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Abstract

Traditionally, fMRI data are analyzed using statistical parametric mapping
approaches. Regardless of the precise thresholding procedure, these approaches
ultimately divide the brain in regions that do or do not differ significantly across
experimental conditions. This binary classification scheme fosters the so-called
imager’s fallacy, where researchers prematurely conclude that region A is
selectively involved in a certain cognitive task because activity in that region
reaches statistical significance and activity in region B does not. For such a
conclusion to be statistically valid, however, a test on the differences in activation
across these two regions is required. Here we propose a simple GLM-based
method that defines an “in-between” category of brain regions that are neither
significantly active nor inactive, but rather “in limbo”. For regions that are in limbo,
the activation pattern is inconclusive: it does not differ significantly from baseline,
but neither does it differ significantly from regions that do show significant changes
from baseline. This pattern indicates that measurement was insufficiently precise.
By directly testing differences in activation, our procedure helps reduce the impact
of the imager’s fallacy. The method is illustrated using concrete examples.

Introduction

The Imager’s Fallacy

In this paper, we introduce an approach to test and describe effects across
conditions and regions in functional Magnetic Resonance Imaging (fMRI) data.
This approach explicitly marks regions in which activation is in an in-between
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state of uncertainty, statistically differing neither from baseline nor from regions
that are themselves significantly active. We label such regions “in limbo”.

Our approach facilitates a more cautious and honest interpretation of Statistical
Parametric Maps (SPMs), as these maps are prone to the so-called imager’s fallacy
[1,3]. Due to the nature of fMRI contrasts, usually represented as color-coded
“brain maps”, it is tempting to draw explicit or implicit conclusions such as in the
following (fictional) statement: “The SPM shows that that activation in the
primary motor cortex (M1) was significantly increased, whereas activation in the
substantia nigra (SN) was not; hence, we conclude that M1 is selectively involved
in the task at hand.” Such conclusions, however, are premature: for instance, it
may be that due to higher levels of noise in the fMRI signal from subcortical areas
[4], the variance in the SN was considerably higher than that in the primary motor
cortex, preventing an effect that actually exists to reach statistical threshold. Such
Type II errors are far from unlikely in fMRI studies, which are usually
underpowered [5].

Statements about selective activation cannot be made without proper statistical
testing. To test for selective activation, it is required to consider the interaction
between region and condition. In other words, one needs to test whether the two
regions of interest show a different pattern of activation [2,6]. Although some
neuroimaging studies with predefined regions of interest test for this region x
condition interaction (e.g. [7,8]), studies with a whole-brain analysis almost
always omit this step, possibly drawing false inferences because of the imager’s
fallacy.

Fig. 1 illustrates the imager’s fallacy: in this example, one region shows
significantly more activation during a task than during rest and a second region
does not. However, the difference in activation between rest- and task-condition
in almost identical in these two regions and selective activation of the first region
cannot be concluded.

In this paper, we present a whole-brain analysis that explicitly identifies regions
which are at risk for the imager’s fallacy, because their experimental effect is not
significantly different from “significantly activated” regions: these regions are
therefore in limbo, and their true status awaits further investigation.

In almost all standard fMRI-analysis approaches, the brain is ultimately divided
in regions that show a significant difference in BOLD-response across conditions
and regions that do not, thereby inviting the imager’s fallacy. In contrast, our in
limbo approach further subdivides the non-significantly activated regions in two
categories: regions that differ from those that show significant activation and
regions that do not. The latter regions are “in limbo”’: they differ neither from
baseline nor from regions that do differ from baseline.
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Fig. 1. lllustration of the imager’s fallacy: during the task condition, region 1 shows significantly increased activation as compared to the rest
condition. Region 2 does not show significantly increased activation. One could be inclined to conclude that region 1 is selectively involved in the task.
However, when the sizes of these contrasts are tested against each other, the size of the contrast in region 1 does not significantly differ from the size of the
contrast in region 2.

