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Abstract

Bladder cancer (BCa) is a common malignancy worldwide and has a high

probability of recurrence after initial diagnosis and treatment. As a result, recurrent

surveillance, primarily involving repeated cystoscopies, is a critical component of

post diagnosis patient management. Since cystoscopy is invasive, expensive and a

possible deterrent to patient compliance with regular follow-up screening, new non-

invasive technologies to aid in the detection of recurrent and/or primary bladder

cancer are strongly needed. In this study, mass spectrometry based metabolomics

was employed to identify biochemical signatures in human urine that differentiate

bladder cancer from non-cancer controls. Over 1000 distinct compounds were

measured including 587 named compounds of known chemical identity. Initial

biomarker identification was conducted using a 332 subject sample set of

retrospective urine samples (cohort 1), which included 66 BCa positive samples. A

set of 25 candidate biomarkers was selected based on statistical significance, fold

difference and metabolic pathway coverage. The 25 candidate biomarkers were

tested against an independent urine sample set (cohort 2) using random forest

analysis, with palmitoyl sphingomyelin, lactate, adenosine and succinate providing

the strongest predictive power for differentiating cohort 2 cancer from non-cancer

urines. Cohort 2 metabolite profiling revealed additional metabolites, including

arachidonate, that were higher in cohort 2 cancer vs. non-cancer controls, but were

below quantitation limits in the cohort 1 profiling. Metabolites related to lipid

metabolism may be especially interesting biomarkers. The results suggest that

urine metabolites may provide a much needed non-invasive adjunct diagnostic to

cystoscopy for detection of bladder cancer and recurrent disease management.
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Introduction

In the U.S., bladder cancer is the 4th most common cancer type in men and the

11th most common cancer type in women [1]. In the U.S. for 2012, it was

estimated that 73,000 new cases would be diagnosed and 15,000 people would die

from the disease [1]. Patients with bladder cancer most frequently present with

hematuria [2]. Diagnosis of bladder cancer, in those patients presenting with

hematuria, primarily involves cystoscopy along with imaging, cytology and biopsy

[3]. Cystoscopy and cytology are the current standards for initial diagnosis and

recurrence, but limitations exist. Cystoscopy may fail to visualize certain areas

within the bladder and may also fail to detect all cancers, particularly some cases

of carcinoma in situ [4]. Cytology has high specificity and selectivity for high

grade tumors but fails to provide strong predictive value for low grade tumors [5].

Treatment options are based on staging and whether there is muscle tissue

invasion. A majority of bladder cancers (75%) are urothelial carcinomas classified

as non-muscle invasive bladder cancers (NMIBC). In NMIBC, approximately 70%

of patients present with stage pTa, 20% with pT1 and 10% with carcinoma in situ

(CIS) [6]. The recurrence rate for NMIBC after tumor resection is high, with

estimates ranging from 35 to 80% [6, 7]. Due to risk of tumor recurrence or

progression, established guidelines recommend that NMIBC patients be

monitored after initial diagnosis and treatment [8, 9]. A regular schedule of

cystoscopy is recommended for surveillance at a frequency of every 3–6 months

for 3 years and yearly there after [10, 11]. As a result, bladder cancer can be viewed

as a chronic disease with life-long follow-up required. Long term surveillance

relying on cystoscopy, besides being invasive, has the potential for adverse events

and can involve considerable long term expenses [12, 13]. In addition, patient

aversion to cystoscopy may result in reduced patient compliance with regular

surveillance recommendations [14]. There is a strong clinical need for a non-

invasive, inexpensive alternative to cystoscopy which will aid in the detection of

primary cancers, monitor recurrence and help stratify patients as to risk of

recurrence and progression. Recent advances in metabolomics have opened up the

possibility of using urine metabolites as biomarkers for cancer [15–18]. A number

of studies have compared metabolite differences in bladder tumors relative to

benign tissue and have identified candidate cancer biomarkers [19–23]. One study

also examined differences in urine metabolites between patients presenting with

bladder cancer relative to cancer free controls [19]. Earlier studies were often

limited in the number of detected named metabolites and a more comprehensive

metabolite profiling may yield new candidate biomarkers and predictive

algorithms. We report here the metabolomic profiling of urine from two cohorts

of bladder cancer patients and their respective non-cancer controls. The data

suggest multiple candidate bladder cancer biomarkers which may offer prognostic

value in identifying cancer positive urines.
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Materials and Methods

