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Abstract
A new TRIO algorithm method integrating three different algorithms is proposed to perform

brain MRI segmentation in the native coordinate space, with no need of transformation to a

standard coordinate space or the probability maps for segmentation. The method is a sim-

ple voxel-based algorithm, derived from multispectral remote sensing techniques, and only

requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete

classification of a 3D high-resolution multislice-multispectral MRI data. Results showed

very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-

multispectral synthetic MRI data. The similarity indexes, expressing overlap between classi-

fication results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF

classifications in the image data with 3% noise level and 0% non-uniformity intensity. The

method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy,

sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensi-

ty, which had seldom performed well in previous studies. As for clinical MRI data, the quanti-

tative data of brain tissue volumes aligned closely with the brain morphometrics in three

different study groups of young adults, elderly volunteers, and dementia patients. The re-

sults also showed very low rates of the intra- and extra-operator variability in measurements

of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three differ-

ent study groups. The mean coefficients of variation of GM, WM, and CSF volume measure-

ments were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to

0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a re-

markable ability in robust classification of multislice-multispectral brain MR images, which

would be potentially applicable for clinical brain volumetric analysis and explicitly promising

in cross-sectional and longitudinal studies of different subject groups.
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Introduction
Quantitative volume assessment of brain tissues fromMR images is an important and accessi-
ble means to yielding unique insight into understanding and diagnosis of normal and diseased
brains. Multispectral MRI provides a stack of high quality images with excellent contrast and
unique features of normal and pathological tissues, which are explicitly practicable in clinical
diagnosis of diseases as well as the analysis of brain segmentation for volume quantification
[1–4]. According to the particular algorithms used for brain tissue segmentation, the tech-
niques can be categorized into several groups, region-based, contour-based and classification-
based approaches [5]. Region- and contour-based approaches perform segmentation by parti-
tioning a grey-scale image into a finite number of different tissue regions. However, in real
cases, there exist significant overlaps between different tissue types due to biological tissue
anomalies and imaging systematic factors, which could obviously hinder the practicability in
clinical applications [6].

Currently, some high-level algorithms have been proposed to automatically perform more
feasible segmentation of multispectral brain MRI by incorporating readily available a priori
knowledge to support the unsupervised task. One of such high-level algorithm is an atlas-based
approach which is efficient and capable of yielding accurate and consistent segmentation of
multispectral brain MRI [7–9]. This approach basically constructs a standard atlas for the
proper labeling of anatomical structures from a priori anatomical information and transforms
the regions labeled in the atlas to the space of target images [10]. The use of the probabilistic
atlas in brain segmentation involves two major processes of atlas construction, proper labeling
the anatomical structures from the template images and image registration by transforming the
atlas objects to the space of target images. As it is known, there exist potential sources of error
in accurate segmentation of brain MRI [11, 12], and this technique may not be desirable for
various challenging populations [9]. Another widely used segmentation tool, FAST of FSL
(FMRIB software library) is based on a hidden Markov Random Field (MRF) model and an as-
sociated expectation-maximization algorithm [13]. MRF model uses spatial information to aid
in classification by characterizing coherence in local neighborhoods [14,15]. The technique can
provide a reproducible segmentation, particularly for image data that are noisy and ambiguous
[16]. However, owing to the high computational complexity of these high-level segmentation
techniques, this approach needs a long processing time [17].