doi:10.1371/journal.pone.0115700.9001
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Fig. 2. An example of the in limbo approach. Shown are hypothetical contrast sizes and confidence
intervals for 6 regions (these could be individual voxels). For region 1 and 6 there is no significant effect: zero
falls well within the confidence intervals of the contrast size of in these regions. For region 3 and 5, there is a
clear effect: the “task rest” contrast differs significantly from zero. For region 2 and 4 the situation is more
complicated: the confidence interval of the “task rest” contrast still contains 0, so one is unable to reject the
null hypothesis. However, the size of the contrast is not significantly different from that of the contrast in region
5. Regions 2 and 4 are “in limbo”: they differ neither from baseline, nor from least-significantly activated
region. Legend: Orange areas are significantly activated, green areas are in limbo gray areas are significantly
less activated than significant regions.

doi:10.1371/journal.pone.0115700.g002
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Methods

The In Limbo Approach
The in limbo concept is illustrated in Fig. 2: the green regions do not differ
significantly from zero, but neither do they differ significantly from the least-
significantly activated region 5. Figs. 3 and 4 show examples of in limbo regions in
a simulated data SPM (for details see the section Simulation Studies).

Our in limbo idea can be implemented in several ways. For concreteness, we
focus here on an intuitive method that consists of four main steps:

1. For every voxel in the brain, the size of the contrast of interest and
corresponding variance is estimated using the General Linear Model and
sandwich variance estimators [9].

2. The resulting statistical parametric map is thresholded using cNote that, to be
able to choose a comparison voxel, of course there should be a significant
effect of the task to begin with. If there are no significantly activated areas,
there can be no regions that are in limbo.luster-based methods.

3. The voxel with the lowest t-value that is considered significantly different
across conditions is selected as a comparison voxel.

4. The size of the contrast in voxels that were found not to be significantly
different is compared to the size of the contrast in the comparison voxel.
Non-significant voxels of which the contrast cannot be considered statistically
different from the comparison voxel are considered in limbo. To test for this
difference efficiently, the covariance between the tested voxels and the
comparison voxel should be estimated and taken into account.

These steps will now be described in more detail. They have been implemented
as an automated pipeline using the NiPype-framework [10] and can be
downloaded from GitHub (https://github.com/Gilles86/in_limbo).

Step 1: Estimate Contrasts and Corresponding Variances Over The Conditions
By far the most popular method in fMRI-analysis is the so-called mass univariate
general linear model (GLM) approach. The GLM also forms the basis of the in
limbo approach outlined here. In the GLM approach, for every voxel i, a set of n
regressors f3; is fitted against the voxel activation time course Y; over p time
points, using a p x n design matrix X. This design matrix is usually identical for all
voxels. Each regressor describes the expected change in the BOLD signal as a result
of one of the individual experimental conditions. Nuisance regressors such as
head movement or linear scanner drift can also be included to remove unwanted
noise and increase statistical power [11]. Given the estimators of the experimental
regressor and their variances, it is possible to use inferential statistics to answer,
for example, the question whether in a certain voxel the BOLD-response was
significantly larger during condition A than during condition B.

The expected hemodynamical responses for the different experimental
conditions are constructed by convolving a hemodynamic response function
(HRF) with a model of the expected neural responses. These neural responses are
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(a) unthresholded z (b) cluster-thresholded z (c) in limbo

Fig. 3. Simulation results for an in limbo analysis of a single subject. In a standard fMRI analysis, some
region, region A, can be identified as significantly more activated during a specific condition. For another
region, region B, this effect is not significant. However, region B also does not differ significantly from region A.
Hence, it is incorrect to conclude that region A is selectively activated; instead, it is appropriate to conclude
that region A is activated, and region B is in limbo. See also section Simulation Studies.

doi:10.1371/journal.pone.0115700.g003
usually modeled as a boxcar function of a few seconds, starting at the onset of a
trial or stimulus. The columns of the design matrix X correspond to the

experimental conditions and contain the expected hemodynamical responses for
these conditions. This results in the following General Linear Model [12]:

Y; = XpB;+ ¢ with e ~N(0,6%). (1)

p; can now be estimated by minimizing the error term using Ordinary Least
Squares (OLS):

ﬁi,OLS=(XlX)_1X/Yi- (2)

(a) unthresholded z (b) cluster-thresholded z (c) in limbo

Fig. 4. Simulated fMRI-data of multiple subjects. In all subjects two regions are differentially activated
across conditions, but the precise shape, location, and effect size varies. The unthresholded z-map (a) shows
large rings of overlapping individual regions of activation. In the thresholded map (b) only a small subset of
these rings remains marked as significantly activated. The in limbo map (c) shows that these outer rings are
not significantly less activated than some of the least-significantly significantly activated voxel in the inner
regions.

