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Abstract

Scaling invariance of time series has been making great contributions in diverse

research fields. But how to evaluate scaling exponent from a real-world series is still

an open problem. Finite length of time series may induce unacceptable fluctuation

and bias to statistical quantities and consequent invalidation of currently used

standard methods. In this paper a new concept called correlation-dependent

balanced estimation of diffusion entropy is developed to evaluate scale-invariance

in very short time series with length *102. Calculations with specified Hurst

exponent values of 0:2,0:3, � � � ,0:9 show that by using the standard central moving

average de-trending procedure this method can evaluate the scaling exponents for

short time series with ignorable bias (ƒ0:03) and sharp confidential interval

(standard deviation ƒ0:05). Considering the stride series from ten volunteers along

an approximate oval path of a specified length, we observe that though the
averages and deviations of scaling exponents are close, their evolutionary
behaviors display rich patterns. It has potential use in analyzing physiological
signals, detecting early warning signals, and so on. As an emphasis, the our core
contribution is that by means of the proposed method one can estimate precisely
shannon entropy from limited records.

Introduction

A stochastic process behaves scale-invariance if the probability distribution

function (PDF) of its displacements x(t) obeys,

p(x,t)~
1
td

F(
x
td

), ð1Þ

where d is the scaling exponent. Ordinary statistical mechanics is intimately
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related to the Central Limit Theorem [1], which implies the Gaussian form of the

function F(:) with d~0:5 [2]. The scaling exponent tells us quantitative deviation

of a phenomena from ordinary mechanics, displays its real physical nature. Scale-

invariance has been making great contributions to progresses in diverse research

fields [3], such as establishment of fractal market hypothesis [4], evaluation of

healthy states from physiological signals [5], and identification of genes encoding

proteins in DNA sequences [6–9]. But how to evaluate exactly the values of d from

real world time-series is still an open problem.

Variance-based methods, e.g., wavelet analysis [10, 11] and de-trended

fluctuation analysis (DFA) [12–16], employed in literature as standard tools,

require an assumption, namely, Var½x(t)�*t2d. It is valid for Brownian motions,

but for Levy walks we have Var½x(t)�*t2H with d~
1

3{2H
=H [17]. Scale-

invariance in Levy flights can not be detected qualitatively at all due to divergence

of the second moment of displacements.

A successful effort in developing complementary methods is the diffusion

entropy analysis (DE) [17–19] proposed by Scafetta et. al.. From a stationary time

series, one can extract all the possible segments with a specified length. Regarding

the length of the segments as duration time, each segment is mapped to a

realization of a stochastic process, namely, a trajectory starting from the original

point. All the realizations form an ensemble, which can be described by a diffusion

process. If Eq.(1) stands for the PDF of displacement of the ensemble, a simple

computation shows that there exists a linear relation between Shannon entropy,

called diffusion entropy, and the logarithm of segment length, slope of which

equals to d. This entropy-based method attracts extensive attentions (see, for

examples, [20–25]) for two reasons. It is dynamical process independent, namely,

it can give simultaneously reliable values of scaling exponents for fractional

Brownian motions and Levy processes. What is more, by comparing its result with

that of variance-based methods, one can identify from time series the underlying

dynamical mechanisms (Brownian motion or Levy process).

A key challenge in practice is that finite length of real-world time series may

reduce the accuracy of the estimation of fractal exponents. Real-world time series

are generally very short. Sometimes, a long record is available, but phase

transitions may occur in the monitoring duration. To identify different behaviors

of the complicated system, we should separate the long time series into short

segments. Specially, at present time, researchers’ attentions are moving to specific

characteristics in each sample, instead of the common characteristics existing in

many samples. Hence, a tool should have good performance for single and short

time series. Statistically, a high-confidential estimation of scaling exponent means

ignorable bias and sharp confidential interval. Our goal in this paper is to improve

the initial diffusion entropy concept to a high-performance version to evaluate

scaling behaviors embedded in single and short (*102) series.

Argument on the finite length effects has been persisting for decades. To cite an

example, detailed calculations by A. Eke, et.al. [26–31] propose that one needs

series of at least 212 data points to get reliable results. On the contrary, in the paper

Competing Interests: The authors have declared
that no competing interests exist.

Evaluation of Scaling Invariance Embedded in Short Time Series

PLOS ONE | DOI:10.1371/journal.pone.0116128 December 30, 2014 2 / 27



by D. Delignieresb [32], by integrating different methods into a complicated

flowchart, the authors show that the loss of accuracy of the estimation in short

time series (at least §28) is not as dramatic as expected. However, this conclusion

is based upon a procedure of statistical average over 40 realizations, which

requires a total of w213 records.

Recently, by minimizing the summation of statistical error and bias, Bonachela

et al. [33, 34] proposed a balanced estimation of Shannon entropy for a small set

of data, which performs well even when a data set contains few tens of records.