In order to achieve optimal brain segmentation, a new supervised approach derived from
multispectral remote sensing techniques has been developed for multislice-multispectral brain
MRI. The proposed technique implements an iterative version of Fisher’s linear discriminant
analysis (FLDA) coupled with the independent component analysis (ICA) and support vector
machine (SVM) where SVM and FLDA are widely discriminative classifiers in pattern classifi-
cation but developed from completely different design rationales in terms of how to use train-
ing samples. The TRIO of ICA, SVM and FLDA combines the strengths of these three
individual techniques to produce best possible classification of brain tissues via only a small
manually selected set of training samples from multislice-multispectral MRI data. Additionally,
the proposed method provides unique benefit of operating classification in the native coordi-
nate space, which not only avoids the registration problems in transformation to a standard co-
ordinate space, but also preserves the high spatial-resolution image profiles without smoothing
filtering during the coordinate transformation processing. In the previous report, it has been
shown that the method was a promising technique in classification of 2DFT multislice-
multispectral MRI of normal synthetic and real normal brain data [18]. For the experiments
conducted in this paper, we extended to produce brain volume measurements of gray matter
(GM), white matter (WM) and cerebral spinal fluid (CSF) in brain volume morphometry of 3-
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dimensional Fourier transformation (3DFT) high spatial resolution multislice-multispectral
MRI. The accuracy and reproducibility were tested by performing experiments using the syn-
thetic normal brain data. For clinical MRI data with no available gold standard for comparison
in the in vivo experiments, the variability was analyzed to evaluate its reproducibility of quanti-
fication results in normal young adult, normal aged adult, and dementia, and illustrate the ef-
fectiveness of the proposed method in different study groups.

Materials and Methods

Synthetic Images
The synthetic MRI data from the BrainWeb Database at the McConnell Brain Imaging Centre
of the Montreal Neurological Institute (MNI), McGill University (http://www.bic.mni.mcgill.
ca/brainweb) was utilized to objectively test the accuracy and reproducibility of the TRIO algo-
rithm classifier. The synthetic normal images include 90 axial slices of the pre-computed simu-
lated brain database, T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and proton
density imaging (PDI) data with 1mm isotropic voxel size. Seven data sets of the synthetic
image data were chosen with 4 noise levels of 0%, 1%, 3%, and 5% (calculated relative to the
brightest tissue) and two intensity non-uniformity levels of 0% and 20%.

Clinical Brain MRI
Clinical brain MRI data were acquired from a whole body 1.5 T MRI system (Aera, Siemens,
Erlangen, Germany) with a phase-array head coil. Three study groups consisted of ten young
healthy subjects (5 male, 5 female; 21.6±0.9 years old), ten healthy elderly subjects (7 male, 3 fe-
male; 58.7±9.0 years old) and ten dementia patients (3 male, 7 female; 71.2±9.3 years old). The
inclusion criteria of dementia were based on the Diagnostic and Statistical Manual of Mental
Disorders—IV. The exclusion criteria were presence of white matter lesions, larger than grade
2 of the visual Fazekas scale [19]. The Institutional Review Board of Taichung Veterans General
Hospital, Taichung reviewed and approved the experimental protocol and the consent proce-
dure. Written informed consent was obtained from all volunteers and patients.

The imaging protocol included three high-resolution 3DFT acquisition sequences: T1WI
with magnetization-preparation rapid acquisition gradient echo (MP-RAGE; repetition time,
TR = 2800ms; echo time, TE = 3.98mm; inversion time, TI = 930ms; flip angle = 6°), T2WI
(TR = 3000ms; TE = 280ms; echo train length, ETL = 190) and fast fluid-attenuated inversion-
recovery (FLAIR; TR = 5000 ms; TE = 350 ms; TI = 1800 ms; ETL = 242) with SPACE (Sam-
pling Perfection with Application Optimized Contrasts using different Flip Angle Evolutions)
technique. The recently evolved 3-D turbo spin echo sequence could provide a high spatial res-
olution image with using variable flip angle evolutions, which allows for longer echo trains and
optimal T2 contrast with longer TE. Other imaging parameters were voxel size 1x1x1mm, ma-
trix = 256x256x176, number of excitation (NEX) = 1.

Description of Proposed Algorithms
In dealing with multispectral data of a remote sensing image, FLDA, a multiple-class classifier
can effectively solve the problems with a mathematically simple and robust method [20, 21].
However, FLDA, notably being a powerful supervised classifier, needs a sufficiently large pool
of training samples to reflect the global properties of the class distributions in order to produce
reliable classification. Such a method may generally suffer from large measurement variability
and be also difficult in access to accurate class labels of a large number of training data [20]. To
resolve this issue, the SVM classifier is considered as a preprocessing technique of FLDA for
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providing a larger pool of training data with enough brain tissue properties to initiate an itera-
tive version of FLAD for a consistent classification. SVM only requires a small set of training
samples as support vectors which can effectively minimize the operating task and allow its clin-
ical practicability. However, SVM could only achieve high performance in classification of
brain MRI under the conditions of appropriate selection of nonlinear kernels and optimal pa-
rameters. The ICA in our proposed TRIO algorithm method has been particularly developed
to enhance the image contrast and can be used as a preprocessing technique to separate differ-
ent brain tissue structures. Specifically, ICA not only significantly improves the accurate classi-
fication of SVM without using optimal parameters or specified kernels.