Patient Selection

Retrospective (cohort 1) and prospective (cohort 2) urine sample sets were

obtained from an IRB-approved urine repository (IRB #CR00008160/

STU032011-187) at the University of Texas Southwestern Medical Center

(UTSW). All subjects were consented with written consents. Cohort 1 bladder

cancer positive urines were from subjects presenting with either primary or

recurring cancer. Voided urine samples were obtained prior to cystoscopy for

subjects from cohort 1 bladder cancer positives, along with cancer history and

hematuria controls. Cystoscopies were conducted as part of ongoing surveillance

or for cancer detection and results were used to diagnose current cancer status,

either present or absent. Cohort 2 urine samples were obtained from subjects

presenting with hematuria or from subjects with a history of disease undergoing

surveillance. Bladder cancer positive urines in cohort 2 were obtained from

subjects presenting with either primary or recurrent disease. Metadata regarding

age, gender, race, and cancer stage and grade was available for both cohorts.

Metabolomic Profiling

The mass spectrometer platforms, sample extraction and preparation, instrument

settings and conditions, and data handling have been previously described in

detail [24]. Briefly, the major components of the process can be summarized as

follows. Osmolality of each urine sample is determined prior to processing. A

cocktail of recovery standards was added to the urine samples and 100 uL aliquots

were extracted in 500 uL methanol. The resulting extract was divided into three

fractions for untargeted metabolic profiling and randomized for analysis. Each

sample was dried under vacuum to remove organic solvent. Samples were

characterized using three independent platforms: ultrahigh-performance liquid

chromatography/tandem mass spectrometry (UHPLC-MS/MS) in the negative

ion mode, UHPLC-MS/MS in the positive ion mode and gas chromatography-

mass spectrometry (GC-MS) after sialylation. The reproducibility of the

extraction protocol was assessed by the recovery of the xenobiotic compounds

spiked in every urine sample prior to extraction. Cohort 1 urines were analyzed

using a platform consisting of a Waters ACQUITY UHPLC (Waters Corporation,

Milford, MA, USA) and a Thermo-Finnigan LTQ mass spectrometer (Thermo

Fisher Scientific Inc., Waltham, MA. USA), while cohort 2 was analyzed using a

platform consisting of a Waters ACQUITY UHPLC and a ThermoFisher Scientific

Orbitrap Elite high resolution/accurate-mass mass spectrometer (Thermo Fisher

Scientific Inc., Waltham, MA. USA). Compounds were identified by comparison

to library entries of purified standards or recurrent unknown entities.

Identification of known chemical entities was based on comparison to

metabolomic library entries of purified standards based on chromatographic

properties and mass spectra. As of this writing, more than 4000 commercially

available purified standard compounds had been acquired and registered into the
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LIMS for distribution to both the LC and GC platforms for determination of their

analytical characteristics. Additional entities (unnamed compounds) were

identified by virtue of their recurrent nature (both chromatographic and mass

spectral). These compounds have the potential to be identified by future

acquisition of a matching purified standard or by classical structural analysis.

Statistical analysis

All statistical analyses were performed in R version 2.14.2 [25]. Wilcoxon Test was

used to determine the statistical significance of metabolite mean differences

between comparator groups. For all analyses, missing values (if any) were imputed

with the observed minimum for that particular compound (imputed values were

added after block-normalization). The statistical analyses were performed on

natural log-transformed data to reduce the effect of any potential outliers in the

data. In addition, data was normalized to sample osmolality to compensate for

differences in urine concentration. Random forest is a supervised classification

technique based on an ensemble of decision trees [26] and was performed in R

version 2.14.2. Hierarchical clustering of bladder cancer and control urine

abundance profiles was performed in ArrayStudio version 5.0 using complete

linkage and Pearsons’s correlation as the similarity metric (OmicSoft, Raleigh,

NC). Calculations of AUCs and ROC curves were performed using the pROC

package in R [27]. The multi-biochemical algorithm, used to generate AUCs and

ROC curves, was trained and tested from data that was rescaled so that the

medians of both the cohort-1 and cohort-2 negatives were equal to 1. The

rescaling permits algorithm testing on a scale appropriate for the fitted coefficients

derived from the training set.

