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Abstract

In this paper, interesting improvements in [1] and [2] randomized response

techniques have been proposed. The proposed randomized response technique

applies Polya’s urn process (see [3]) to obtain data from respondents. One of the

suggested technique requires reporting the number of draws to observe a fixed

number of cards of certain type. On the contrary, the number of cards of a certain

type is to be reported in case of second proposed randomized response model.

Based on the information collected through the suggested techniques, two different

unbiased estimators of proportion of a sensitive attribute have been suggested. A

detailed comparative simulation study has also been done. The results are also

supported by means of a small scale survey.

Introduction

Surveys and questionnaires are usual statistical tools for obtaining data about

attitudes, behaviors, emotions, and so forth. The important assumption of any

survey technique is that the respondents are completely truthful in their reporting.

However, the legitimacy of this assumption is dubious when investigators ask

questions that most would be hesitant to respond publicly. Examples of such

questions are those that disclose whether the respondent possesses an illicit

behavior, or a trait that is socially undesirable, or the question may concern with

the trait of which respondent is embarrassed or which the respondent feels

extremely personal to reveal openly. Faced with such questions, some respondents

in a sample will decline to respond or will misreport. Either type of avoidance

introduces a bias into collected information. Hence, there are serious procedural
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hurdles to conduct surveys in studies in which a stigmatizing characteristic is

associated with the phenomenon of concern.

To overcome these hurdles [4], developed the randomized response technique

(RRT). [4] method is meant for estimating the proportion of a sensitive attribute

prevailing in population of interest. It is based on the hypothesis that cooperation

by the individuals should recover if their replies would not expose their true

status. A number of variations of [4] RRT and new RRTs have been proposed by

many researchers like [1], [2], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17], and many others. In most of the RRTs, yielding either qualitative

or quantitative response, reported response, commonly, follows either Bernoulli

([4], [18], [1], [9], [10], etc.), Poisson ([16]), multinomial ([8]), geometric ([2])

or negative hypergeometric distribution ([17]).

[1] introduced an ingenious RRT which produces the response following a

Bernoulli distribution. A number of RRTs such as the [4], [10], [9] are special

cases of [1] technique. [19] have reported that the [1]9s family of RRTs performs

better than the Simmon’s family in terms of efficiency and privacy protection.

Recently [2], improved the [1]9s RRT by introducing geometric distribution as a

randomization device.

There is an extensive amount of literature on the applications of urn models in

different fields like genetics, capture-recapture models, computer theory, biology,

learning processes, etc. Some of applications of urn models in epidemiology are

noted by [20], [21] and [22], amongst many others. Applications to botany,

lexicology and numismatics are mentioned by [23]. Interested readers may refer

to [24] and [25] for a detailed account on the applications of urn models in

randomization structures.

As far as RRT is concerned, urn scheme may be applied to determine the

questions asked in a survey enquiry. The pioneer RRT proposed by [4], and

further extended by [18] and [26] is a striking example. Utilization of urn model

as a randomization device for [4] RRT may be briefly explained as follows. In the

[4] RRT, the respondent randomly draws a card from an urn containing g green

and r red cards. If a green card is drawn, the respondent will report (yes or no) to

the question, ‘‘I am a member of sensitive group’’, and replace the card drawn. If a

red card is drawn, the question is, ‘‘I am not a member of sensitive group’’. The

interviewer is unaware of the colors of the cards drawn by the respondents, but the

probability of drawing a green card is known. Under the assumptions of

randomness of the drawing of balls and truthful reporting of answers, obviously,

the total number of yes responses in a sample of n respondents follows a binomial

distribution with parameters n and g=(gzr).

Of the many urn models, the Polya’s urn model is very popular within Statistics

because it generalizes the binomial, hypergeometric, and beta-Bernoulli (beta-

binomial) distributions through a single formula. In the present study, we intend

to apply Polya’s urn scheme to randomize the responses. It is important to note

that different discrete distributions such as binomial, hypergeometric, negative

binomial, geometric, negative hypergeometric, beta binomial, uniform, etc. can be

generated through Polya’s urn scheme. Thus, using Polya’s urn schemes may be
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taken as more flexible and a generalization of the above mentioned distributions.

The idea is, actually, taken from the [2] RRT (a special case of [1] RRT) which

yields a response following a geometric distribution. The rest of the paper is

organized as follows. In the next section, we present the [1] and [2] RRTs. Two

new estimators using Polya’s urn process have been suggested in Section 3.

Section 4 consists of discussion and conclusion of the study. A real life example

has been presented in Section 5.

