WGRS had a 8.4 (95% CI: 5.8–12.56) and a 4.46 (95% CI:

2.94–6.72) fold higher odds of PA compared with participants in the respective

referent quartiles (quartile 1) adjusting for infant sex and population admixture.

The cross-validated AUCs for the ROC curves were estimated to be 0.71 (95% CI:

0.69–0.73) for the GWAS-based WGRS and 0.67 (95% CI: 0.65–0.7) for the

candidate gene-based WGRS, confirming that the WGRS models have good

predictive ability (S1 Fig. and S2 Fig.).

We observed evidence for maternal-placental genetic interaction (on PA risk)

for 23 candidate SNPs (Table 8). In particular, maternal-placental genetic

interaction on PA risk was found for two SNPs in PPARG (chr3:12313450 and

chr3:12412978). The model selection procedure based on the BIC for the SNP

chr3:12412978, is shown in Table 9. The smallest BICcorresponds to Model I

Table 2. Top 20 hits from univariate analyses examining genome-wide genetic variations related to placental abruption risk.

NCBI
Gene Name

SCAN
Gene Name SNP

Minor
Allele MAF OR (95% CI)

Empirical
p-value

rs544201 T 0.13 0.33 (0.21–0.54) 1.11E-05

CTNNA2 CTNNA2 rs1484464 G 0.3 1.80 (1.37–2.38) 2.62E-05

TNFRSF1A TNFRSF1A rs4149570 A 0.21 1.88 (1.40–2.53) 3.46E-05

ZNRF3 ZNRF3 rs13055470 A 0.31 0.52 (0.39–0.71) 3.54E-05

ACSL1 LOC11394 rs9997745 A 0.03 3.78 (1.97–7.26) 6.73E-05

rs10754855 A 0.26 0.52 (0.38–0.72) 8.34E-05

rs3096425 G 0.47 0.58 (0.44–0.76) 8.50E-05

rs12896434 A 0.19 1.84 (1.36–2.49) 8.61E-05

rs2436893 A 0.3 1.72 (1.31–2.25) 8.86E-05

LIPA LIPA rs7922269 A 0.44 0.58 (0.43–0.76) 1.03E-04

SCNN1A SCNN1A rs2228576 A 0.19 1.83 (1.34–2.48) 1.20E-04

ZBTB40 ZBTB4 rs12725956 G 0.08 2.24 (1.49–3.38) 1.20E-04

rs3133572 A 0.15 0.44 (0.29–0.67) 1.28E-04

ZBED3-AS1 rs4457053 G 0.45 0.59 (0.46–0.78) 1.31E-04

ZBED3-AS1 rs7708285 G 0.45 0.59 (0.46–0.78) 1.36E-04

SDK2 rs9913193 G 0.25 0.54 (0.39–0.74) 1.38E-04

ADAMTS3 ADAMTS3 rs4694121 A 0.55 0.60 (0.46–0.78) 1.45E-04

rs6871240 A 0.18 1.8 (1.33–2.46) 1.62E-04

PIEZO2 rs9964303 A 0.3 0.57 (0.42–0.76) 1.70E-04

chr5:76460816 C 0.45 0.60 (0.46–0.78) 0.000174

Abbreviations: MAF5Minor Allele Frequency in Controls.

doi:10.1371/journal.pone.0116346.t002
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meaning that Model I fits the data best. In the imprinting effect analyses, we found

that six SNPs in the C19MC region (of the 33 that were examined) and two SNPs

in the IGF2-H19 region (of the five that were examined) showed evidence for

maternal imprinting effect (empirical p-value ,0.05) (Table 10 and Table 11). In

addition, borderline imprinting effects were detected for a number of other SNPs

in these regions.