Results

Subject populations

Urine metabolic profiling was performed on two subject cohorts. Cohort 1 was

utilized as an exploratory/biomarker identification set to identify biochemicals

whose levels were different in the urines of bladder cancer urines relative to levels

in control urines. Cohort 2 was utilized as a second discovery set and to test the

predictive value of candidate biomarkers selected from the cohort 1 data set, but

since cohort 2 samples were analyzed on a more sensitive mass spec platform,

metabolites that were only measured in the cohort 2 samples were also of interest.

Cohort 1 was a retrospective urine sample set collected at the University of Texas

Southwestern, while cohort 2 samples were collected prospectively at the same

institution. A summary of patient demographics for the two cohorts is presented

in Table 1. Cohort 1 comprised 66 urines from subjects diagnosed with BCa and

266 non-BCa controls. Urines in cohort 1 were collected from subjects with either

primary or recurrent disease. Some differences in overall gender and race

compositions were present in cohort 1. Non-BCa controls in cohort 1 can be
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subdivided into three populations: 1) subjects presenting with hematuria; 2)

subjects with a history of BCa, but no current disease and 3) normal subjects with

no history of BCa. Cohort 2 was comprised of 29 urines from subjects diagnosed

with BCa and 79 non-BCa controls. As in cohort 1, there were some differences in

gender and racial balance between the BCa and non-BCa controls. Cohort 2 urines

were obtained from subjects with either primary or recurrent disease in a ratio

identical to that of cohort 1 (59% recurrent: 41% primary). Also of note was a

cohort difference in the percent of high grade vs. low grade BCa tumors, with

cohort 1 having a much higher percentage of high grade BCa (79%) than cohort 2

(59%).

Table 1. Cohort Subject Demographics.

Cohort 1 Cohort 2

BCa Non-BCa BCa Non-BCa

# of subjects 66 266 29 79

Age 67.4 64.2 66.7 65.1

Gender

Male 56 (85%) 169 (64%) 23 (79%) 43 (54%)

Female 9 (14%) 96 (36%) 6 (21%) 36 (46%)

Unknown 1 1

Race

White 53 (80%) 180 (68%) 27 (94%) 62 (79%)

Black 4 (6%) 43 (16%) 11 (14%)

Asian 2 (3%) 12 (5%) 1 (1%)

Hispanic 6 (9%) 24 (9%) 1 (3%) 4 (5%)

Unknown 1 (2%) 7 (3%) 1 (3%) 1 (1%)

BCa Grade

High 52 (79%) 17 (59%)

Low 4 (6%) 10 (34%)

Not available 10 (15%) 2 (7%)

BCa Stage

Ta 5 (8%) 15 (52%)

Tis 5 (8%)

T1 11 (17%) 5 (17%)

T2 13 (20%) 4 (14%)

T3 22 (33%)

T4 8 (12%) 2 (7%)

Unknown 2 (3%) 3 (10%)

BCa Recurrent 39 (59%) 17 (59%)

BCa Primary 27 (41%) 12 (41%)

Non-BCa controls

Hematuria 58 (22%) 20 (25%)

History - no current 119 (45%) 59 (75%)

Normal 89 (33%)

doi:10.1371/journal.pone.0115870.t001
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Metabolomic profiling and analysis

Urine samples were extracted and metabolic profiling was performed using

positive (+) and negative (2) LC-MS/MS and also GC-MS, to obtain broad

coverage of the biochemicals present. MS peaks were identified using Metabolon’s

proprietary peak integration/identification software, by comparing MS peak data

to that of a library of purified standards or recurrent unknown entities. Following

imputation of minimum observed values, log transformation and normalization

procedures, statistical analysis was performed to identify statistically significant

differences in metabolite levels between comparator groups. Profiling of cohort 1

measured 499 named and 624 unnamed biochemicals, while profiling of cohort 2

measured 587 named and 541 unnamed biochemicals. Lists of all named

metabolites measured in the two cohorts are shown in S1 & S2 Tables. The

increased number of named compounds measured in cohort 2, relative to cohort

1, in part, reflects the greater sensitivity of the accurate mass MS instrument used

for cohort 2 and an expansion of the biochemical library in the time period

between profiling cohorts 1 and 2. A Wilcoxon two sample test was employed to

identify statistically significant differences in metabolite levels in cohort 1 BCa