doi:10.1371/journal.pone.0115700.9004
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The variance matrix V can be estimated by using the sum of the squared
residuals, 6%

Vors=67(X'X) . (3)

This simple approach has two limitations: (1) the errors in the residuals cannot
be assumed to be independent, because there is autocorrelation in the signal [13],
and (2) the model for the hemodynamic response is misspecified, because it is
known to vary considerably across both individuals and brain areas [14]. As a
consequence, variance estimates often will be too low, increasing the risk of Type I
errors.

An often-used solution to these problems is to model and then remove the
autocorrelation of the signal (prewhitening). This can for example be done by
using an autoregressive model (AR). In that case the design matrix is first fitted to
the data using the OLS approach. Subsequently, an AR model is fitted to the
residuals. This procedure yields a model of the autocorrelation structure R. This
AR model is then used in a generalized least squares (GLS) fit, where the errors
that can be explained by the covariance structure R are removed, before the actual

f-parameters are estimated. /8 can then be estimated using

ﬁi,prewhitening = (X/R_ IX)i IX/RY,‘. <4)

The variance can be estimated using

A~

Vi, prewhitening = 6'12 (X,j{_ IX) -1 . <5)

Unfortunately, it can be difficult to find an unbiased estimate of the
autocorrelation structure R and the models that are used are even known to be
incorrect [9, 14]. An alternative approach, one that we promote here, is to use the
sandwich variance estimator. First suggested for use in fMRI by [9], this estimator
is unbiased and robust against both autocorrelation and model misspecification.
The key difference with traditional approaches is that the data and design matrix
are divided up in q different blocks of replications Y, 4 and X; 4. Note that these
replications do not need to have identical design matrices X, but the replicatons
do have to be of the same length. The replications can represent individual runs or
trials, but this is not a requirement. In our implementation, every functional run
is divided up in g “subruns”, where g equals the square root of the number of
time points in the run. Hence, there are q design matrices of g time points.

When using the sandwich estimator, the f;-parameters are estimated by
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3 I o o
ﬁi, sandwich — az (Xk Xk) IXk Yi, <6)
k=1

where X; is the design matrix of the k-th replication and Y; is the mean time
course of all replications in voxel i. The variance matrix is given by the sandwich
formula:

A 1 q ’ _ ’ ! —
Vi sandwich = az (X Xi) ™' Xi WiXe(Xi Xe) ™, (7)
P

where W, is an estimate of the covariance structure of the residuals in voxel i,
?ik:

1
W,‘ = — Z Yik? ik- (8)
q_1k=1

Contrasts of the different regressors can now be used to test for any differences
in BOLD-signal between conditions, Hy : ¢ff;=a versus H; : ¢ff; # «. The contrast
c=(1,—1,0,...,0) represents, for example, the difference in BOLD-signal between
the first (e.g., task) and second (e.g., rest) experimental regressor, which can be
tested to differ from zero by using «=0.

Importantly, the sandwich estimator can also be used to estimate the amount of
covariance between two voxels i and j, within a single contrast Vj;:

~ 1 q ) - / / )
Vz’j, sandwich = az (Xk Xk) le Wink(Xk Xk) 1 <9)
k=1

Here Xj is the design matrix of replication k and
1
Wij=—— Z ikt ik (10)
q—1 k=1

describes the covariance structure of the residuals in voxel i and j. rj is the
residual of voxel i at replication k, j is the residual of voxel j at replication k. The
covariance estimator is important for the in limbo approach presented here,
because a test for a difference between two voxels ideally takes their covariance
into account.
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Step 2: Thresholding of Statistical Maps
After the regression parameters f5; and their corresponding variances are fit, the
next step is to threshold the resulting z-map of the contrast of interest. This can be
done either at the level of an individual subject, or at the level of multiple subjects.
In the second case, the individual contrast maps first have to be registered to a
common space and combined in a second model to yield a level-2 z-map [11, 15].
For statistical inference on a very high number of correlated test statistics, such
as in an fMRI z-map, a balance must be found between power and sensitivity in
the multiple comparison problem. A standard Bonferroni correction, where the o-
value is simply divided by the number of comparisons, is inappropriately
conservative, because the test statistics are correlated. Many alternative
approaches to the Bonferroni approach have been proposed [16]. Here we use the
standard clustering algorithm implemented in the FSL suite (Functional MRI of
the Brain Software Library; www.fmrib.ox.ac.ukfsl), which first thresholds the
entire image at some z-value (for example z = 2.3, corresponding to an
uncorrected p <0.01 threshold) and then the probability of clusters of above-
threshold voxels to occur under the null hypothesis is estimated using Gaussian
random field theory (GRF). This correction takes into account both the total
number of tested voxels (comparisons), the number of above-threshold clusters,
as well as the correlations amongst neighboring voxels (i.e., the smoothness of the
statistical map; [17]).

Step 3: Determine The Comparison Voxel
After the z-map has been thresholded, a comparison voxel v can be selected. Here
we select the voxel with the lowest test statistic z that still survived the
thresholding procedure. This voxel v can be described colloquially as “the least
significantly activated voxel” of that particular contrast. Other selection criteria
for the comparison voxel are possible. For example, one could take the average
contrast size in the least-significant cluster. We chose these particular criteria for
selecting the comparison voxel, because they are easy to implement and interpret.
Note that, to be able to choose a comparison voxel, of course there should be a
significant effect of the task to begin with. If there are no significantly activated
areas, there can be no regions that are in limbo.

Step 4: Determine In Limbo Regions
For this step we distinguish between analyses for single subjects and for multiple
subjects.

Single Subject
For every voxel i that was not significantly activated in the contrast of interest, a
test is performed on whether the size of this contrast is significantly smaller than
the size of the same contrast in the comparison voxel v.

This is done by taking the difference between the size of the contrast in the two
voxels and dividing it by a pooled variance term, including the variance of both
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voxel contrasts, as well as the covariance between these two. Comparing voxel i
and to voxel v the following t-statistic is used:

Cﬁi_cﬁv

Hcpi—ch)=—= = A
1 ! \/cVic/ +cV,d—2cV;c.

(11)

This t-statistic can be used for regular inference testing. The null hypothesis is
that there is no difference between the size of the contrast in the non-activated
voxel i and the same contrast in the least-significantly activated comparison voxel
V.

If this null hypothesis cannot be rejected, voxel i is not activated less than the
compariso voxel v, in addition to not being significantly activated in the first
place: in other words, voxel i is in limbo. In contrast, if the null hypothesis can be
rejected, the voxel is significantly activated less than the significantly activated
areas, and claims about selective activation are warranted.

Multiple Subjects

In the case of multiple subjects, the number of data points in the analysis
corresponds to the number of subjects, m. Again, for all non-significantly
activated voxels, the hypothesis to test is whether the size of their contrast differs
significantly from that of the least significantly activated comparison voxel.

To carry out this analysis, we use a weighted least squares (WLS) approach. We
do this to increase power by weighting the individual subject by the precision (i.e.,
the inverse of the variance) of the estimate of the difference between the size of the
contrast in the voxel of interest i and the comparison voxel v.

For every non-significantly activated voxel 7, a m x 1 vector Z; is set up, where
every element represents one of the m subjects. The Ith element of this vector
contains the difference between the size of the contrast in that specific voxel in
subject I (i.e., ¢f;;) and the size of the same contrast in the comparison voxel v

(Cﬁvl):

Zy=cp,—cPy. (12)

In addition, for every non-significantly activated voxel, we set up an identical
n x 1 design matrix G, filled with only ones and a n x n diagonal weight matrix
W;. The diagonal of W; contains the inverse of the standard deviations (i.e.,
square root of the variance) of the estimate of the difference between the
comparison voxel and that particular voxel, 1/ limbo.;:
1

Win= T e
\/cVilc +cV,c —2cViyc

(13)
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where V is the variance of voxel i in subject [ and V1 is the covariance between
voxel i and comparison voxel v in subject [ as given in Equations 7 and 9.
Finally, we solve the following system of equations:

WiZi=W;Gp; (14)
using
Biwis=(GW;G) ™' GW:Z; (15)
and
Viwts =61 (GWiG) ™, (16)
where 67 are the summed squared residuals in voxel i. Solving these systems

yields both an estimator of the difference in the size of the contrast in this voxel i

and the comparison voxel v at the level of the group of subjects, Bi’ wis»> as well as

A~

an estimator of the variance of this difference, V; ;. These estimates can be used
to calculate a t-value to test the hypothesis that there is no difference between the
sizes of the contrast in the two voxels, similar to Equation 11. If this hypothesis
cannot be rejected at some significance threshold (here we use «=0.05), the size
of the contrast in voxel i is not significantly different from the same contrast in the
comparison voxel v and we conclude that voxel i is in limbo.

Multiple Comparisons Correction

Similar to the standard multiple comparisons corrections on the original contrast,
a multiple comparisons correction procedure could also be used for the final t-test
that compares the contrast size in all non-significantly activated voxels against the
same contrast in the comparison voxel. Procedures such as false discovery rate
(FDR) or Gaussian random field theory are both feasible. An FDR approach might
be more appropriate than a GRF approach, because it is unlikely that the in limbo
landscape of t-values behaves like a Gaussian random field. Here we opted not to
apply any multiple comparisons correction to the in limbo t-values at all.
Application of a multiple comparisons procedure will increase the number of
voxels that are in limbo. The current procedure, without any multiple
comparisons correction thus results in a minimum number of voxels that are in
limbo.

Results

Simulation Studies
Here we present results from two simulation studies that show the effect and
usefulness of the in limbo approach. The simulation studies in this section
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illustrate potential scenarios in which an in limbo approach offers additional
information over and above conventional approaches. The data in these studies
were simulated using the neuRosim package from [18] and analyzed using
custom-built Python scripts.

A Single Subject

In this scenario, a single synthetic subject with a square, 2D-brain employs two
brain regions that are differentially activated compared to the rest of the brain:
region A and B.

As shown in Fig. 3a, Region A is most strongly activated and, consequently, its
task-induced activation survives the cluster-based thresholding. However, the
weaker task-induced activation in region 2 does not survive the thresholding (see
Fig. 3b).

From the original SPM, one might be inclined to draw the conclusion that
region A is selectively activated in the task, in the sense that its activation is
substantially larger than that in other regions (such as region B).

However, this conclusion is based on the imager’s fallacy: to test the hypothesis
of selective activation, one needs to test the difference between regions directly.
After applying the limbo approach it is evident from Fig. 3¢ why the above
conclusion was fallacious: for the main part of brain region B, the increase in
activation during the task is not significantly less than the least significant increase
In activation in region A.

Multiple Subjects

In a second simulation study we generated data from an fMRI experiment with
multiple subjects. In the ground truth of this simulation, two regions show
increased activation in the experimental condition in all subjects. However, the
effects sizes and the precise location and size of these regions slightly differed
across subjects. When applying the in limbo approach to these data (see Fig. 4),
one can see that both regions are clearly visible in the thresholded level-2 z-map,
but the in limbo map shows that the precise location of these regions is, on a
group-level, more uncertain and less focused than the thresholded map might
suggest.

Real-world Example

The in limbo approach was also applied to real-world fMRI data, taken from [19]
(this dataset is fully available upon request. Please email the original study’s first
author, Birte Forstmann (e-mail: buforstmann@gmail.com), or the first author of
this study (e-mail: gilles.de.hollander@gmail.com)). In this study, subjects
performed a forced-choice two-alternative random dot motion (RDM) task and
were cued to stress either the speed or accuracy of their decision. The main
finding of the study was that both the right striatum and presupplementary motor
area (preSMA) show higher activation when subjects were instructed to stress the
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Speed - Accuracy

Fig. 5. Results of the in limbo approach on actual fMRI-data from Forstmann et al. [19], using different
z-thresholds of 2.3, 3.1 and 3.7, corresponding to uncorrected single-sided a-values of p <0.01, p
<0.001 and p <0.0001. After this initial thresholding procedure, these surviving areas were corrected at the
cluster-level using Gaussian random field theory. The in limbo areas are not significantly different from the
least-significantly activated brain area, according to a t-test with an alpha-level of p<0.05, uncorrected for
multiple comparisons. Legend: Yellow-red areas are significantly activated, green areas are in limbo. Note
how with a rather liberal threshold of 2.3 almost the entire brain is in limbo and increasing the z-threshold from
3.1 to 3.7 does not change much in volume of brain that is in limbo. Brains are in MNI-152 space with slices at
X=42, Y=65, Z=65.

doi:10.1371/journal.pone.0115700.g005

speed of their decision as compared to when they stressed the accuracy of their
decission.