Replacing the original Shannon entropy with the balanced entropy estimation, we

convert the DE method to a new version, called balanced estimation of diffusion

entropy (BEDE) [35, 36]. Detailed calculations on constructed fractional

Brownian series, stock market records, and physiological signals show that the

BEDE is a possible way to evaluate scaling behaviors embedded in a single and

short time series with several hundreds length.

The BEDE method proves it powerful, but there are still several essential

questions to be answered. First, in the deduction of the original balanced

estimator of entropy, the correlations between elements in different bins are

simply neglected. Actually, the summation of the elements in all the bins should

be a constant, i.e., the total number of constructed realizations. Is this simple

assumption proper or not? Second, for long time series, effect of de-trending

procedure can be ignored. But for very short time series, the effect may lead to

serious mistakes. How the technical details in de-trending procedure affect the

results? Third, and the most important for applications, what a performance (bias

and confidential interval) can be reached when we considering a single sample

with *102 length?

In the present work, we give clear answers to the above questions. Our

contribution is threefold:

First, we consider the correlations between elements in all the bins. It turns out

to be a key step to increase significantly accuracy of estimation of entropy when

the number of bins tend to large. Accordingly, we present a new estimation of the

total entropy, called correlation-dependent balanced estimation of diffusion

entropy (cBEDE). By using cBEDE one can estimate precisely Shannon entropy

from limited samples, which is a serious challenge in diverse research fields. This is

the key contribution.

Second, in the methods of cBEDE and BEDE, there exists a null hypotheses that

if we re-scaled at each duration time s the displacements by the way of x(s)?
x(s)
sd

,

the resulting estimations of entropy are independent with s. We test this

assumption and accordingly introduce a modification to BEDE and cBEDE.

Third, BEDE and cBEDE are valid only for stationary time series. In literature,

several de-trending procedures are proposed, such as the polynomial fit [12–16]

and the central moving average [37–42]. In the present paper we investigate the

performances of BEDE and cBEDE by using the standard central moving average

(SCMA) solution and its mutation. It is found that the SCMA makes the cBEDE

works best.
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The three contributions lead to a high performance of cBEDE. For a single

short time series with *102 length, by using the stadard SCMA procedure cBEDE

can estimate its scaling exponent with ignorable bias (less than 0:03) and

significantly high confidence (standard deviation less than 0:05). On the contrary,

the confidential interval for the BEDE method is about ½d{0:09,dz0:09� for the

both de-trending methods, covering about an interval of about 0:2.

As an example, application of this method to walks, we find rich patterns in the

evolutionary behaviors of scaling invariance embedded in the stride series.

Method and Materials

Method

A Brief Review Of Diffusion Entropy [17]

Let us consider a stationary time series, j1,j2, � � � ,jN . All the possible segments

with length s read,

Xi~fji,jiz1, � � � ,jizs{1g,i~1,2, � � � ,N{sz1: ð2Þ

Now we regard Xi as a realization of a stochastic process, namely, a trajectory of

a particle starting from the original point and the duration time is a total of s time

units. All the N{sz1 trajectories form an ensemble, whose displacements,

x(s)~fx1(s),x2(s), � � � ,xN{sz1(s)g, are,

xi(s)~
Xs

j~1

jj,i~1,2, � � � ,N{sz1: ð3Þ

Let us find the distribution region of the displacements x(s), namely,

½min(x),max(x)�, and divide it into M(s) bins with the same size,
max(x){min(x)

M(s)
,

each. The PDF can be naively approximated as,

p(k,s)*p̂(k,s)~
n(k,s)

N{M(s)z1
,k~1,2, � � � ,M(s), ð4Þ

where n(k,s) is the number of displacements occurring in the kth bin. The

consequent naive estimation of diffusion entropy of the process reads,

SDE(s)*Snaive
DE (s)~{

XM(s)

j~1

p̂(j,s)ln½p̂(j,s)�: ð5Þ
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We assume the time series behaves scale-invariance, namely, p(j,s) satisfies,

p̂(j,s)~
1
sd

F
min½x(s)�z(j{0:5)E(s)

sd

� �
|E(s)

:
1
sd

F
xc

j

sd

� �
|E(s)

j~1,2, � � � ,M(s),

ð6Þ

where E(s) is the window size, and xc
j:min½x(s)�z(j{0:5)E(s), i.e., the central

point of the jth bin. Eq.(5) can be rewritten as,

Snaive
DE (s)~{

XM(s)

j~1

E(s)
sd

F
xc

j (s)

sd

� �
lnE(s)zlnF

xc
j

sd

� �
{dlns

� �
ð7Þ

If the length of the time series is infinite, i.e., N?? and
E(s)
sd

?d(
xc

j (s)

sd
), the

naive estimation of entropy can be approximated with a integral form, which

reads,

Snaive
DE (s)~{

ðmax½x(s)�

min½x(s)�
d

x
sd

� �
F

x
sd

� �
| lnF

x
sd

� �
{dlns

h i

~{

ðmax½x(s)�

min½x(s)�
dyF(y)|½lnF(y){dlns�

~Azdlns,

ð8Þ

where A~{

ðmax½x(s)�

min½x(s)�
dyF(y)lnF(y), a constant.