Some Recent Related RRTs

In this section, we present brief summaries of the [1] and [2] RRTs and introduce

the notations. Let U~ u1,u2,:::,u?ð Þ be an infinite dichotomous population and

every individual in the population belongs either to a sensitive group (possessing a

sensitive attribute) G, or to its complement �G. The problem is to estimate

p 0vpv1ð Þ, the unknown proportion of population members in group G: To do

so, a sample s~ u1,u2,:::,unð Þ of size n is drawn from the population U using a

simple random sampling with replacement sampling scheme. Because of the

sensitive nature of the attribute under study, a direct question regarding

membership in G or otherwise is not expected to be helpful in terms of

cooperation from the respondents. Thus, an alternative procedure such as RRT is

needed if we are to procure reliable data on the sensitive attribute.

Two of the background RRTs are discussed in the following subsections.

1.1. Kuk [1] RRT

In this RRT, if a respondent belongs to a sensitive group G, then he/she is

instructed to use a deck of cards having h1 proportion of cards with the statement,

‘‘ I [G’’ and if he/she belongs to non-sensitive group �G, then he/she is requested to

use a different deck of cards having h2 proportion of cards with the statement,

‘‘I 6[G’’. The probability of a yes response in the [1] model is given by

Pr yesð Þkuk~hKuk~h1pzh2 1{pð Þ: ð2:1Þ

An unbiased estimator of p is given by

p̂Kuk~

n1

n
{h2

h1{h2ð Þ , h1=h2, ð2:2Þ

where n1 is the observed number of yes responses in the sample s and follows a

binomial distribution with parameters hKuk~h1pzh2 1{pð Þ and n. Thus the

variance of p̂Kuk is given by

V p̂Kukð Þ~ hKuk 1{hKukð Þ
n h1{h2ð Þ2

: ð2:3Þ
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1.2. Singh and Grewal [2] RRT

In this RRT, each respondent is provided with two decks of cards in the same way

as in the [1] RRT. In the first deck of cards h�1 is the proportion of cards with the

statement, ‘‘I [G’’ and 1{h�1
� �

be the proportion of cards with the statement,

‘‘I 6[G’’. In the second deck of cards h�2 is the proportion of cards with the

statement, ‘‘I =[G’’ and 1{h�2
� �

be the proportion of cards with the statement,

‘‘I 6[G’’. Up till here, it is same as that of the [1]. If a respondent belongs to

sensitive group G, he/she is instructed to draw cards, one by one using with

replacement, from the first deck of cards until he/she gets the first card bearing the

statement of his/her own status, and requested to report the number of cards, say

X, drawn by him/her to obtain the first card of his/her own status. If a respondent

belongs to non-sensitive group �G, he/she is instructed to draw cards, one by one

using with replacement drawing, from the second deck of cards until he/she gets

the first card bearing the statement of his/her own status, and requested to report

the number of cards, say Y , drawn by him/her to obtain the first card of his/her

own status. Since cards are drawn using with replacement sampling, it is clear that

X and Y follow geometric distributions with parameters h�1 and h�2, respectively. If

Zi denotes the number of cards reported by the ith respondent, then it can be

written as

Zi~aiXiz 1{aið ÞYi,

where ai is a Bernoulli random variable with E aið Þ~p. The expectation of

reported number of cards is given by

E Zið Þ~E aið ÞE Xið ÞzE 1{aið ÞE Yið Þ~
p

h�1
z

1{pð Þ
h�2

: ð2:4Þ

An unbiased estimator of p proposed by [2] is given by

p̂SG~
h�1h�2

�Z{h�1
h�2{h�1
� � ,h�1=h�2, ð2:5Þ

with variance given by

V p̂SGð Þ~ p 1{pð Þ
n

z
h�22 1{h�1
� �

pzh�21 1{h�2
� �

1{pð Þ
n h�2{h�1
� �2 : ð2:6Þ

Proposed RRTs

In this section, we present two new RRTs using Polya’s urn scheme.
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3.1. Proposed RRT I

A more general RRT is explained below. Consider two decks having two types of

cards, red and green. The deck 1 contains a1 b1ð Þ red (green) cards. The deck 2

contains a2 b2ð Þ red (green) cards. Each respondent belonging to the sensitive

(non-sensitive) group is requested to use deck 1 (deck 2) and randomly draw

n1 n2ð Þ cards one by one. On each draw he/she is requested to replace the card

drawn and add c1 c2ð Þ cards of the same color. If a respondent belongs to sensitive

(non-sensitive) group he is required to report the number of red cards drawn, say