Independent Component Analysis. The ICA approach can be considered as a preprocess-
ing method to enhance the image contrasts of GM, WM, and CSF by removing the 1st and 2nd

statistics of the MR image data for further separating different brain tissue structures in a set of
statistically independent components [22, 23]. For the experiments conducted here, the entire

image data with Mmultiple slices were stacked as a cube, I = fIigMi¼1, with each individual single
slice Ii = (T1, T2, FLAIR). Assume that x is a pixel vector in a single MR image slice I which is
linearly mixed by a set of p statistically independent signal sources, s1, s2, . . ., sp by means of a
mixing matrix A as:

x ¼ As ð1Þ

where A is an L×pmixing matrix and s is a p-dimensional signal source vector s = (s1, s2, . . .,
sp)

T of brain tissue clusters needed to be separated. The goal of the ICA is to unmix the ob-
served mixed signal source x via equation (7) by finding an unmixing matrixW by which the
p unknown signal sources representing brain tissues present in the signal source vector s can be
separated through the following unmixing equation:

s ¼ Wx ð2Þ

Support Vector Machine. SVM, a classification-based discriminant analysis, makes use of a
nonlinear kernel to map the original data space into a higher dimensional feature space to ad-
dress the issue of linear inseparability where SVM attempts to find an optimal hyperplane that
separates two classes of data samples as far as possible by maximizing the margin of separation
between classes and the hyperplanes [24, 25]. Based on the learning principle of structural risk
minimization, SVM is capable to perform well with the worse training examples, called support
vectors, which are difficult to classify. Its major strengths are that the approach significantly re-
duces the computational complexity and requires relatively small support vectors with no need
of training data statistics [26]. This advantage is very useful in reducing the large scale learning
task and minimizing human intervention and the operating burden in manually labeling the
target tissues. Nevertheless, SVM could only achieve high performance in classification of
brain MRI under appropriate cost and gamma parameters of a RBF kernel. After ICA prepro-
cessing to enhance the image contrast, the effect of optimal parameters could be definitely miti-
gated [27]. Our previous results also illustrated that SVM could perform well for one single
slice of multispectral MRI data at a time, but not multislice-multispectral MRI data.

Fisher’s Linear Discriminant Analysis. FLDA is widely used in statistical pattern recogni-
tion and machine learning to find a set of features to characterize patterns to be analyzed [20,
21, 28]. FLDA’s strength in pattern classification lies on the criterion used for optimality,
which is called Fisher’s ratio defined by the ratio of between-class scatter matrix to within-class
scatter matrix. More specifically, assume that there are n training sample vectors, frigni¼1for
p-class classification, C1, C2, � � �, Cp with nj being the number of training sample vectors in the

j-th class Cj. Let μ be the global mean of the entire training sample vectors, denoted by m ¼
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1
n

Xn

i¼1
ri and μ j be the mean of the training sample vectors in the Cj, denoted

bymj ¼ 1
nj

X
ri2Cj

ri. The within-class scatter matrix, SW, between-class scatter matrix SB, and

total scatter matrix are defined by Duda in 2001 [20] as follows.

SW ¼
Xp

j¼1
Sj where Sj ¼

X
r2Cj

ðr� mjÞðr� mjÞT ð3Þ

SB ¼
Xp

j¼1
njðmj � mÞðmj � mÞT ð4Þ

ST ¼
Xn

i¼1
ðri � mÞðri � mÞT ¼ SW þ SB: ð5Þ

By virtue of (3) and (4), Fisher’s ratio is then defined by

xTSBx

xTSWx
over vectorx: ð6Þ

The goal of the FLDA is to find a set of feature vectors that maximize Fisher’s ratio specified by
(6). The number of feature vectors found by Fisher’s ratio is determined by the number of clas-
ses to be classified, which is p-1 because the rank of SB in (6) is p-1. More details can be referred
to Bishop [29] and Chang [30].