Hence, the simple relation of Eq. (8) can be used to detect scalings in time

series. It is the first tool yielding correct scalings in both the Gaussian and the Lévy

statistics. For this reason, it is used to detect scale-invariance in diverse research

fields [43], such as solar activities [44–48], spectra of complex networks [49],

physiological signals [50–54], DNA sequences [55, 56], geographical phenomena

[57–59], and finance [51, 60].

De-trend Procedure

A real-world time series is generally non-stationary. In literature several novel

solutions are proposed to subtract trends in time series, such as the polynomial fit

[12–16] and moving average [37–42] in DFA method. In the present work we

adopt the central moving average scheme. From a real-world time series,

ffO
1 ,fO

2 , � � � ,fO
Ng, one can calculate the trend series, whose elements are,
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fT
i ~

1
s

X½s=2�

j~{½(sz1)=2�
fO

izj,

i~½(sz1)=2�,½(sz1)=2�z1, � � � ,N{½s=2�,

ð9Þ

where [.] is the integral function, and s is identical with the duration time in

Eq.(8). The consequent de-trended time series can be calculated as,

fD
i ~fO

i {fT
i ,

i~½(sz1)=2�,½(sz1)=2�z1, � � � ,N{½s=2�:
ð10Þ

The resulting series is regarded as stationary. This procedure is called standard

central moving average scheme (SCMA).

As comparison, we adopt also a mutation of SCMA. In calculations, if the

standard central moving average is used, the length of the resulting time series is

N{s, from which one can extract a total of N{2sz1 segments to estimate

probability distribution function. The loss of 2s records maybe neglected if time

series is long enough, but for short time series the lost records are valuable. To

take into account of contributions of the lost records, a mutated solution is to

loose the procedure of SCMA in the two end parts of time series, namely, the

elements of trend read,

fT0
i ~

X½s=2�
j~{½(sz1)=2� f

O0
izjX½s=2�

j~{½(sz1)=2�vizj

,

i~1,2, � � � ,N,

ð11Þ

where, for 1ƒizjƒN , fO0
izj~fO

izj and vizj~1, otherwise, fO0
izj~0 and vizj~0.

And the de-trended time series reads,

fD0
i ~fO

i {fT0
i ,

i~1,2, � � � ,N:
ð12Þ

The standard central moving average is conducted strictly only in the cental

part of the series. This method is denoted with lSCMA in this paper.

Correlation-Dependent Balanced Estimation of Diffusion Entropy

In the DE method, the bin size E(s) is generally chosen to be a certain fraction of

the standard deviation of the considered time series. With the increase of s, the

characteristic distribution width of x(s) (i.e., standard deviation of x(s)) extends

rapidly according to sd, and the number of bins, M(s), will increase in a speedy
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way. For finite N , the naive estimation of relative frequencies may lead to large

fluctuations and bias to the calculations in downstream steps. Defining an error

variable, m(j,s)~
p̂(j,s){p(j,s)

p(j,s)
, a straightforward computation leads to a rough

estimation of bias, Sbias
DE (s):SDE(s){Snaive

DE ~
M(s){1

2(N{sz1)
zO(M(s)) [33].

Consequently, Snaive
DE (s) deviates significantly from the true entropy not only

statistically but also systematically.

Our goal is to find a proper estimation of diffusion entropy to reduce

simultaneously the bias and the variance as possible, which can be formulated as

an optimal problem [34]. For simplicity, the variable s is not written explicitly in

the following formula. Let us denote the occurring probabilities and realization

numbers in the M bins with ~p~(p1,p2, � � � ,pM), and ~n~(n1,n2, � � � ,nM),

respectively. One can define bias and statistical fluctuation as,

D2
bias: hŜi{S

� 	2
,

D2
stat: Ŝ{hŜi

� 	2
D E

,
ð13Þ

where Ŝ is the estimation of real diffusion entropy S:{~p:ln~p, and :h i the average

over all possible configurations of ~n. To balance the errors, we consider the total

error averaged over all the configurations of ~p, which reads,

D2~

ð
PM
i~1

pi~1

d~p:½D2
biaszD2

stat�

~

ð
PM
i~1

pi~1

d~p:
X

PM
j~1 nj~N{sz1

P(~n,~p):Ŝ2(~n)zS2(~p)

8>><
>>:

9>>=
>>;

{

ð
PM
i~1

pi~1

d~p 2S(~p):
X

PM
j~1 nj~N{sz1

P(~n,~p)Ŝ(~n)

2
664

3
775

8>><
>>:

9>>=
>>;

ð14Þ

where P(~n,~p) is the binomial distribution,

P(~n,~p)~

XM

i~1

ni

 !
! P

M

i~1
p

ni
i

P
M

i~1
ni!