X’ Y ’ð Þ, in n1 n2ð Þ draws. Obviously, here X’ and Y ’ have the distributions f1 x’ð Þ
and f1 y’ð Þ, respectively. The functional forms of f1 x’ð Þ and f1 y’ð Þ are given by

f1 x’ð Þ~
n1

x’

� �
a

c1,x’ð Þ
1 b

c1,n1{x’ð Þ
1

a1zb1ð Þ c1,n1ð Þ ,x’~0,1,2,:::,n1, ð3:1Þ

f2 y’ð Þ~
n2

y’

� �
a

c2,y’ð Þ
2 b

c2,n2{y’ð Þ
2

a2zb2ð Þ c2,n2ð Þ ,y’~0,1,2,:::,n2, ð3:2Þ

where r s,jð Þ~r rzsð Þ rz2sð Þ::: rz j{1ð Þs½ � for r,s[Rz and j[N.

The response Z’i from the ith respondent may be written as

Z’i~aiX’iz 1{aið ÞY ’i, ð3:3Þ

where ai is a random variable defined as above and E X’ið Þ~mX’~
n1a1

a1zb1
and

E Y ’ið Þ~mY ’~
n2a2

a2zb2
. Thus, expected response may be written as

E Z’ið Þ~pmX’z 1{pð ÞmY ’: ð3:4Þ

Now an unbiased estimator of population proportion p may be defined and its

variance can easily be worked out. By solving (3.4) for p and estimating E Z’ið Þ by

�Z’~(1=n)
Pn
i~1

Z’i, an unbiased estimator of p is suggested as follows:

p̂1~
�Z’{mY ’

mX’{mY ’
: ð3:5Þ

Its variance is given by

V p̂1ð Þ~
p 1{pð Þ

n
z

ps2
X’z 1{pð Þs2

Y ’

n mX’{mY ’ð Þ2
, ð3:6Þ

where

s2
X’~

n1a1b1

a1zb1ð Þ2
1z n1{1ð Þ c1

a1zb1zc1

� �
and s2

Y ’~
n2a2b2

a2zb2ð Þ2
1z n2{1ð Þ c2

a2zb2zc2

� �
.
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Following remarks are in order.

Remark 1: It is interesting to see that the reported response Z’i follows a two

component mixture distribution with p and 1{pð Þ as the mixing probabilities.

For c1~c2~1, the distribution of response Z’i is a mixture of two beta-binomial

distributions with parameters n1,a1,b1ð Þ and n2,a2,b2ð Þ.
Remark 2: For c1~c2~0, the distribution of Z’i is a mixture of two binomial

distributions with parameters n1,p1~
a1

a1zb1

� �
and n2,p2~

a2

a2zb2

� �
.

Remark 3: For c1~c2~{1, the distribution of Z’i is a mixture of two

hypergeometric distributions with parameters a1zb1,a1,n1ð Þ and a2zb2,a2,n2ð Þ.
In this case we must have n1ƒa1zb1 and n2ƒa2zb2.

Remark 4: If a1~b1~c1 and a2~b2~c2, the distribution of Z’i is a mixture of

two uniform distributions with parameters 0,n1ð Þ and 0,n2ð Þ.

3.2. Proposed RRT II

The proposed RRT II works in a fashion similar to that of Proposed RRT I. Here,

we assume that c1~c2~1, and respondents are requested to report the number of

draws to observe a fixed number, say r1 and r2, of red cards. Let X ’’ Y ’’ð Þ denotes

the number of draws from urn 1 (urn 2) required to observe r1 r2ð Þ red cards.

Obviously, now, X’’ and Y ’’ have the distributions given by

g1 x’’ð Þ~
x’’{1

r1{1

� �
a

1,r1ð Þ
1 b

1,x’’{r1ð Þ
1

a1zb1ð Þ 1,x’’ð Þ , x’’~r1,r1z1,r1z2,:::,?, ð3:7Þ

g2 y’’ð Þ~
y’’{1

r2{1

� �
a

1,r2ð Þ
2 b

1,y’’{r2ð Þ
2

a2zb2ð Þ 1,y’’ð Þ , y’’~r2,r2z1,r2z2,:::,?, ð3:8Þ

The response Z’’i from the ith respondent may be written as

Z’’i~aiX’’iz 1{aið ÞY ’’i, where ai is a random variable defined as above and

E X’’ið Þ~mX’’~
r1 a1zb1{1ð Þ

a1{1
and E Y ’’ið Þ~mY ’’~

r2 a2zb2{1ð Þ
a2{1

. Thus, expected

response may be written as

E Z’’ið Þ~pmX’’z 1{pð ÞmY ’’: ð3:9Þ

Now, following the steps as in subsection 3.1, an unbiased estimator of

population proportion p may be defined and its variance can be derived. By

solving (3.9) for p and estimating E Z’’ið Þ by �Z’’~n{1
Pn
i~1

Z’’i, an unbiased

estimator of p is suggested as
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p̂2~
�Z’’{mY ’’