Image Data Processing. The whole procedures of the TRIO algorithm method proposed in
this paper consist of five stage processes (Fig. 1). First, the pre-processing step included motion

Fig 1. Flow chart of the hybrid classifier, coupling ICA, SVM and IFLDA for brain MRI classification
and segmentation. First, the pre-processing step included registering FLAIR and T2WI with T1WI and
correcting intensity inhomogeneity correction using N3 method. Second, the entire volume data of multislice-
multispectral MR image data are automatically sphered to be a new data set by using ICA to remove the first
two order statistics. Third, a small set of training data, containing a 3x3 matrix (of 9 pixels) of GM, WM, CSF,
and background (BG) was manually identified by operators from a specific image slice of 3D images for SVM
classification of the sphered multispectral images. At the same time, all the sphered multispectral images go
through skull striping with BET. Finally, the output of SVM serves as a large pool of training samples for
initiation of an iterative version of FLDA,

doi:10.1371/journal.pone.0115527.g001
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correction with rigid body approach to registering FLAIR and T2WI with T1WI, intensity
inhomogeneity correction using Non-parametric Non-uniformity intensity Normalization
(N3) method and skull striping with FSL-Brain Extraction Tool (BET) [31]. The default BET
parameters were used with fractional intensity threshold = 0.5 and threshold gradient = 0.0.
Second, the entire volume data of multislice-multispectral MR image data,
I ¼ ½I1; I2; � � � ; IM�, are sphered by removing the first two order statistics to be a new data set
ofJ ¼ ½J1; J2; � � � ; JM�. Third, a small set of training data of GM, WM, CSF, and background
(BG) (denotedSinitiali ), was manually identified by operators from a specific image slice Ii of 3D
images for SVM classification of the sphered multispectral images. In the experiment, the train-
ing data size of 3x3 pixels was used for effective SVM classification according to the previous
study of no significantly statistical difference between the 3x3 pixels of training samples and
the larger sample sizes [27]. Let SSVMi denote the set of the SVM-classified data samples in the
specific image slice Ji. Fourth, FLDA was implemented on the entire data set J of the multislice-
multispectral images, using SSVMi as a large pool of training samples from the specific image
slice, Ji, for linear discriminant analysis. Let SFLDAI be the set of the FLDA-classified data sam-
ples. Finally, the classified results, SFLDAI , from FLDA were used as the training samples of the
next FLDA to classify tissue substances iteratively.

Performance Evaluation. Similarity index was used to measure the “ground truth” classifi-
cation of each GM, WM, and CSF voxel. Assume that X and Y are two data sets and the simi-
larity index is defined

SI ¼ 2nðX\YÞ
nðXÞ þ nðYÞ ð7Þ

where n(X) and n(Y) are the numbers of elements in set X and Y, ‘‘\” is set union [32]. For syn-
thetic data experiments, the accuracy of the TRIO algorithm in brain tissue classification was
evaluated by comparing the classified GM, WM, and CSF voxels with the ground truth data
using the similarity index. Brain volume measurements of GM, WM, and CSF from the real
image data were repeated three times by one operator at an interval of one week. Brain volume
measurements of GM, WM, and CSF from the real image data were repeated three times by a
senior radiologist at an interval of one week for testing the intra operator variability. The inter
operator variability was tested with three measurements by three operators, a senior radiolo-
gist, a senior researcher, and a medical student.

The experiments of the synthetic multispectral image segmentation were also performed by
using the SPM8 (Statistical Parametric Mapping; Wellcome Department of Cognitive Neurolo-
gy, Institute of Neurology, London) for comparison. Since there is no gold standard in the real
MRI data, the intra- and inter-operator variability of brain volume measurements was obtained
to evaluate the performance of the hybrid classifier.