Re-analysis of the data using a contrast of “speed condition — accuracy
condition" and a general linear model using a sandwich estimator showed similar
activation patterns as reported in the original study. Right striatum and preSMA
were increasingly activated in the speed-stressed condition as compared to the
accuracy-stressed condition. A similar speed stress-related increase was found in
the bilateral insula and dorsolateral prefrontal cortex. The latter brain regions
were not found in the original study; this is probably due to higher thresholds and
the lack of a conjunction-analysis here.

Table 1. Size of areas in limbo for different thresholds.

m Volume above threshold (cm®) Volume in limbo (cm?)

23 60 813
3.1 14 61
3.7 5 93
4.1 1 188

The amount of area that is labeled in limbo for different z-thresholds applied to the dataset of Forstmann et al., [19].

doi:10.1371/journal.pone.0115700.t001
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When applying the in limbo approach to these data, it becomes apparent that
experimental effects are less specific than the original SPM may suggest. Especially
at a liberal, but common z-threshold of 2.3, a large part of the brain is in limbo, as
can be seen in the large green areas in Fig. 5 and Table 1. At a slightly higher z-
threshold (3.1, corresponding to p <0.001 uncorrected), both the volume of
activated (orange) areas as the volume of in limbo (green) areas decreases.
Increasing the z-threshold further does not reduce the size of areas in limbo. At a
z-threshold of 4.1, the size of areas of in limbo area even increases slightly. Further
analyses revealed that when the threshold was set at this value of 4.1, a very
different comparison voxel was chosen than those in the other threshold settings.
This voxel has, consequently, a different covariance pattern which resulted in
lower t-values in the in limbo tests, increasing the area that was labeled in limbo.

The regions that are marked in limbo are sensible, as they encompass both (1)
distinct networks that are known to have relatively high variance (e.g., regions in
the midbrain), as well as (2) regions that are significantly activated at lower z-
thresholds or surround regions that are significantly activated. In sum, the in
limbo approach seems to produce sensible results for real fMRI-data,
complementing traditional SPMs with important additional information.

Discussion

The in limbo approach presented here can be useful in different stages of a
neuroimaging analysis. First and foremost, the in limbo approach can be used to
warrant theoretically meaningful claims such as “region A was selectively involved
in this task”. Secondly, the approach can be used to choose appropriate z-
thresholds that are strict enough to ascertain that the effects in significantly
activated regions are not similar in effect size to many other brain regions that are
not significantly activated. Third, the approach can serve as a qualitative test to
assess the extent to which a study is underpowered. When a large part of the brain
is in limbo, one might be careful in drawing strong conclusions and consider
conducting a follow-up experiment with more participants and/or trials.

The principle of the in limbo approach could also be applied to other
neuroimaging analysis techniques such as the multivariate pattern searchlight
approach [20]. This increasingly popular approach does not measure mean BOLD
activity but instead quantifies classifier decoding accuracy for different regions in
the brain. For this technique as well as for the more standard analysis techniques,
substantive research questions may center on the specificity of task involvement
across different brain regions — hence, the in limbo style of analysis is just as useful
for the multivariate pattern searchlight approach as in univariate studies.

One could, in a similar vein, also apply the in limbo approach to statistical
parametric mappings of other (structural) imaging modalities, such as diffusion
weighted imaging (DWI) and voxel-based morphometry (VBM). These imaging
techniques are also susceptible to the imager’s fallacy. To give an example: a DWI
study could show, at a first glance, that the white matter integrity of the tracts
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between two specific brain regions is reduced in a patient group as compared to a
control group. However, analysis of a larger cohort may show that white matter
integrity in this patient group is actually reduced in the entire brain, but the
smaller study does not have enough power to pick up this global effect. An in
limbo-like approach could protect against the premature conclusion as it may
show, also in the underpowered study, that the reduction is not specific to only
one white matter tract.