mX’’{mY ’’
: ð3:10Þ

Its variance is given by

V p̂2ð Þ~
p 1{pð Þ

n
z

ps2
X’’z 1{pð Þs2

Y ’’

n mX’’{mY ’’ð Þ2
, ð3:11Þ

where

s2
X’’~

r1 a1zb1{1ð Þ
a1{1ð Þ a1{2ð Þ b1zr1 a1zb1{2ð Þ½ �{r2

1
a1zb1{1

a1{1

� �2

and s2
Y ’’~

r2 a2zb2{1ð Þ
a2{1ð Þ a2{2ð Þ b2zr2 a2zb2{2ð Þ½ �

{r2
2

a2zb2{1
a2{1

� �2

Remark 5: For c1~c2~0, the distribution of Z’’i is a mixture of two negative

binomial distributions with parameters r1,p1~
a1

a1zb1

� �
and r2,p2~

a2

a2zb2

� �
.

Remark 6: For c1~c2~{1, the distribution of Z’’ is a mixture of two negative

hypergeometric distributions with parameters a1zb1,a1,r1ð Þ and a2zb2,a2,r2ð Þ.
Remark 7: For r1~r2~1, the distribution of Z’’i is a mixture of two geometric

distributions.

Remark 8: If a1~b1~c1 and a2~b2~c2, the distribution of Z’’i is a mixture of

two uniform distributions.

Discussion and Conclusion

Since our objective in this study was to introduce an application of Polya’s urn

process to obtain data on sensitive variables, we did not intend to have a full-

fledged comparative study of proposed estimators with any other estimators.

However, to have an idea, we just considered estimator p̂2 and compared it with

[1] and [2] estimators assuming c1~c2~0, r1~r2~4, h1~0:7 and h2~0:2. The

reason of setting h1~0:7 and h2~0:2 is that the [1] model is at its best when

h1{h2j j is maximum. As mentioned in Remark 5 above, for c1~c2~0, we have

pj~aj ajzbj
� �{1

~h�j for j~1,2. The relative efficiency (RE) of the estimator p̂2

relative to p̂Kuk and p̂SG is defined as RE1~
V p̂Kukð Þ
V p̂2ð Þ

and RE2~
V p̂SGð Þ
V p̂2ð Þ

,

respectively. The RE results are displayed in S1 Table available in the supporting

information files. From S1 Table (see S1 Table), it observed that proposed

estimator is relatively more efficient than that of [1] and [2]. For the situations,
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where c1~c2~1 and c1~c2~{1, we have done a bit detailed comparison study.

As, n1 (or n2) is the fixed number of cards to be drawn in the proposed RRT I and

r1 (or r2) is pre decided number of cards of certain type in proposed RRT II, we

fixed n1~r1 and n2~r2 so that proposed estimators could be compared with each

other on equal footings. The RE of the proposed estimators p̂1 and p̂2 relative to

p̂Kuk and p̂SG is arranged in the S2–S4 Tables and S5–S10 Tables, respectively. It

was observed that RE of proposed estimators relative to p̂Kuk increases with the

increase in a1 when c1~c2~1 (see S2 and S3 Tables). The proposed estimators

are also more efficient when we take c1~c2~{1 (see S4 Table). Same is the

behavior of RE of the proposed estimators when we compare them with p̂SG (see

S5–S10 Tables). From the S2–S10 Tables (see S2–S10 Tables), it is evident that the

proposed estimators outshine the two competing estimators p̂Kuk and p̂SG. Also, it

can be observed that RE of both the estimators is higher (lower) for larger (smaller)

p when either c1~c2~1 or c1~c2~{1, whereas, for c1~c2~0, the situation is

reversed. The RE of proposed estimators is directly proportional to the difference

between n1 r1ð Þ and n2 r2ð Þ. The overall finding is that the proposed estimator p̂1 is

comparatively more efficient than p̂2. That is, using number of cards of certain type

in fixed drawings is more useful than forcing the respondent to keep drawing the

cards until he/she observes a pre-decided number of cards of one kind.

It is to be noted that variances V p̂1ð Þ and V p̂2ð Þ are decreasing functions of

mX’{mY ’j j and mX’’{mY ’’j j, respectively. Thus, variances of the proposed

estimators may be cut down to a desired level by suitably choosing the values of

a1,a2,b1,b2,n1,n2,r1 and r2 so that mX’{mY ’j j and mX’’{mY ’’j j is a maximum.