urines relative to control urines. Statistical analysis was performed comparing BCa

urines to all control groups combined; or comparing BCa to each of the control

subgroups. The number of statistically significant differences in named compound

levels ranged from 178 to 233 across the different comparisons (Table 2). Overall,

the number of statistically significant biochemicals did not vary greatly when

comparing BCa positive samples to the different control groups. Analysis of

cohort 2 BCa urines vs. controls, using a Wilcoxon test, identified 75 named

biochemicals as displaying statistically significant differences with 70 biochemicals

elevated and 5 biochemicals lower in BCa urines relative to control urines

(Table 2). The smaller number of statistically significant differences in cohort 2

relative to cohort 1 may reflect, in part, the lower sample numbers in cohort 2.

The higher percentage of higher stage tumors in cohort 1 relative to cohort 2 may

have also impacted the number of statistically significant differences observed.

Identification of candidate biomarkers

A strategy was employed to use cohort 1 to identify candidate biomarkers and to

rank the most interesting cohort 1 biomarkers for BCa predictability using the

cohort 2 samples set. A workflow diagram of the strategy used for biomarker

testing and confirmation is displayed in Fig. 1. Hierarchical clustering was

performed on the cohort 1 data set using all samples (332) and all named

biochemicals, excluding exogenous drugs (total 5442). The results of the

hierarchical clustering are presented in Fig. 2, with some degree of BCa sample

clustering observed. The clustering results suggest that metabolite differences

between the cancer and no-cancer groups exist and that these differences have a

capacity to differentiate the urine samples.
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Selection of biomarker candidates from the cohort 1 data set

A Wilcoxon test was applied to cohort 1 profiling data comparing urines from

subjects with current BCa to urines from three separate control groups: 1) subjects

Table 2. Statistically significant differences in metabolite levels between comparator groups.

Wilcoxon Test Cohort 1 Cohort 2

BCa/Normal BCa/History BCa/Hemat BCa/All Cnt BCA/All Cnt

Total biochemicals P#0.05 570 574 488 616 107

Biochemicals (q|Q) 128|442 139|435 96|392 157|554 87|20

Total named biochemicals p#0.05 233 216 178 231 75

Named biochemicals (q|Q) 71|162 67|149 45|133 65|166 70|5

Cohort 1 All Cnt (all controls) represents combined data for BCa negative: normal, history and hematuria samples. Cohort 2 All Cnt group represents
combined data for BCa history and hematuria samples.

doi:10.1371/journal.pone.0115870.t002

Fig. 1. Workflow diagram of biomarker candidate selection from both cohort 1 and cohort 2 data sets. Abbreviations: HX, BCa negative but with
history of BCa; Hema, BCa negative presenting with hematuria.

doi:10.1371/journal.pone.0115870.g001

Metabolite Biomarker Discovery in Bladder Cancer Urines

PLOS ONE | DOI:10.1371/journal.pone.0115870 December 26, 2014 7 / 19



presenting with hematuria; 2) subjects with a history of BCa but no current

disease or 3) normal subjects with no history of BCa. In addition, a Wilcoxon test

was applied comparing BCa urines to a control group consisting of all non-BCa

urines combined. A heatmap and statistics for all measured metabolites for the 4

different comparisons is contained in S1 Table. Combined, 290 statistically

significant differences in named metabolite levels were identified between the 3

separate BCa/comparator analyses, with 135 metabolites displaying statistically

significant differences across all three BCa to negative control comparisons

(hematuria, history, normal; S1 Table). To reduce the total number of metabolite

differences down to a more manageable set of ‘‘best biomarker candidates’’,

several filtering criteria were applied. Filters included: 1) metabolites with BCa to

control levels that were statistically significant in at least 3 of 4 BCa to control

Fig. 2. Hierarchical clustering of cohort 1 samples (N-332) and all named biochemicals exclusive of
drugs (N-422). Subject BCa diagnosis (post urine collection) is indicated in the lower bar. Clustering was
performed using complete linkage and Pearsons’s correlation as the similarity metric.