Discussion

In this placental GWAS and candidate gene study of PA, no SNP had a significant

association with PA risk following correction for false discovery. The top GWAS

hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A), and

rs13055470 (ZNRF3). The top 200 SNPs of the GWAS were in genes of pathways

involved in cell cycle, growth and proliferation. The top candidate gene hits were

rs16949118 (COX10) and rs7609948 (THRB). Using repeated ten-fold cross-

validations, participants in the highest quartiles of WGRS based on SNPs selected

from GWAS and candidate gene analyses had 8.40-fold (95% CI: 5.8–12.56) and

4.46-fold (95% CI: 2.94–6.72) higher odds of PA compared to participants in the

Fig. 2. Manhattan plot. Manhattan plot of raw p-values from univariate GWAS analysis adjusting for
population stratification.

doi:10.1371/journal.pone.0116346.g002
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respective lowest quartiles. We also found evidence of maternal-placental genetic

interaction on PA risk for two SNPs in PPARG (chr3:12313450 and

chr3:12412978) and maternal imprinting effects for multiple SNPs in the C19MC

and IGF2/H19 regions.

A number of studies have investigated genetic risk factors of PA. Most of these

prior studies were candidate gene studies including investigations of thrombo-

philia and rennin-angiotensin system pathways, folate metabolism pathways, and

interleukin receptor related pathways [24, 28, 29, 51]. Besides inconsistencies

between reports of previous associations, few studies evaluated genome-wide

variations and PA risk [24, 28, 29, 30, 31, 51]. Given the multi-factorial nature of

PA pathogenesis, GWAS studies can potentially provide important information

concerning possible genetic susceptibility factors and related novel pathways that

play a role in occurrence of PA. To our knowledge, no prior study investigated PA

Table 3. Significant networks represented by top GWAS hits.

Genes from GWAS analysis with adjustment for the first four components

ID
Molecules in
Network Score

Focus
Molecules

Top Diseases
and Functions P-value

1 ARCN1,ARID4A,ARL17A,C12orf29,C1orf50,CARM1,
CCDC141,CUEDC1,EIF4A3,ELMSAN1,EVC,EYA2,
FERMT1,GLI1,GRTP1,HNF1A,IFT46,LDLRAD4,
LIPA,MAGEA9/
MAGEA9B,PIEZO2,POTEJ,SDK2,SFXN2,SLC16A13,
SLC22A12,TBC1D8B,TNF,tretinoin,UBC,USP35,US-
P40,USP42,ZBTB40,ZNF442

43 18 Cell Cycle,
Cellular Growth
and Proliferation,
Gene Expression

2.12E-19

2 ACSL1,Akt,ANGPTL4,ARAP3,ARHGAP26,Cyp2j9,
Focal adhesion kinase,ganglioside
GD2,GLIS3,GYS2,IL22R1-
IL10R2,Immunoglobulin,INSRR,Insulin,IPO8,LPP,
miR-491–5p (and other miRNAs w/seed
GUGGGGA),NCOA7,NFkB (complex),NRG4,NTN4,
P38 MAPK,PID1,PKN3,PTPRB,RAB31,RGS5,
SCNN1A,SLC2A5,SLC30A7,SLC35B2,SLC3A1,
TNFRSF1A,TRAF1-TRAF2-TRAF3,WISP3

28 13 Endocrine System
Development and
Function, Tissue
Morphology,
Cellular Development

6.91E-13

3 ADAMDEC1,ADAMTS3,AKT2,ART3,ATP10A,
beta-estradiol,Ca2+,Calmodulin-
Camk4a2+,CCDC82,Cetn4,COA4,CPA2,CTNNA2,
DGKB,DOK6,ERBB2,FURIN,GDPD3,HDAC4,
HNF4A,Interferon alpha,INTS4,KCNIP1,
MAPK1,MITF,NUDT6,PDE11A,PRR15L,RHOBTB2,
SLC24A3,SPAG16,Timd2,TMEM258,TRPM1,ZNRF3