Results and Discussion

Synthetic Image Data Analysis
The proposed TRIO algorithm effectively classified GM, WM, and CSF in synthetic MRI data
with very high accuracy, sensitivity, specificity and similarity index, as shown in Table 1. The
accuracies were in range of 0.992 to 0.997, the sensitivities in 0.969 to 0.996, the specificities in
0.996 to 0.998, and similarity indexes in 0.965 to 0.991 for the image data with 0% noise level
and non-uniformity intensity. The performance was slightly decreased as the noise levels and
the intensity non-uniformities were increased. The similarity indexes of GM andWM classifi-
cation by using the TRIO algorithm were largely higher than those by using the SPM8 software,
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except for WM in the synthetic data with higher noise levels (Table 2). The results also demon-
strated CSF classification, as good as those of GM andWM. The similarity indexes of the pro-
posed method in CSF classification were much higher than those of the SPM8, illustrated in
Table 2. In addition, the experimental results also revealed extremely low intra- and inter-oper-
ator variability in classification of GM, WM, and CSF in the synthetic multislice-multispectral
MRI data.

Clinical Image Data Analysis
Effective classification and volume measurement was performed for three study groups con-
sisting of 30 subjects. After the pre-processing step, the TRIO algorithm took approximately 30
seconds to complete classification processing of a multislice-multispectral 3DFT MRI data in
MATLAB 7.12 (MathWorks, Inc. Natick, Massachusetts) running on an Intel 3.40 Giga-Hz
CPU system with 8.00 Giga-Bytes of RAMmemory. The time for generating the training data
usually took less than another 30 seconds. Fig. 2 illustrates examples of GM, WM, and CSF seg-
mented images from three study groups. Although no gold standard was available for in vivo
studies, the quantitative data of the brain tissue and CSF volumes aligned with the brain mor-
phometrics in these three study groups. As for the analysis of GM andWM volume measure-
ments, the results revealed a larger reduction in the mean absolute volume of GM than that of

Table 1. The results of GM, WM and CSF quantification in the high-resolution synthetic MRI (1x1x1mm3) at various parameter settings by using
the trio-algorithm hybrid classifier.

Accuracy Sensitivity Specificity Similarity index

GM WM CSF GM WM CSF GM WM CSF GM WM CSF

n0rf0a 0.992 0.997 0.995 0.969 0.996 0.983 0.998 0.997 0.996 0.980 0.991 0.965

n1rf0 0.989 0.994 0.995 0.960 0.987 0.977 0.996 0.995 0.996 0.971 0.982 0.962

n3rf0 0.981 0.987 0.994 0.951 0.959 0.961 0.988 0.993 0.996 0.951 0.962 0.956

n5rf0 0.974 0.980 0.993 0.940 0.931 0.951 0.981 0.991 0.996 0.931 0.943 0.949

n1rf20 0.986 0.992 0.994 0.957 0.980 0.962 0.993 0.994 0.997 0.964 0.976 0.958

n3rf20 0.981 0.987 0.994 0.951 0.959 0.957 0.988 0.993 0.997 0.950 0.962 0.955

n5rf20 0.974 0.981 0.993 0.941 0.932 0.946 0.981 0.991 0.997 0.931 0.944 0.950

an: noise level (range of 0, 1, 3 and 5%); rf: intensity uniformity (range of 0 and 20%)

doi:10.1371/journal.pone.0115527.t001

Table 2. The results of GM, WM and CSF quantification in the high-resolution synthetic MRI (1x1x1mm3) at various parameter settings by using
SPM8 software.

Accuracy Sensitivity Specificity Similarity index

GM WM CSF GM WM CSF GM WM CSF GM WM CSF

n0rf0 0.954 0.978 0.970 0.786 0.800 0.600 0.970 0.998 0.977 0.746 0.881 0.433

n1rf0 0.975 0.987 0.983 0.878 0.869 0.934 0.985 1.000 0.984 0.866 0.929 0.672

n3rf0 0.988 0.994 0.991 0.941 0.940 0.964 0.993 0.999 0.992 0.937 0.963 0.847

n5rf0 0.987 0.992 0.992 0.922 0.948 0.953 0.994 0.996 0.993 0.930 0.954 0.871

n1rf20 0.975 0.987 0.983 0.881 0.869 0.937 0.985 1.000 0.984 0.868 0.930 0.678

n3rf20 0.985 0.993 0.989 0.920 0.937 0.943 0.992 0.999 0.990 0.923 0.962 0.803

n5rf20 0.987 0.992 0.991 0.924 0.950 0.944 0.994 0.996 0.993 0.932 0.955 0.858

n: noise level (range of 0, 1, 3 and 5%); rf: intensity uniformity (range of 0 and 20%)