Moreover, it is seen that the Polya’s urn process generates different

distributions. Thus, using Polya’s urn process is more general and more flexible

scheme to generate a randomized response following a desired distribution.

Additionally, in the proposed RRTs, no additional sampling cost is needed and

every respondent uses the same randomization device. These two features of the

proposal may be considered as extra advantages associated with it.

A practical example

As a practical example, we conducted a small scale survey by drawing a sample of

size 100. Consider the population of students currently enrolled in different

programs at Quaid-i-Azam University, Islamabad. The students were requested

verbally to volunteer themselves for this survey study and were assured that their

identity will not be disclosed in anyway. From this population, we took 1000

students including 200 those students who had been using marijuana for the last

six months. The purpose of this was to take a population with known population

proportion of marijuana users, that is, we took p~0:2. As from the simulation

results, it is evident that the proposed RRT 1 is relatively better than the others,

therefore, we decided to apply the proposed RRT 1 in actual application. A simple

random sample of 100 students (out of 1000 selected students) was drawn using

with replacement sampling and every selected student was given two urns each
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containing red and green cards. The urn 1 (urn 2) contains 1000 (100) red and

300 (40) green cards. For generating data through proposed RRT 1, he/she, then,

was asked to draw 3 (3) cards at random from urn 1 (urn 2) if he/she had used

(not used) marijuana, at least once, in the last six months. At each draw, he/she

was directed to replace two cards (i.e. c1~c2~1) of the color of the card drawn.

After drawing the cards, he/she was requested to report the number of red cards.

For generating responses through [1] and [2] RRTs, we fixed h1~0:7,h2~0:3 and

h1~h�1~0:7,h2~h�2~0:3. It is to be noted that the same respondents were taken

to generate the responses through three different randomization devices

considered in this study. The data obtained through these randomization devices

are presented in S11–S13 Tables (see S11–S13 Tables). The estimates of the

proportion of students who had used marijuana at least once, during the last six

months, are obtained as p̂1~0:204, p̂Kuk~0:12 and p̂SG~0:2475. From these

estimates, it is clear that the proposed RRT 1 provided the closest estimate of the

population proportion, i.e. p~0:2. Hence, the proposed RRT 1 is more accurate

than the other RRTs considered in this small scale survey.

Supporting Information

S1 Table. RE1 and RE2 values for h1~0:7, h2~0:2 and 0:1ƒpƒ0:9.

doi:10.1371/journal.pone.0115612.s001 (DOCX)

S2 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂Kuk for h1~0:7,

h2~0:3, n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4.

doi:10.1371/journal.pone.0115612.s002 (DOCX)

S3 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂Kukh1~0:7,

h2~0:3, n2~r2~6, c1~c2~1, a1~11, b1~3, a2~10, b2~4,

doi:10.1371/journal.pone.0115612.s003 (DOCX)

S4 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂Kukh1~0:7,

h2~0:3, n2~r2~6, c1~c2~{1, a1~9, b1~3, a2~10, b2~4,

doi:10.1371/journal.pone.0115612.s004 (DOC)

S5 Table. Relative efficiency of p̂1(in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4, h�1~0:1.

doi:10.1371/journal.pone.0115612.s005 (DOCX)

S6 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4, h�1~0:3.

doi:10.1371/journal.pone.0115612.s006 (DOCX)

S7 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4, h�1~0:5.

doi:10.1371/journal.pone.0115612.s007 (DOCX)

S8 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4, h�1~0:7.

doi:10.1371/journal.pone.0115612.s008 (DOCX)
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S9 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~1, a1~9, b1~3, a2~10, b2~4, h�1~0:9.

doi:10.1371/journal.pone.0115612.s009 (DOCX)

S10 Table. Relative efficiency of p̂1 (in bold) p̂2 with respect to p̂SG for n1~r1~1,

n2~r2~6, c1~c2~{1, a1~9, b1~3, a2~10, b2~4, h�1~0:1.

doi:10.1371/journal.pone.0115612.s010 (DOCX)

S11 Table. Data obtained through proposed RRT 1 using n2~n2~3, c1~c2~1,

a1~1000, b1~30, a2~100, b2~40.

doi:10.1371/journal.pone.0115612.s011 (DOC)

S12 Table. Data obtained through [1] RRT using h1~0:7, h2~0:3.

doi:10.1371/journal.pone.0115612.s012 (DOCX)

S13 Table. Data obtained through [2] RRT using h�1~0:3, h�2~0:7.

doi:10.1371/journal.pone.0115612.s013 (DOCX)
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