28 13 Energy Production,
Molecular Transport,
Nucleic Acid
Metabolism

6.91E-13

4 SYT14,SYT16 3 1 Hereditary Disorder,
Neurological
Disease, Cancer

4.98E-02

5 KIAA1524,SLC12A8 3 1 Cancer, Cellular
Movement,
Gastrointestinal
Disease

4.98E-02

The networks were generated using Ingenuity Pathways Analysis (Ingenuity Systems, www.ingenuity.com). Each gene identifier was mapped to its
corresponding gene object in the Ingenuity Pathways Knowledge Base (IPKB) and overlaid onto a global molecular network developed from information
contained in the IPKB. Scores, corresponding to degree of enrichment, are negative log of p-values from Fisher’s exact test. Genes in bold (focus
molecules) are genes that correspond to top hit SNPs in our genome-wide association study of placental abruption.

doi:10.1371/journal.pone.0116346.t003
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risk and genetic variation in the placenta, where abnormal vasculature,

thrombosis, lesions, and reduced perfusion, all culminate in the eventual

occurrence of PA [5, 52].

In the current study, we did not have top hits of the GWAS that passed

statistical significance after correcting for multiple testing. However, a number of

SNPs among the top hits deserve mention. Of note, the top 10 SNPs represented

five known genes including CTNNA2, TNFRSF1A, ZNRF3, ACSL1, and LIPA.

The CTNNA2 gene codes for a protein linking cadherin adhesion receptors with

the cytoskeleton. The SNP we identified in this gene, rs1484464, has been

investigated in relation to a number of phenotypes, including tobacco use

disorder, smoking cessation, coronary artery disease, lipid metabolism (HDL,

total cholesterol, triglycerides) disorders, waist-hip ratio, CRP, glucose levels,

insulin resistance, body mass index, blood pressure, and interleukin levels;

however, significant associations have not been reported [53–62]. The TNFRSF1A

is a gene member of the TNFR superfamily that activates the transcription factor

NF-KB, mediates apoptosis, and functions as regulators of inflammation. The

SNP we identified in the current study has been associated with susceptibility to

Fig. 3. Molecules in the top network. Representation of molecules in the top network enriched by genes
corresponding to the top 200 SNPs from univariate GWAS analyses.

doi:10.1371/journal.pone.0116346.g003
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inflammatory bowel disease, as well as response to anti-TNF treatment, in a large

Danish cohort [63, 64]. It has also been associated with reduced expression of

TNF alpha receptor [65].

While the ZNRF3 gene is encoding for an E3 ubiquitin-protein ligase that acts

as a negative regulator of the Wnt signaling pathway and a tumor suppressor, no

previous report, to our knowledge, exists on the ZNRF3 SNP we identified in the

Table 4. Top 20 SNPs in univariate analyses of candidate genes in relation to risk of placental abruption.