: ð15Þ
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The expected values of Ŝ(~n) should lead to the minima of the averaged error,

which requires a necessary condition reads,

LD2

L~n
~0, ð16Þ

for all the possible configurations of ~n. A simple algebra leads to,

Ŝ(~n)~

ð
PM
i~1

pi~1

d~p:S(~p):P(~n,~p)

ð
PM
i~1

pi~1

d~pP(~n,~p)

~

{
PM
j~1

lim
z?1

ð
PM
i~1

pi~1

d~p:pz
j
:P(~n,~p)

2
64

3
75
’

zð
PM
i~1

pi~1

d~pP(~n,~p)
,

ð17Þ

where we use the identify, pjlnpj: lim
z?1

dpz
j

dz
.

After a very cumbersome computation (see Appendix), we deduce the final

estimation of diffusion entropy, which reads,

Ŝ(~n,s)~
1

N{sz1zM(s)

XM(s)

j~1

½nj(s)z1�:
XN{sz1zM(s)

k~nj(s)z2

1
k

, ð18Þ

called correlation-dependent balanced estimation of diffusion entropy (cBEDE).

One can find that for the specific case of M(s)~2, cBEDE degenerates to the

BEDE. However, our calculations show that when M(s) is large, there exists great

difference between them.

Null-hypothesis-based correction

From the scale-invariance definition one can find that the characteristic width of

displacement distribution increases according to std½x(s)�*sd. For each duration

time, s, we consider re-scaled displacements, which read,

xres(s)~f x1(s)
std½x(s)� ,

x2(s)
std½x(s)� , � � � ,

xM(s)
std½x(s)�g: ð19Þ
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Behaviors of entropy estimations for the re-scaled displacements xres(s) should

be independent with duration time s. This hypothesis can be used to test and

correct proposed methods. Denoting entropy estimations for original and re-

scaled displacements with DEo, BEDEo, cBEDEo and DEr, BEDEr, cBEDEr,

respectively, the final calculated entropy estimations read,

DE~DEo{DEr,

BEDE~BEDEo{BEDEr,

cBEDE~cBEDEo{cBEDEr:
ð20Þ

Materials

Fractional Brownian Motions

Fractional Brownian motions [61, 62] are used to evaluate and compare the

performances of DE, BEDE, and cBEDE. A fBm refers to a continuous-time

Gaussian process whose characteristics depends on its Hurst exponent 0ƒHƒ1.

It is scale-invariance, namely, the PDF of its increment x(t{s):fBm(t){fBm(s)

satisfies *
1

jt{sjH
F

x

jt{sjH

 !
. It has also a convergent variance of increment

obeys a power-law, Var½x(t{s)�*jt{sj2H
. In this work, the built-in program

wfbm:m in MatlabH is used to generate the fBm series.

Stride Series

The empirical data are the stride series of a total of 10 young healthy volunteers

[63], denoted with si01,si02, � � � ,si10, respectively. The participants have not

historical records of any neuromuscular, respiratory, and/or cardiovascular

disorders, and are not taking any medication. The ages distribute in a range of

18{29 year, the average of which is 21:7 year. The height and weight center at

177cm and 71:8kg, with standard deviations 8cm and 19:7kg, respectively. All the

objects walk continuously around an obstacle-free (approximately oval path) on

ground level measuring 225m or 400m in length. The stride interval is measured

by using an ultrathin, force-sensitive switch taped inside one shoe. Each object

walks four trials, i.e., slow, normal, fast, and metronome-regulated. Slow, normal,

fast walks indicate that the corresponding mean stride intervals are

1:3+0:2, 1:1+0:1, 1:0+0:1m and 1:0+0:2, 1:4+0:1, 1:7+0:1m=s, respec-

tively. The lengths of the stride time series distribute from 2040 to 3822 steps.
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Results

Performance of cBEDE

Fig. 1 presents several typical examples to illustrate performances of DEo, BEDEo,

and cBEDEo when the number of bins changes. For each Hurst exponent value H,

we generate 103 independent fBm series. The window size is chosen to be r times

that of the standard deviations, while the duration time keeps to be a constant,

s~1. The smaller the value of r, the larger the number of bins the displacement

region is being divided into. We calculate the bias D2
bias and the statistical

Fig. 1. Relative errors of DE o, BEDE o and cBEDE o versus bin size r. (a) H50.3, N5500. (b)H50.7, n5500.(c)H50.9, N5500.(d)H50.7, N55000.
Each curve is an average over 103 realizations. When r is large, DEo, BEDEo, and cBEDEo are very close. In the displayed range of r, cBEDE decreases
monotonically, while BEDEo decreases to a minima and then increases rapidly to unacceptable values.

doi:10.1371/journal.pone.0116128.g001
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fluctuation D2
stat . The relative error is defined as, Dr~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

biaszD2
stat

q
|100

Stheor

0
@

1
A%,

where Stheor is the corresponding theoretical value of entropy.