doi:10.1371/journal.pone.0115870.g002
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group comparisons; 2) metabolite differences displaying the lowest p-value (all

p#0.05); 3) greatest fold differences between BCa and controls; 4) measured in

.50% of urine samples; 5) cancer phenotype association; 6) coverage of multiple

metabolic pathways; 7) named compounds only; 8) exclusion of exogenous

compounds (e.g. xenobiotics, drugs). Applying these selection criteria we

designated a panel of 25 candidate biomarkers for further analysis. The set of 25

candidate biomarkers is shown in the heatmap of Fig. 3, along with the statistical

performance in each of 3 possible BCa to control group comparisons. Also shown

in Fig. 3 is a bladder cancer subset analysis comparing only non-muscle invasive

bladder cancers to the history control group. In comparing all BCa samples to

each of the control groups, all biochemicals with the exception of the branched-

chain amino acids (BCAA) leucine, isoleucine and valine displayed p#0.05

statistical significance in all 3 control group comparisons. 3-hydroxybutyrate and

gluconate were the most highly elevated in BCa urines, while anserine and 3-

hydroxyphenylacetate and pyridoxate were most reduced in BCa vs. control

urines. The majority of biomarker candidates which achieved statistical

significance when all BCa samples were compared to the history controls also

displayed statistically significant differences when only NMBIC samples were

compared to the history controls. Differentiation of NMBIC cancers is important

because they will be more prevalent in patients under active surveillance. The 25

candidate biomarkers selected from the cohort 1 data were used in a hierarchical

clustering analysis of cohort 1 samples. Clustering of BCa and control samples was

observed, indicating that differential levels of the 25 biochemicals offer some

degree of urine sample stratification based on diagnosis (Fig. 4).

Cohort 1 candidate biomarkers that best differentiate cohort 2

samples

A random forest analysis was conducted using the 25 cohort 1 biomarker

candidates to stratify the cohort 2 sample set into their proper cancer and non-

cancer groups. Random forest is an ensemble method based on classification trees

and the out-of-bag error gives an estimate of how well we can expect to predict a

future sample. The random forest analysis provides an ‘‘importance’’ rank

ordering of biochemicals. The relative importance of each of the 25 metabolites is

shown in Fig. 5, with palmitoyl sphingomyelin displaying the greatest discrimi-

natory power (higher mean decrease accuracy value). The top 6 discriminatory

metabolites in the random forest analysis constituted 3 metabolites which were

higher in BCa urines and 3 that were lower in BCa samples. A comparison of

relative levels for these 6 metabolites in all cancer urines versus all non-cancer

controls in the two cohorts is displayed in Fig. 6. The differences in relative levels

for each of the 6 metabolites was statistically significant (p#0.05) in both cohorts,

with the exception of succinate which achieved a p-value of 0.053 in the cohort 2

comparison. In addition, the NMIBC subset of BCA samples was compared to all

control samples and 4 of the 6 metabolites continued to achieve statistical

significance, at a p#0.05 level, with phosphocholine and succinate being the
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exception (Fig. 6). Phosphocholine and succinate were statistically significant at a

p#0.1 level.

Additional biomarker candidates observed in cohort 2 urine

samples.

Metabolic profiling of cohort 2 urine samples was performed using a more

sensitive accurate- mass MS-platform, which is capable of measuring urine

metabolites present at lower concentrations. A heatmap containing all named

metabolites measured in cohort 2 samples is presented in S2 Table. Arachidonate,

spermidine, spermine and cytosine, were not measured in cohort 1 urines, but

were elevated in cohort 2 BCa urines at p#0.05 (Fig. 6). Arachidonate was also

elevated in NMIBC tumor urines to a statistically significant level, when the

NMIBC samples were segregated and analyzed separately from MIBC tumor

Fig. 3. Cohort 1 derived candidate biomarker set heatmap for BCa vs. control groups. Red fill cells indicate metabolites with higher mean levels in BCA
urines than in non-BCa controls at a p#0.05 significance. Green cells indicate lower levels in BCa relative to control urines at a p#0.05 significance.
Statistical q-values and profiling results for all other named compounds measured in cohort 1 samples are presented inn S1 Table.

doi:10.1371/journal.pone.0115870.g003
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urines (Fig. 6). Spermine, spermidine and cytosine were elevated in NMIBC

urines as well, but not at statistically significant levels. These four metabolites may

also be considered to be candidate biomarkers, but confirmation would require an

independent cohort that had also been profiled on the accurate-mass instrument.