SCAN Gene Name SNP
Minor
Allele MAF OR (95% CI) Empirical p-value

COX10 rs16949118 A 0.09 1.74 (1.17–2.59) 0.006003

THRB rs7609948 A 0.19 1.48 (1.11–1.99) 0.008191

COX5A chr15:73015771 G 0.01 2.80 (1.09–7.21) 0.03232

THRB rs17787283 A 0.12 0.64 (0.42–0.97) 0.03637

PRKCA rs3848426 A 0.29 1.33 (1.02–1.74) 0.03651

PPARG chr3:12388339 C 0.23 1.37 (1.015–1.848) 0.03935

NDUFS4 rs1388111 A 0.51 0.78 (0.61–1.01) 0.05589

CAMK2B chr7:44224020 A 0.33 1.31 (0.99–1.72) 0.05679

CAMK2D rs4834348 A 0.18 0.70 (0.49–1.01) 0.05689

PPARG rs11709077 A 0.26 1.31 (0.98–1.75) 0.06663

NDUFC2-KCTD14 rs627297 C 0.18 0.74 (0.53–1.03) 0.07345

CAMK2B chr7:44224468 A 0.33 1.28 (0.97–1.69) 0.07898

THRB rs12639293 A 0.29 1.28 (0.97–1.69) 0.07978

PPARG chr3:12326521 C 0.26 1.29 (0.96–1.72) 0.08784

PPARG rs4135275 G 0.28 0.78 (0.58–1.05) 0.0958

NDUFS4 rs2168662 G 0.45 0.80 (0.62–1.04) 0.09672

TUFM chr16:28763228 A 0.24 0.76 (0.55–1.06) 0.1012

PPARG chr3:12344401 A 0.26 1.27 (0.95–1.69) 0.1048

PPARG chr3:12352344 A 0.3 0.79 (0.59–1.05) 0.1053

PPARG chr3:12340308 A 0.26 1.27 (0.95–1.69) 0.1059

Abbreviations: MAF5Minor Allele Frequency in Controls.

doi:10.1371/journal.pone.0116346.t004

Table 5. Multiple logistic regression using SNPs selected in lasso regression.

Gene SNP SNPs in high LD*
Minor
Allele MAF Odds Ratio Empirical P-value

rank in univariate
GWAS

rs544201 T 0,13 0.33 (0.26–0.56) 4,19E-05 1

CTNNA2 rs1484464 G 0,30 1.69 (1.46–2.26) 4,24E-04 2

TNFRSF1A rs4149570 rs2228576 A 0,21 1.77 (1.53–2.41) 2,58E-04 3

rs10754855 A 0,26 0.58 (0.49–0.81) 1,35E-03 6

ARHGAP26 rs17287593 G 0,01 4.55 (2.99–10.67) 5,04E-04 47

IFT46 rs2277292 rs2277295;
rs17122278

A 0,05 0.23 (0.14–0.6) 2,55E-03 60

*R2.0.8 within 500 kb.

doi:10.1371/journal.pone.0116346.t005
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current study. The ACSL1 gene codes for an isozyme of the long chain fatty acid

coenzyme A ligase family that converts free long-chain fatty acids into fatty acyl-

CoA esters, a nuclear-encoded mitochondrial protein, and plays key role in lipid

biosynthesis and fatty acid degradation. The rs9997745 SNP in ACSL1 we

Table 6. Multiple logistic regression based on SNPs selected from candidate genes using a bi-level selection approach.