With the decrease of r, the relative error of DEo decreases rapidly and reaches a

minima at a small value of r. The BEDEo coincides best with the theoretical values

of entropy when the window size is large, but when the window size becomes

small, i.e., the bin number tends large, its deviation increases sharply to

unacceptable values. One can find that cBEDEo has always smaller deviation

rather than DEo does, especially in the region of small values of r. In the

considered region of r the relative error of cBEDEo decreases monotonically. For

the cases of (H,N)~(0:3,500),(0:7,500),(0:7,1000), and (0:7,5000) (as shown in

Fig. 1(a)-(d)), the values of r corresponding to the minima of BEDEo are

0:16,0:16,0:14, and 0:08, respectively. In the procedure of BEDEo, the bin number

increases according to *sd. The corresponding values of s are 450,14,17 and 36,

respectively. To obtain a reliable scaling exponent requires the scaling range being

large as possible, namely, the larger the bin number the better. Hence, we can

expect a best performance of cBEDEo.

The relative error is determined by two factors, namely, number of realizations,

N{sz1, and number of bins, M(s), the displacement interval being divided into.

With the increase of s, N{sz1 decreases while M(s) increases rapidly according

to *sd.

At the beginning (r~0:5), the occurring numbers in the bins are large enough,

and the finite effect can be neglected. With the decrease of r (increase of bin

number), much more details in the probability distribution function (PDF) can be

captured, which leads to decreases of relative errors for cBEDEo, BEDEo, and

DEo.

At the same time, increase of bin number will lead decrease of occurring

numbers in the bins, which means increase of bias and fluctuations due to finite

occurring numbers. By considering the constraint of the total realizations being

constant, error of cBEDEo decreases monotonically. While there occur transition

points for the errors of DEo and BEDEo. The improvement from BEDE to cBEDE

is a necessary step.

But when r becomes small, the occurring numbers in the bins are not large, and

the finite effect tends to dominate the relative errors. For the cBEDEo, the

consideration of the total number of realizations being constant guarantees the

precision of estimations. Consequently, in the considered range of r the relative

error can decrease monotonically. While the estimation errors for BEDEo and

DEo will increase significantly. The minimum values of DEo and BEDEo occur.

To obtain reliable scaling behavior, the considered range of s should be large as

possible. Hence, how to guarantee a correct estimation of diffusion entropy at

large s (i.e, small values of r) is the key problem. The significant precision of

cBEDE at small r makes it possible to evaluate scaling exponent from large range
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of s. Hence, the high estimation precision of cBEDE at small values of r is

important.

By using the SCMA de-trending scheme, Fig. 2 provides several examples of

entropy estimations versus duration time s. One can find that the entropies for re-

scaled series, cBEDEr and BEDEr, obey straight lines with small minus slopes,

whose absolute values are less than 0:04. The slope does not vanish even when the

Fig. 2. Several typical examples of entropy estimation by means of cBEDE and BEDE. The SCMA de-trending scheme is employed. Panels (a),(c),(e)
and (g) are generated fBm time series with (H,N)~(0:3,500),(0:7,500), (0:9,500) and (0:7,5000), respectively. Panels (b),(d),(f) and (h) are the corresponding
entropy estimations of cBEDE and BEDE. Slopes for re-scaled time series are small minus values, do not vanish even for the case of N~5000 in (h). cBEDE
provides correct estimations of H, while BEDE overestimates H up to about 10%.

doi:10.1371/journal.pone.0116128.g002
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length N becomes 5000 in Fig. 2(g–h). Hence, this bias comes from the specific

methods, which should be corrected in the procedure of detecting scale-

invariance.

For the case of H~0:3 which is less than 0:5, as shown in Fig. 2(a–b), there is

not distinguishable differences between the curves of cBEDE and BEDE. While for

H~0:7 and 0:9 with N~500 (see Fig. 2(c–d) and Fig. 2(e–f)), in the range of

small duration time s, the curves of cBEDE and BEDE are almost undistin-

guishable. When s becomes large enough, the curves of BEDE increase in a speedy

way compared with that of cBEDE, though they all obey the relation *A
0
zd

0
lns

in much large ranges of s. For N~5000, as an example for series with enough

length, one can find only slight difference between cBEDE and BEDE in a

considerable wide range of s. These findings are verified by a large amount of

calculations for fBm series with different values of H and N .