Multi-analyte algorithm performance using a set of 6 biomarkers

As a test example of potential biomarker performance in a multi-analyte

algorithm, palmitoyl sphingomyelin, lactate, gluconate, adenosine, 2-methylbu-

tyrylglycine and guandinoacetate were chosen for algorithm training using the

cohort-1 data set. These candidate biomarkers were chosen based on their fold

differences and p-values in both cohort-1 and cohort-2. The algorithm derived

from training on the cohort-1 data set was tested on the cohort-2 data set. AUCs

and ROC curves for both the training and test set analysis are displayed in Fig. 7.

Comparable AUCs were obtained for both cohorts, with AUC 50.81 for cohort-1

and 0.78 for cohort-2. Specificity values remained high, up to a sensitivity cutoff

of around 0.5, in both cohorts. The performance observed using this algorithm

does not infer future predictive value, since biomarkers used in the algorithm were

Fig. 4. Hierarchical clustering of cohort 1 samples (N5332) and the set of 25 candidate biomarkers. Subject BCa diagnosis (post urine collection) is
indicated in the lower bar. Clustering was performed using complete linkage and Pearsons’s correlation as the similarity metric.

doi:10.1371/journal.pone.0115870.g004
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pre-selected based on their tumor differentiation ability in both cohorts. This

example illustrates that it is possible to derive an algorithm which segregates

tumor from control urines in both of these specific cohorts.

Discussion

Bladder cancer is a significant cause of morbidity and mortality with a high

recurrence rate and need for frequent follow-up surveillance. Currently,

monitoring for recurrence requires cystoscopy on a semi-routine basis, typically

until an extensive disease free period has transpired. A more facile, less invasive

diagnostic methodology would be advantageous for patient management and

might increase follow-up surveillance compliance. Measurement of urine

metabolites may provide a companion diagnostic method which could facilitate

the monitoring of bladder cancer recurrence and perhaps also contribute to

primary diagnosis.

Fig. 5. Random Forest analysis of cohort 2 sample data using 25 metabolites selected from cohort.
Metabolites are rank-ordered by their mean decrease accuracy score. A higher mean decrease accuracy
value indicates a greater predictive value. The 6 boxed data points represent top performing metabolites
summarized in Fig. 6.

doi:10.1371/journal.pone.0115870.g005
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Recent metabolomic studies have proven valuable in identifying cancer

biomarkers and in gaining insights into the role of metabolic reprogramming in

the initiation and progression of malignancies. Metabolic reprogramming in

tumor cells is a common phenomenon and is now recognized as an emerging

hallmark of cancer [28]. Changes in metabolite levels resulting from tumor

Fig. 6. Comparison of statistically significant metabolites from cohorts 1 and 2. Comparisons are for all BCA positive urines versus combine BCA
negative controls. Dark red and dark green cells represent fold differences with a p#0.05. Light green cell with blue text represents p#0.1. BLQ: below limit
of quantitation; NA: not applicable.

doi:10.1371/journal.pone.0115870.g006

Fig. 7. Receiver Operating Characteristic curves for a 6-biomarker algorithm. An algorithm, utilizing the candidate biomarkers palmitoyl sphingomyelin,
lactate, gluconate, adenosine, 2-methylbutyrylglycine and guanidinoacetate was trained using the cohort-1 data set and then tested on the cohort-2 data set.
ROC curves with AUCs are displayed for the training set (A.) and the test set (B.).

doi:10.1371/journal.pone.0115870.g007

Metabolite Biomarker Discovery in Bladder Cancer Urines

PLOS ONE | DOI:10.1371/journal.pone.0115870 December 26, 2014 13 / 19



metabolic reprogramming can offer unique opportunities for biomarker

discovery. For example, 2-hydroxyglutarate is increased in gliomas, multiple

myeloma and colon cancer [29] and elevated sarcosine is associated with prostate

and colorectal cancer [30, 31]. Metabolites associated with tumor cell metabolic

reprogramming or perhaps tumor-stromal interactions might be anticipated to

display a change in levels not only in the tumor tissue itself, but also in matrices

such as blood or urine which support uptake or excretion of biochemicals

connected to tumor growth or invasion. Several investigations have reported on

the usefulness of metabolite biomarkers to diagnose, stratify and monitor cancer

patients [31–34].