Gene SNP Minor Allele MAF Odds Ratio Empirical P-value

PPARG chr3:12388339 C 0.23 1.68 (1.21–2.34) 2.19E-03

THRB rs7609948 A 0.19 1.6 (1.17–2.18) 3.31E-03

NDUFA10 rs6437237 A 0.48 0.63 (0.45–0.87) 5.73E-03

NDUFA10 rs4149549 A 0.19 1.7 (1.15–2.51) 8.12E-03

COX10 rs16949118 A 0.09 1.77 (1.15–2.7) 8.72E-03

THRB rs17787283 A 0.12 0.56 (0.35–0.88) 1.15E-02

NDUFS4 rs1388111 A 0.51 0.71 (0.55–0.93) 1.31E-02

NDUFA12 rs11107847 A 0.45 0.71 (0.54–0.94) 1.57E-02

PPARG chr3:12363563 C 0.14 1.59 (1.05–2.41) 2.75E-02

NR1H3 chr11:47226512 A 0.3 1.39 (1.03–1.85) 2.86E-02

COX5A chr15:73015771 G 0.01 2.55 (1.05–6.22) 3.87E-02

CAMK2D rs4834348 A 0.18 0.7 (0.47–1.02) 6.48E-02

NDUFC2-KCTD14 rs627297 C 0.18 0.73 (0.52–1.03) 7.41E-02

PPA2 rs2298733 C 0.17 0.72 (0.5–1.03) 7.58E-02

PRKCA rs3848426 A 0.29 1.27 (0.96–1.69) 9.95E-02

PPARG chr3:12412978 A 0.03 1.85 (0.87–3.93) 1.07E-01

COX5A chr15:73011246 A 0.17 0.74 (0.51–1.09) 1.31E-01

PRKCA chr17:61760907 G 0.34 1.23 (0.92–1.64) 1.56E-01

THRB rs17014418 G 0.02 0.5 (0.17–1.42) 1.94E-01

COX7B2 rs17598636 G 0.02 0.54 (0.19–1.53) 2.45E-01

NR1H3 chr11:47233666 A 0.07 0.76 (0.44–1.32) 3.33E-01

CAMK2B chr7:44227306 A 0.02 1.36 (0.5–3.68) 5.47E-01

doi:10.1371/journal.pone.0116346.t006

Table 7. Association between risk of placental abruption and weighted genetic risk score (WGRS) computed from SNPs selected in multivariable analyses
using repeated 10-fold cross-validations.

Weighted Genetic Risk Score (GRS)

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-value

Genome-wide Association Analysis*

OR** 1 2.53 3.78 8.40 ,0.001

(95% CI) (Ref.) (1.47–4.71) (2.2–6.4) (5.8–12.56)

Candidate Gene Analysis*

OR** 1 1.91 2.79 4.46 ,0.001

(95% CI) (Ref.) (1.1–3.34) (1.66–4.65) (2.94–6.72)

*Cross-validated WGRS computed from SNPs selected from multivariable analyses.
**Cross-validated odds ratios (and 95% confidence intervals) from logistic regression models adjusted for sex, and population admixture, p-values
associated to chi-square global test.

doi:10.1371/journal.pone.0116346.t007
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identified has been previously associated with metabolic syndrome, fasting

glucose, insulin levels, and insulin resistance [66]. Similarly, the LIPA gene

encodes for lipase A, also known as cholesterol ester hydrolase, an enzyme that

functions in the lysosome to catalyze the hydrolysis of cholesteryl esters and

triglycerides. The SNP in LIPA, rs792269, is associated with total cholesterol, LDL

Table 8. SNPs selected with maternal-placental interaction as best fitting model.

Gene SNP

PPARG chr3:12412978

PPARG chr3:12313450

PRKCA chr17:61743445

CAMK2B chr7:44226231

THRB rs12639293

LRPPRC rs11899538

COX5A chr15:73008298

COX5A chr15:73012861

COX5A chr15:73001842

COX5A chr15:73008918

PRKCA rs9896575

THRB rs9809150

PRKCA chr17:61732949

NR1H3 chr11:47233666

PRKCA chr17:61736374

CAMK2B rs2075076

CAMK2B rs1127065

THRB rs2362186

PRKCA chr17:61735430

PRKCA chr17:61735623

COX10 rs16949118

TRNT1 rs7629889

PPARGC1A rs12650562

doi:10.1371/journal.pone.0116346.t008

Table 9. Sample model selection procedure for SNP chr312412978.

chr3:12412978 Models compared Loglikelihood of first model Likelihood ratio test BIC of the first model

Model I vs Model M+F 2349.57 13.9504 726.0741

Model M+F vs Model F 2356.546 22.9475 726.5577

Model M+F vs Model M 2356.546 19.13 726.5577

Model M+F vs Null Model 2356.546 34.423 726.5577

Model M vs Model NULL 2366.111 15.293 738.9543

Model F vs Model NULL 2368.019 11.4755 742.7718

Model Null 2373.757

doi:10.1371/journal.pone.0116346.t009
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cholesterol, and triglycerides [67]. None of the other top ten hits in our list had

any previous associations reported. Our pathway analyses revealed that genes

participating in cell cycle, cell growth and proliferation, and gene expression were

overly represented by SNPs that were among the top hit of our GWAS. It is well

known that disruptions in underlying normal placental growth and development

are key underlying pathways that may later lead to the occurrence of PA [68].

Table 10. Results of imprinting analysis for SNP mapping to C19MC.