Herein, we propose an algorithm to estimate the scaling exponent in wide

interval of s as possible. From a total of W values of entropy estimations, we select

initially a range of points, ½Wi,We�, where the relation *A
0
zd

0
lns stands with a

high precision. At each step we extend the range to include more values of entropy

estimations and calculate the value of d. Let us denote values of d
0

for two

successive steps with d
0

n and d
0

nz1, respectively. The procedure iterates until a

criterion is broken through. The criterion is twofold. The difference between two

successive values of d
0

is less than a criterion dcrit , namely, jd0nz1{d
0

njƒdcrit. And

the aggregation of differences for all the steps should be limited to a certain

degree, namely,
1

nd
0

0

Xn

i~1
jd0n{d

0

0jƒraggr. By this way we can find the largest

range of lns, in which the scaling exponent can be estimated correctly.

In calculations we set dcrit~0:02, and raggr~30%. The values of ½Wi,We� depend

on de-trending procedures, i.e., equal to ½½0:1W�,½0:5W�� for the SCMA,

½½0:3W�,½0:7W�� for the lSCMA. In Fig. 2, for the cases of

(H,N)~(0:3,500),(0:7,500),(0:9,500) and (H,N)~(0:7,5000), the resulting slopes

of BEDE and cBEDE are 0:36,0:79,0:99,0:75, and 0:32,0:69,0:86,0:71, respectively.

The BEDE gives unacceptable large values of H (overestimated about 10%), while

the slopes of cBEDE are very close to the expected values.

These findings are confirmed statistically in Fig. 3, in which we present a

comparison between the two solutions of de-trending procedure. The average and

standard deviation of estimated scaling exponents are obtained over 103

independent realizations (with length N~500) for each specific value of H. For

the de-trending procedure SCMA, as shown in Fig. 3(a), the cBEDE can estimate

d with acceptable small values of bias (ƒ0:03) and standard deviation (ƒ0:05),

while for the BEDE the bias and standard deviation can reach 0:085 and 0:09,

respectively. For the lSCMA procedure (shown in Fig. 3(b)) cBEDE can estimate d

with bias less than 0:035 and standard deviation less than 0:08, which are almost

the same with that the BEDE performs, i.e., the bias less than 0:04 and the

standard deviation less than 0:09. Hence, by using the SCMA procedure, the
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cBEDE has significantly high performance, namely, in the wide range of 0vHv1
it can estimate scaling exponents with ignorable bias and significantly sharp

confidential interval.

The positive bias for BEDE in Fig. 3(a) and Fig. 3(b) is consistent with the

results in Fig. 1 and Fig. 2. One can find that the BEDE overestimates diffusion

entropy when window size becomes large and accordingly the scaling exponents

up to 10%. While the cBEDE can give precise estimation of entropy when the

window size becomes large.

The performance of SCMA is better than that of lSCMA. The reason may be

that our method can depress efficiently the finite length induced fluctuations and

bias of estimated entropy. Accordingly, the lost of data at the start and the end in

the SCMA does not lead to serious errors. While in the lSCMA the looseness of

standard central moving average at the end and start leads to serious errors to the

cBEDE method.

As a summary, to evaluate reliably scaling exponents require a joint

consideration of effects from three factors, namely, finite length, de-trending

procedure, and null-hypothesis.

Fig. 3. Bias and fluctuation of estimated scaling exponents by means of cBEDE and BEDE. For each
Hurst exponent, statistical average and fluctuation are obtained over an ensemble of 103 independent
realizations with length N~500. (a)–(b) SCMA and lSCMA de-trending procedures are employed,
respectively. For SCMA de-trending procedure, cBEDE can evaluate scaling exponents with small bias
(ƒ0:03) and standard deviation (ƒ0:05).

doi:10.1371/journal.pone.0116128.g003

Evaluation of Scaling Invariance Embedded in Short Time Series

PLOS ONE | DOI:10.1371/journal.pone.0116128 December 30, 2014 14 / 27



Scaling Behaviors For Stride Series

By using the SCMA de-trending procedure, we calculate cBEDE versus lns for all

the stride series. As shown in Fig. 4, the cBEDE curves (solid lines) are all straight

lines (ignorable slight bending downward when s becomes large), namely, the time

series behave almost perfect scale-invariance. For comparison we present also the

BEDE curves (gray symbols), which bend upward when s becomes large.

Consequently, cBEDE can evaluate precisely the scaling exponents, while BEDE

will over-estimate the values of scaling exponents.

The scaling exponents for fast, normal, and slow (as shown in Fig. 4(a)–(c))

distribute in the range of [0.78, 0.94], [0.77, 0.90], and [0.78, 0.92], respectively.