The present study profiled 430 urine samples from two cohorts of subjects, with

known positive or negative BCA diagnoses and as such, represents the most

comprehensive screening for bladder cancer urinary metabolite biomarkers to

date. Previous studies have measured a limited number of metabolites in urine

(typically less than 25). The non-targeted UPLC/mass spectrometry based

technology platform employed in this study facilitates the identification and

relative quantitation of .500 chemical compounds, in urine samples, greatly

expanding the number of potential biomarker candidates over those previously

described. 25 metabolites were selected from cohort 1 for evaluation in the

independent cohort 2 data set. The 25 biochemicals identified as candidate

biomarkers covered a broad range of metabolic pathways. While the 25 candidate

biomarker set contained both increased and decreased metabolites - chosen to

best explore multi-analyte predictive algorithms - hypotheses for increased urine

metabolites in BCa are more easily generated than hypotheses for decreased

metabolite levels. Increased metabolites could derive from tumor metabolites

secreted into the urine or from breakdown or alteration of non-malignant tissue

caused by the invasion of tumor through the epithelium wall. Inflammatory

responses resulting from the presence of tumor might also result in increased

levels of metabolites. Declines in metabolites might be caused a lower rate of

metabolite excretion by tumor cells relative to normal epithelium or by an uptake

of metabolites from the urine into the tumor or adjacent tissue. Changes in

systemic metabolism caused by factors released by bladder tumors or remodeled

adjacent tissues and subsequent urinary excretion, might also cause changes in

urine metabolite levels, both increases and decreases. 25 metabolites were selected

as biomarker candidates from the cohort 1 data set based on multiple criteria. The

random forest analysis testing the 25 metabolites against the cohort 2 data set

illustrated that a subset of the 25 stood out as better performers. Palmitoyl

sphingomyelin, lactate, adenosine and succinate had the highest predictive value,

with other metabolites displaying a range of reduced values. One possible

explanation for the weaker performance of many of the cohort 1 candidate

biomarkers might be that cohort 1 bladder cancer positive urine samples were

derived from a higher percentage of subjects with high stage/high grade tumors

than those present in subjects from cohort 2. It is also possible that many of the

cohort 1 candidate biomarkers were false positives resulting from unique features

of that particular sample population.
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The 25 cohort 1 candidate biomarkers represent a diverse set of metabolic

pathways – in part because pathway diversity was a filter for selecting the set of 25

from .200 metabolites with statistically significant differences comparing cohort

1 BCa positive urines from the combined group of all negative controls. Several

pathways represented by the candidate metabolites were of particular interest. A

major metabolic hallmark of cancer is the frequently observed shift from oxidative

phosphorylation to a greater dependence on glucose metabolism through

glycolysis, even under aerobic conditions (Warburg metabolism) [35]. While

many different mechanisms are believed to contribute to this switch in metabolic

activity, outcomes include increased uptake and consumption of glucose,

increased lactate production and excretion, elevated citrate production, and

increased pentose phosphate pathway (PPP) activity. Upregulating these pathways

provides energy, fatty acid, nucleotide biosynthesis, and NADPH generation

[36, 37]. Lactate levels were significantly increased in the urine samples from

bladder cancer patients in cohorts 1 and 2 and may be an indication of increased

glycolysis in BCa cells. In addition to lactate, b-hydroxypyruvate, which has not

been previously linked to tumor metabolism, was significantly elevated in urine of

primary bladder cancer subjects. b-hydroxypyruvate can be connected to

glycolysis though its formation via the serine-pyruvate transaminase reaction or

its derivation from the glycolysis intermediate 3-phosphoglycerate [38].

Three metabolites associated with lipid metabolism, palmitoyl sphingomyelin,

phosphocholine and arachidonate (cohort 2 only) were significantly altered in

urine of BCA subjects. This was somewhat surprising since; in general, lipids are

not abundantly secreted in the urine. Sphingomyelin is a major component of the

outer plasma membranes of cells [39]. Choline phosphate is a component of both

glycerophospholipids and sphingomyelin. Cleavage of sphingomyelin, by neutral

sphingomyelinases, results in the formation of both choline phosphate and

ceramide [40]. Increased levels of palmitoyl sphingomyelin and choline

phosphate, in the urine of BCA subjects, may reflect a relatively higher tumor cell

proliferation rate and increased lipid membrane remodeling. If this is occurring,

there may be an increased shedding of palmitoyl sphingomyelin into the urine of

bladder cancer subjects and subsequent sphingomyelinases activity in the urine

may result in increased choline phosphate. Another possible explanation for

elevated palmitoyl sphingomyelin levels may be increased shedding of micro-

vesicles by bladder tumors. The elevation of arachidonate may be of associated

with increased liberation of free fatty acids from phospholipids either in the

tumor or in adjacent tissue. Liberated arachidonate has a potential to play a role

in inflammatory processes [41].