C19MC site

SNP Position Empirical p-value Gene

rs12608629 57617596 0.101

rs12985487 57757473 0.973

rs12327640 57758705 0.089

rs179320 57780245 0.293 ZNF701

rs12974834 57855966 0.027 ZNF83

rs12976870 57859746 0.1 ZNF83

rs4802981 57887238 0.564 ZNF83

rs4802987 57925085 0.059 ZNF611

rs4801931 57928058 0.351 ZNF611

rs10407762 57979913 0.543 ZNF600

rs12461390 57997054 0.809 ZNF600

rs12982980 58041662 0.032 ZNF468

rs8112177 58108780 0.004 ZNF888

rs7251313 58116136 0.118 ZNF888

rs12972202 58161816 0.926

rs12610001 58162603 0.917

rs1650966 58166272 0.899 ZNF702P

rs7258746 58246131 0.3 ERVV-2

rs10405102 58262679 0.715 ZNF160

rs7254015 58272963 0.655 ZNF160

rs17300167 58296859 0.537 ZNF160

rs10423215 58340885 0.02 ZNF347

rs4803058 58386953 0.786 ZNF665

rs11669754 58389180 0.45 ZNF665

rs6509732 58394320 0.628

rs11084227 58419094 0.593

rs8100275 58442327 0.004 ZNF677

rs2965261 58467498 0.676

rs4263048 58469142 0.068

rs7250240 58614327 0.002 ZNF765

rs7258566 58704092 0.128

rs12982082 58717730 0.898 ZNF331

rs4994351 58724856 0.468 ZNF331

Rows in bold correspond to p-value,0.05.

doi:10.1371/journal.pone.0116346.t010
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The top hits in the candidate gene association analyses included SNPs in the

COX10 (rs16949118) and THRB gene (rs7609948). COX10 encodes for the

cytochrome C oxidase protein, the terminal component of the mitochondrial

respiratory chain that catalyzes the electron transfer from reduced cytochrome C

to oxygen. Genetic variations in this gene have been related to several diseases

with underlying mitochondrial dysfunction including Alzheimers’ disease,

neurodegenerative diseases and other childhood disorders [69–71]. The THRB

gene encodes a protein that is a receptor for triidothyronine. Several studies have

reported associations between disorders in thyroid (particularly low thyroid

levels) and placental disorders including PA [72–74]. The SNPs identified in our

study, however, have not been associated with phenotypes or clinical outcomes. In

addition to these SNPs, several other SNPs in the PPARG gene, belonging to the

PPAR-family of genes that have been well-described in relation to placental

growth and development, were among the top hits in the candidate gene analyses

[75, 76].

We examined associations between GRS, calculated from top hits of the GWAS

and candidate gene analyses, respectively, and risk of PA and demonstrated strong

associations between GRS and PA risk in both instances. While we did not use

separate training and testing samples, we have used a cross-validation approach to

protect against overfitting. These preliminary analyses are helpful to summarize

identified effects of genetic variations, and could help in the construction of

predictive models in future studies [77, 78]. In particular, such genetic prediction

have advantages, over non-genetic prediction models, as they are highly stable

over time and are more suited for assessment of lifetime risk. In fact, their utility

improves over time [78]. In addition, the decreasing genotyping cost and minimal

invasiveness associated with obtaining samples highlight the potential importance

of genetic prediction scores. On the other hand, the need for large study

populations, that comprise of training and testing sets, and identification of

genetic variants that individually account for large effects, are potential challenges

in this area of research.

In the current study, for two SNPs in PPARG (chr3:12313450 and

chr3:12412978), models with maternal-genetic interaction on PA risk were found

to fit the data best. A number of studies have previously reported interactions

Table 11. Results of imprinting analysis for SNP mapping to IGF2-H19.