Fig. 4. Scaling-behaviors of stride time series by using BEDE and cBEDE. SCMA de-trending scheme is
used. (a)-(c) correspond to normal, slow, and fast walking trials, respectively. cBEDE and BEDE are illustrated
with solid lines and gray symbols, respectively. The lengths of the stride time series distribute from 2040 to
3822 steps.

doi:10.1371/journal.pone.0116128.g004
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Fig. 5. Evolution of scaling behavior for the subject numbered si01 by using BEDE (red line) and
cBEDE (black line). (a)–(c) correspond to fast, normal, and slow trials, respectively. Let a window with length
500 slide along the original time series. Scaling exponent for the covered segment is used to represent the
corresponding local behavior. There exist rich sub-structures in the walking durations. The cBEDE and BEDE
curves at the points marked with arrows will be shown in Fig. 6.

doi:10.1371/journal.pone.0116128.g005

Fig. 6. Local scaling behaviors corresponding to the points in Fig. 5 marked with arrows. The over-
estimation of BEDE is due to the bending upward when s becomes large.

doi:10.1371/journal.pone.0116128.g006
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One can find that for each subject there exist not significant differences between

the scaling exponents for different walking rates, except the subject numbered

si05, whose scaling exponent is 0:94 for the fast series which is significantly larger

than that for normal and slow series (*0:8).

During the experiments we assume the physiological states of the volunteers

remain unchanged. Let a window slide along the original series. At the tth step,

the window covers the segment jo
t,jo

tz1, � � � ,jo
tzDt{1, where Dt is the size of the

window. Scaling exponent for the covered segment can be used to represent the

local scaling behavior at time t. Calculations show that the behavior of scaling

exponent changes with time significantly, namely, there exist rich fine structures

in the walking durations. As a typical example, we show in Fig. 5 the evolutionary

behavior of scaling exponent for the subject si01. The window size is selected to be

Dt~500. The BEDE over-estimate the values of scaling exponents.

Fig. 7. Distributions of local scaling exponents for each subject.

doi:10.1371/journal.pone.0116128.g007
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To show how the BEDE overestimates the value of scaling exponent, we present

in Fig. 6 the BEDE and cBEDE curves for the three specific segments marked in

Fig. 5 with the arrows. One can find that the curves for cBEDE are almost straight

lines, while that for BEDE bend significantly upward (i.e., being overestimated).

Fig. 7 shows the distributions of local scaling exponents for each subject. One

can find that the shapes of distribution are completely different, though there exist

little differences between the averages and standard deviations.

The rich patterns in the curve of scaling exponent evolution and scaling

exponent distributions show us that in the walking duration the persistence of

physiological state changes significantly. But a conclusive physical discussion

requires a detailed investigation based upon enough experimental records, which

are invalid at present time. As a suggestion we hope the forthcoming experiments

can monitor simultaneously multi-parameters of physiological state, such as

stride, breathing, and heartbeat.

Conclusion and Discussion

In summary, scaling invariance holds in a large number of complex systems and

has been making great contributions in diverse research fields. Some powerful

algorithms have been developed in literature as standard tools to calculate scaling

exponents in time series. But how to evaluate scaling behaviors embedded in very

short time series (*102 length) is still an open problem.

In this paper, we propose a new concept called correlation-dependent balanced

estimation of diffusion entropy (cBEDE) to evaluate scaling invariance embedded

in short time series. Contribution in this work is threefold. Theoretically, the

correlations between occurring numbers in different bins are considered, which

leads to a much more exact estimation of diffusion entropy, as supported by a

large amount of numerical results. By re-scaling displacements at each duration

time s, the specific method related bias is also corrected. The performance of the

proposed method is evaluated by using central moving average de-trending

procedure (SCMA) and its mutation (lSCMA).

Calculations with specified values of Hurst exponent (H~0:2,0:3, � � � ,0:9)

show that for short time series with *102 length, by using the SCMA procedure

cBEDE can estimate scaling exponents with ignorable bias (less than 0:03) and

significantly high confidence (standard deviation less than 0:05). Comparison

shows that taking account of the correlations between elements in all the bins is

the key step for us to have the so good performance.

As an example, application of this method to walks finds rich patterns in the

evolutionary behaviors of scaling invariance embedded in the stride series. In the

experiments, we try to keep the condition unchanged. By this way, one hope the

states of volunteers keep the same, as being assumed in literature. But our works
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show that in the duration of walk, the state of a volunteer may change

significantly.

It should be noted that scaling behaviors embedded in short time series is just a

typical example of the potential applications of cBEDE. The core contribution

herein is a new method that can estimate Shannon entropy with high performance

from limited records.