doi:10.1371/journal.pone.0115527.t002
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WM in elderly volunteers compared to young adults, while an equal reduction in the mean ab-
solute volume of GM andWM in dementia patients compared to healthy elderlies. As for anal-
ysis of brain volume fractions, the results showed a decrease in mean GM volume fraction and
an increase in mean WM volume fraction in elderly volunteers compared to young adults. For
dementia patients, reductions of the mean volume fractions were demonstrated in both GM
andWM as compared to the elderly volunteers.

In an analysis of the reproducibility of the TRIO algorithm in brain volume quantification,
the results showed very low intra- and inter-operator variability in measurements of the abso-
lute volumes and volume fractions of cerebral GM, WM, and CSF in three study groups, as
shown in Tables 3 and 4. Despite that the variability of CSF measurements was slightly higher
than those of GM andWM in young adults, the mean coefficients of variation (CV) of the CSF
volume and volume fraction were not larger than 0.45%. The mean CV values of the absolute
volumes and volume fractions in cerebral GM, WM, and CSF were slightly higher in dementia

Fig 2. The results of brain classification images from 3Dmultispectral-multislice MRI. Left side reveals
3D multispectral MRI of FLAIR, T1WI and T2WI and right side is the classification images. Upper, middle and
lower rows show GM,WM and CSF images. (A) A 20 year old young female with 587.2 ml, 433.6 ml and
154.8 ml of GM, WM and CSF, and 49.9%, 36.9% and 13.2% of GM, WM and CSF volume fractions. (B) A 60
year old healthy male with 636.0 ml, 587.3 ml and 326.8 ml of GM, WM and CSF, and 41.0%, 37.9% and
21.1% of GM, WM and CSF volume fractions. (C) A 76 year old dementia patient with 562.3 ml, 454.3 ml and
333.1 ml of GM, WM and CSF, and 41.7%, 33.7% and 24.7% of GM, WM and CSF volume fractions.

doi:10.1371/journal.pone.0115527.g002
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patients than those of young adults and elderly volunteers, but which values were quite low in
the range of 0.05% to 0.50%.

Discussion
The proposed TRIO algorithm re-invents wheel by looking into the feasibility of using multi-
spectral remote sensing techniques to perform classification of multislice-multispectral brain
MRI acquired with 3DFT high spatial-resolution imaging sequences. The preliminary results il-
lustrated that the TRIO algorithm, made up of ICA, SVM, and IFLDA, could effectively en-
hance and improve weaknesses suffered from many currently being used segmentation

Table 3. GM, WM and CSF volume quantification in three groups of subjects by three measurements by (A) one operator and (B) three
operators.

A Measurements by one operator

Young adults Healthy elderlies Dementia

Mean CV.% Mean CV.% Mean CV.%

GM 703.7±100.8 0.06±0.04 589.7±40.2 0.06±0.05 536.1±69.2 0.18±0.15

WM 522.7±87.3 0.03±0.02 511.4±25.1 0.05±0.06 477.8±64.8 0.19±0.21

CSF 157.8±33.1 0.30±0.23 209.5±35.7 0.07±0.06 260.2±62.3 0.20±0.18

GM+WM 1226.4±185.0 0.03±0.02 1101.1±48.4 0.01±0.01 1014.0±124.4 0.05±0.04

B Measurements by three operators

Young adults Healthy elderlies Dementia

Mean CV.% Mean CV.% Mean CV.%

GM 703.8±100.5 0.11±0.09 589.6±40.2 0.07±0.05 535.7±71.9 0.25±0.20

WM 522.8±87.3 0.06±0.06 511.6±25.0 0.06±0.05 478.3±64.9 0.23±0.25

CSF 157.7±33.3 0.45±0.34 209.3±35.8 0.20±0.28 260.1±62.4 0.24±0.22

GM+WM 1226.5±184.8 0.05±0.03 1101.2±48.2 0.03±0.05 1014.0±124.3 0.05±0.05

doi:10.1371/journal.pone.0115527.t003

Table 4. Quantification of global GM, WM and CSF volume fractions in three groups of subjects by (A) one operator and (B) three operators.