IGF2-H19 site

SNP position Empirical p-value Gene

rs965912 1900778 0.061 TNNT3

rs6578974 2052309 0.199

rs7924768 2064648 0.038

rs7926624 2085606 0.03

rs1004446 2126719 0.05 IGF2

Rows in bold correspond to p-value,0.05.

doi:10.1371/journal.pone.0116346.t011
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between maternal and fetal metabolic genes on maternal and fetal outcomes [79–

84]. Liang et al. have previously reported significant interaction between maternal

and fetal genetic variations at the G308A SNP of TNF-alpha on risk of preterm

delivery [85]. Similarly, other investigators have also reported significant

maternal-fetal genotype interactions in IL-1beta -511C/T genotype, 4845GG

genotype of IL-1alpha, along with the G308A SNP of TNF-alpha on preterm

delivery risk [84]. Sinsheimer et al. have particularly stressed that the complex

interplay of maternal and fetal genetics can be important for phenotypes

originating with the placenta, given the importance of both maternal and fetal

related (paternal) risk factors to placenta-based diseases and demonstrated gene

expression differences in placenta-related pathologies (e.g. preeclampsia) [83].

Interestingly, the gene that has been highlighted in relation to maternal genetic

variation and fetal sex interactions on risk of gestational diabetes is the PPARG

gene [81] More specifically, Hocher et al. have demonstrated that mothers

carrying G alleles of the Pro12Ala polymorphism delivering a girl had a higher

total glycated hemoglobin (6.81) versus mother carrying the same alleles but

delivering boys (5.85) (p-value50.0015) [81]. However, to our knowledge, no

prior study investigated maternal-placental genotype interactions in relation to

PA risk. Similarly, placental growth and development is primarily under the

control of fetal genes inherited from the father [5, 86]. Imprinted paternal alleles

regulate formation of placenta and membranes surrounding the embryo, whereas

the development of the embryo itself requires contribution from the maternally

derived alleles [5, 86]. Our findings suggest maternal imprinting effects for

multiple SNPs in the C19MC and IGF2/H19 regions. While these imprinting sites

are well described for several conditions including placental growth and

development, our findings are novel in terms of linking imprinting at these sites to

PA risk [87, 88].

Given our sample size and related concerns regarding limited available

statistical power, in exploratory analyses, we conducted maternal-placental

interaction analyses of the PPARG gene using a haplotype-based approach. Tag

SNPs from this gene were identified and haplotype blocks were defined using the

Haploview software version 4.2 [89, 90]. A total of four haplotype blocks tagged

by 29 SNPs were identified. For each haplotype block, three possible diplotypes

HH, HH0, H0H0 as described in [80] were defined with the haplotype ‘‘H’’

denoting the ‘‘relevant’’ haplotype and ‘‘H0’’ denoting all other haplotypes. Each

haplotype with frequency greater than 0.05 was considered as a potential

‘‘relevant’’ haplotype. For each ‘‘relevant’’ haplotype a procedure similar to the

SNP interaction analysis was performed through the EMIM and PREMIM

software tools. The ‘‘relevant’’ haplotype with the smallest BIC after evaluating all

potential ‘‘relevant’’ haplotypes in each haplotype block was selected. This

haplotype was called the optimal ‘‘relevant’’ haplotype. Findings from the

exploratory interaction analyses are presented in Table 12. For haplotype block 1 a

maternal-only effect was selected whereas for haplotype block 2 there was no

evidence of haplotype effect. For haplotype block 3 a placental-only effect was

selected. For both haplotype blocks (1 and 3), there was evidence that group 3 had

Maternal-Placental Genome Interactions and PA Risk
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a significantly lower risk of PA compared to the reference group (RR50.21, 95%

CI: 0.066–0.68 and RR50.51, 95% CI: 0.293–0.878, respectively). For haplotype

block 4, there was evidence of maternal-placental interaction effect. The group 3

showed a significantly higher risk of PA (RR55.71 95% CI: 3.398–9.604) whereas

group 5 presented a significantly lower risk (RR50.18, 95% CI: 0.037–0.884)

compared to the reference group. While findings from these haplotype based

interaction analyses are encouraging, caution is warranted in interpreting these

results due to uncertainties in the haplotype estimation process and the simplified

model that considers diplotypes rather than evaluating all haplotypes using a

reference.