Increased branched chain amino acids (BCAAs) catabolism can provide an

energy source for cells through anaplerotic mechanisms which feed the TCA cycle

[42]. Levels of the three BCAAs leucine, isoleucine and valine were all higher in

cohort 1 BCa urines relative to the normal and BCa history controls. The BCAA

associated catabolite 2-methylbutrylglycine was lower in cohort 1 BCa urines

relative to all control groups. Elevation of BCAAs may suggest an increased
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mobilization of amino acids to support the TCA cycle through anaplerotic

reactions [43].

Three metabolites which can be indicators of mitochondrial TCA cycle activity,

3-hydroxybutyrate [BHBA], 2-hydroxybutyrate [AHB], and acetylcarnitine were

elevated in cohort 1 BCa urines. Elevation of these metabolites can be an

indication of decreased carbon flow into the TCA cycle or excess production of

acetyl-CoA (or propionyl-CoA in the case of AHB increases) [44–46]. Increases in

fatty acid b-oxidation or glycolysis might lead to excess acetyl-CoA production,

which can be shunted into BHBA or acetylcarnitine if the TCA cycle does not take

up all the acetyl-CoA that is synthesized. A shift toward decreased reliance on

mitochondrial oxidative phosphorylation, frequently observed in tumor cells [47],

might also contribute to BHBA, AHB and acetylcarnitine increases.

Tumor development and proliferation is dependent, in part, on metabolic

reprogramming to support the increased energy and biosynthetic demands of the

malignant phenotype. It is reasonable to hypothesize that these metabolic changes

may result in unique metabolite signatures in the urines of subjects with bladder

cancer, relative to urines from non-cancer controls. While the current study does

not define an optimal set of biomarkers for BCa detection, this discovery study

does demonstrate the possibility of employing urine metabolites as non-invasive

biomarkers to complement existing diagnostic methods and provide improve-

ments to bladder cancer patient monitoring and care. It is encouraging to note

that a majority of the biomarker candidates identified were capable of

distinguishing NMIBC tumor urines from controls, as it will be important that

any bladder cancer test be capable of detecting high grade NMIBC tumors when

used to support patient surveillance. Identification of a set of candidate

biomarkers will allow the pursuit of metabolite panels which best predict the

probability of BCa recurrence and which may also provide value in primary

diagnosis.

Conclusions

An unbiased global metabolomic profiling of urine samples from subjects with

and without bladder cancer identified a set of candidate biomarkers for bladder

cancer. A subset of metabolites displayed statistically significant differences in

cancer vs. non-cancer urines in both of two independent sample cohorts. Some

urine metabolite differences may reflect a reprogramming of glycolysis and lipid

metabolism in tumor tissue. Future quantitative targeted assays based on the

identified biomarker candidates will be required to validate the predictive value of

these metabolites. These results demonstrate the potential of utilizing urine

metabolites as a non-invasive test for bladder cancer and offer the possibility of a

much needed adjunct to cystoscopy for detection and management of recurrent

disease.
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Supporting Information

S1 Table. Cohort 1 heatmap of all measured named metabolites. A Wilcoxon test

was performed for each group comparison for all metabolites measured. Relative

metabolite ratios are presented for BCa positive versus all control groups and also

the combined control data set. Cell colors represent: dark red 5 higher in BCa at

p#0.05 significance; dark green 5 lower in BCa at p,0.05; light red 5 higher in

BCa at p#0.1; light green 5 lower in BCa at p,0.1.

doi:10.1371/journal.pone.0115870.s001 (PDF)

S2 Table. Cohort 2 heatmap of all measured named metabolites. Relative

metabolite ratios and Wilcoxon statistical significance determinations as described

for S1 Table.

doi:10.1371/journal.pone.0115870.s002 (PDF)
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