Very recently, reconstructing relation networks from mono/multi-variate time

series attracts special attentions for its powerful in distinguishing time series

generated by different dynamical mechanisms. To cite examples, Zhang et al.

[64, 65] for the first time propose a method to map a time series to network, in

which the time series is separated into segments according to pseudo-periods. The

segments with strong cross-correlations are linked. While in the recurrence plot

[66–75] a mono/multi-variate time series is divided into equal-sized segments by

using the phase-space reconstructing technique. Then the segments are networked

according to the correlation strengths between them. In the methods, the key

problem is how to extract from short time series (segments) reliable relations. We

hope the concept of cBEDE can make significant contributions in this topic.

First, it can be used to extract state information from limited records. Very

recently, by using the cBEDE we report for the first time the long-term persistence

embedded in rating series in online movie systems [76]. The characteristic length

of the series are *102, which makes the other methods invalid. The findings

provide a new criterion for theoretical models, and provide us some knowledge on

how collective behavior of an online society is formed from individual’s behaviors.

Second, it can be used to extract evolutionary behaviors from one-dimensional

time series. Here we cite several interesting problems. Detection of early warning

signals [77] attracts special attentions for its special application in prediction of

disasters, which requires an estimation of a complex system’s state with

considerable high precision from short time series. Diagnosis of disease [78] needs

also a valuable evaluation of healthy state and its evolutionary behavior from

limited records. To find mechanism embedded in financial records, we should

know the scaling behavior of a stock market from a second to a day, a month, or

even a year time-scale. When the sampling interval is large, the available time

series will shrink to a limited length.

Third, it must be used when we address multivariate time series. To cite an

example, a complicated system contains many networked elements, relationships

between which can describe quantitatively the global state of the system [79].

Monitoring dynamical process of the system generates a multivariate time series.

Shannon entropy based concepts, such as mutual entropy [80, 81] and transfer

entropy [82], multi-scale cross entropy [83] are proposed in literature to

reconstruct the relationship network between the elements from the produced

time series. One should divide the distribution region of a bivariate series into

some rectangles, and reckon the occurring numbers of samples in each rectangle.
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If each variate interval is divided into M bins, the resulting number of rectangles

will be M2, which makes the finite length problem a serious challenge.

Appendix

The estimations of entropy read, Ŝ(~n)~
B
I

, where

I~
ð
PM

i~1 pi~1

d~p:P(~p,~n),

B~

ð
PM

i~1 pi~1

d~pP:(~p,~n)S(~p):

ðA:1Þ

Analytical expression of I
Let pk~x2

k,0ƒxkƒ1,~x~fx1:x2: � � � ,xMg,r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i~1
x2
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r
, we have,
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i~1
ni)!

P
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i~1 ni!
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i~1
p
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i~1 ni!
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where,

V(r)~

ð
0ƒ

PM
k~1 x2

k
ƒ1

P
M

k~1
x

2nkz1
k

:d~x, ðA:3Þ

and N~
PM

k~1
nk.
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With the help of the spherical coordinate expressions of ~x,

x1~r cos w1

x2~r sin w1 cos w2

� � �

xM~r sin w1 sin w2 � � � sin wM{1

8>>>>>>>>>>><
>>>>>>>>>>>:

ðA:4Þ

a simple computation leads to,

V(r)~
r2(NzM)

2(NzM)
P
M{1

i~1
Vi,

I(r)~
2MN!

P
M

k~1 nk!

P
M{1

i~1
Vi,

ðA:5Þ
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Vi~
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0
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2niz1

2
64

3
75

~
1
2
:
ð1

0
y

N{
Pi

s~1
zM{i{1

(1{y)nidy

~
1
2
:
(N{

Pi

s~1
nizM{i{1)!ni!

(N{
Pi

s~1
nizM{i)!

:

ðA:6Þ

Hence, we have the analytical expression of I,

I~
2N!

P
M

k~1 nk!

P
M{1

i~1

(N{
Pi

s~1 nizM{i{1)!ni!

(N{
Pi

s~1 nizM{i)!
: ðA:7Þ

Analytical expression of B
Using the identify of

dzq

dq

����
q?1

:zlnz, analogous procedure leads to,
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The analytical expression of U reads,
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The final explicit expression of Ŝ(~n) reads,
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In the present paper, at the duration time s the ensemble contains N{sz1
trajectories, so the correlation-dependent balanced estimation of diffusion

entropy reads,

Ŝ(~n,s)~
1

N{sz1zM(s)

XM

k~1

(nkz1)
XN{sz1zM(s)

nkz2

1
j
: ðA:12Þ

When we neglect correlations between occurring numbers in different bins, one

can simply reduce the distribution~n into two components, namely, the occurring

number in the considered bin and the total number of particles occurring in other

bins. The consequent value of M(s) is 2. In this case cBEDE degenerates to BEDE.
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