This study expands the literature concerning the genetics of PA in a number of

respects. We evaluated placental genetic variations, assessed interactions between

maternal and placental genetic variations and examined placental imprinting

effects on PA risk. However, several study limitations should be considered when

interpreting our findings. First, our GWAS study has limited power to examine

associations between genetic variations and disease risk, particularly for SNPs that

have low to very low minor allele frequencies. Similarly, our statistical power to

detect SNP-SNP interactions on PA risk was limited. To the extent possible we

have tried to employ approaches that involve genetic risk scores to assess placental

genetic variations contributions to PA risk. Second, many of the identified top hits

Table 12. Results of haplotype-haplotype interaction analysis for haplotype blocks in PPARG gene.

Haplotype block 1; optimal ‘‘relevant’’ haplotype denoted H

Maternal Model Relative Risk CI (95%)

gpRef {H0H0_H0H0; H0H0_H0 H} 1

gp2 {H0 H_H0H0; H0 H_H0 H; H0 H_HH} 0.6912 (0.386–1.237)

gp3 {HH_H0 H; HH_HH} 0.2123 (0.066–0.68)

Haplotype block 3; optimal ‘‘relevant’’ haplotype denoted H

Fetal Model Relative Risk CI (95%)

gpRef {H0H0_H0H0; H0 H_H0H0} 1

gp2 {H0H0_H0 H; H0 H_H0 H; HH_H0 H} 1.0684 (0.812–1.406)

gp3 {H0 H_HH; HH_HH} 0.5073 (0.293–0.878)

Haplotype block 4; optimal ‘‘relevant’’ haplotype denoted H

Interaction model Relative Risk CI (95%)

gpRef {H0H0_ H0H0} 1

gp2 {H0H0_H0 H} 1.7656 (0.503–6.194)

gp3 {H0 H_H0H0} 5.7127 (3.398–9.604)

gp4 {H0 H_H0 H} 1.0177 (0.409–2.531)

gp5 {H0 H_HH} 0.1813 (0.037–0.884)

gp6 {HH_H0 H} 2.9148 (0.248–34.248)

gp7 {HH_HH} 1.0358 (0.168–6.404)

Diplotypes shown as maternal_placental.

doi:10.1371/journal.pone.0116346.t012
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of our analyses, both in the main effect and interaction models, have not been

previously described either in genetic epidemiology or basic science investigations.

Therefore, an important next step, along with replication efforts, should involve

characterization of functional effects of these variations. Third, our imprinting

effect assessment was based on mother-offspring dyad data and could benefit from

triad data that also has information on fathers. Fourth, our GRS-based analyses,

because of limited statistical power, did not involve independent training and

testing sets, which would have been ideal for evaluating their predictive power,

but rather relied on repeated ten-fold cross-validations. The WGRS will provide a

summary estimate of effects of multiple SNPs, and can provide specific hypotheses

that can be tested in future studies. Finally, findings from our study need to be

cautiously generalized to other populations with different genetic make-up,

population admixture, and environmental risk factors.

In sum, we found that variations in the placental genome and interactions

between maternal-placental genetic variations may contribute to PA risk. We

reported several novel loci where placental genetic variations may be associated

with PA risk as well as several novel loci for maternal-placental genetic

interactions on PA risk. Future larger investigations may help advance our

understanding of PA pathogenesis.

Supporting Information

S1 Fig. ROC curves for 1000 cross-validation replicates of the GWAS-based

WGRS model with associated average AUC and 95% CI.
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S2 Fig. ROC curves for 1000 cross-validation replicates of the candidate gene-

based WGRS with associated average AUC and 95% CI.

doi:10.1371/journal.pone.0116346.s002 (TIF)
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