One may rally against the in limbo approach and argue that it is problematic to
compare BOLD responses between brain regions that differ considerably in
neurovascular coupling. However, this argument holds for neuroimaging analyses
in general: most approaches compare the activation of different brain regions,
albeit implicitly, as the occurrence of activity in a given brain region is only
interesting in the absence of activation elsewhere. Our approach makes this
comparison process explicit. Inference remains valid in our approach because we
used the sandwich estimator which accounts for misspecification in the HRF.
However, future work could further improve inference by explicitly accounting
for neurovascular differences between regions. Work on this topic features in the
literature on connectivity measures such as psychophysiological interaction
analysis (PPI, [21]) and dynamic causal modelling (DCM, [22]).

It is important to stress that the proposed approach is not a way to find
marginal or trending regions that might be involved in the task. The in limbo
approach informs researchers about the specificity of the significant activation
patterns by identifying the areas whose activation patterns are not significantly
different. One should refrain from drawing any strong conclusions about the areas
that are found to be in limbo.

Researchers should be cautious in how to visualize areas that are in limbo. Here
we adopted a color scheme where the in limbo areas are labeled green, to
emphasize that a large volume in the brain can be in limbo when liberal
significance thresholds are used. Alternatively, one may color code not the in
limbo areas, but the areas that are not significantly activated, nor in limbo.
However, this color code may tempt researchers to falsely conclude that the
colored areas are “significantly inactivated”. This conclusion is invalid in the
frequentist framework employed here.

In the approach presented here, we chose to pick the least-significantly
activated voxel as the comparison voxel for all not significantly activated regions.
One could argue that this approach is conservative and one could instead select, as
a comparison standard, for example, the median z-value of the significantly
activated regions. Doing so will lead to a smaller volume of regions that are judged
to be in limbo. However, the interpretation of the areas that are not in limbo then
becomes less straightforward: they are significantly different from the median-z
value, but not necessarily different from less-significantly activated areas. When
one uses the least-significantly activated voxel as the comparison voxel, one knows
for sure that the effect sizes in areas that are not in limbo are all significantly
different from those in all significantly activated areas. Therefore, we favor the use
of the least-significantly activated voxel as a comparison voxel.
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In our approach we chose to use the sandwich variance estimator, because the
in limbo test should take into account both the within-voxel variance and the
across-voxel variance. Both variances are underestimated by OLS estimators, even
when the data are prewhitened with an AR(1)-model, as this autocorrelation
model is known to be incorrect [9, 14]. The sandwich approach is, however, rather
uncommon and computationally intensive. A simpler and computationally less
intensive approach is to conduct a standard level-2 analysis, find the least-
significantly activated voxel, subtract its effect size from the individual contrasts
(separately for each participant) and conduct the level 2-analysis again. We
implemented such an analysis and found in limbo areas that were similar but
slightly smaller than those identified by the current approach, especially at lower
z-thresholds (See http://nbviewer.ipython.org/github/Gilles86/in_limbo/blob/
master/notebooks/level2_simple.ipynb for code and more details). When one
trusts the AR(1)-whitening procedure, a similar approach could be implemented
that takes into account the covariance between voxels. The practical importance of
any differences between the various methods remains an empirical question and
awaits further research.

The attentive reader that takes a closer look at the in limbo areas at different
thresholds in Fig. 5, will note that at higher thresholds, the areas that are in limbo
highly overlap with significantly activated areas at slightly less-stringent thresh-
olds, albeit they are not the same. One could ask why one should apply the in
limbo approach and not just “lower the threshold”. The answer to this question
lies in the interpretability of the results: when lowering the threshold, this will
most likely done choosing an arbitrary amount. In contrast, the in limbo
approach offers a theoretically founded, meaningful map of areas that are not
significantly different from areas that differ from baseline.

To conclude: we presented a new statistical method to aid researchers in their
fMRI analyses, by highlighting regions in which the experimental effect size is in
limbo. Regions that are in limbo differ neither from baseline nor from regions that
are significantly different from baseline. The in limbo approach helps reduce the
impact of the imager’s fallacy, allows researchers to choose sensible statistical
thresholds, and promotes sound inferences.
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