A Measurements by one operator

Young adults Healthy elderlies Dementia

Mean CV.% Mean CV.% Mean CV.%

GM 50.9±1.4% 0.07±0.05 45.1±2.3 0.06±0.05 42.9±2.0% 0.26±0.19

WM 37.7±1.5% 0.03±0.02 39.0±1.9 0.06±0.06 36.7±3.3% 0.31±0.27

CSF 11.4±1.8% 0.30±0.23 15.9±2.3 0.07±0.06 20.4±3.5% 0.19±0.19

GM+WM 88.6±1.8% 0.04±0.03 84.1±2.3 0.01±0.01 79.6±3.5% 0.05±0.04

B Measurements by three operators

Young adults Healthy elderlies Dementia

Mean CV.% Mean CV.% Mean CV.%

GM 50.8±1.6 0.09±0.08 45.8±1.8 0.05±0.03 44.0±1.8 0.43±0.44

WM 37.9±2.0 0.05±0.03 38.8±1.7 0.08±0.11 36.2±3.2 0.50±0.68

CSF 11.3±1.8 0.43±0.30 15.4±2.0 0.17±0.25 19.7±3.5 0.31±0.37

GM+WM 88.7±1.8 0.05±0.04 84.6±2.0 0.03±0.04 80.3±3.5 0.07±0.08

doi:10.1371/journal.pone.0115527.t004
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techniques in clinical practice. First of all, the hybrid classifier provides a robust and consistent
classification of brain MRI where the process of ICA is fully automated in enhancing the image
contrasts of brain tissues with no operator intervention. The input to SVM only needs of sup-
port vectors selected by an operator for brain tissue classes of interest. The output of SVM
serves as a large pool of training samples to be used as an initial set of training samples for iter-
ative FLDA, which automatically classify whole high-resolution multislice-multispectral brain
MRI data. The experimental results revealed extremely high reproducibility in classification of
high-resolution synthetic MRI data, independent of the operator’s experience, by using the su-
pervised trio-algorithm classifier.

Secondly, the TRIO algorithm, ICA, SVM, and FLDA provides the most benefit of operating
segmentation in the native coordinate space. Such a hybrid classification approach can not
only avoid the registration problems in the transformation to a standard coordinate space, but
also preserves the high spatial-resolution image profiles without smoothing filtering during the
coordinate transformation processing. This could explain the high accuracy in classification of
multispectral synthetic MR data. In addition, the hybrid classifier provides a more effective
tool in the segmentation of CSF, which had seldom been performed in most of the previous re-
ports [3, 16, 17, 33]. There exists a wide range of various absolute volumes of GM, WM, and
CSF between subjects, which may be dependent on age, gender, sex or other characteristics,
such as the height and weight of the subjects [34–36]. An adequate measurement of CSF vol-
ume would be helpful in characterization of the brain structural alterations in specified diseases
[37]. Our results showed the similarity indexes of CSF classification were in range of 0.949 to
0.965, which were as high as those of GM andWM in multispectral synthetic data, and also
much higher than those by using SPM8. The results of the clinical image data analysis exhibited
the evident differences of brain morphometry between normal young adults and other two
challenging groups of healthy elderlies and dementia patients. As compared with the young
adults, reduction of mean absolute GM/WM volumes and mean GM volume fraction, but no
decline of meanWM volume fraction were illustrated in the healthy elderlies, which were com-
patible with the previous reports about the brain volume decline in aging [35,37]. There was an
obvious decline of both mean absolute GM/WM volumes and volume fractions in the demen-
tia patients. As compared with the healthy elderlies, the reduction of absolute and fractional
volumes in the dementia patients was aligned with those reported in the literatures [35, 37, 38].
Although no gold standard available in the in vivo study for comparison, the quantitative as-
sessments of brain structural alternations in the challenging groups would effectively demon-
strate the performance of the TRIO algorithm in clinical practice.

Thirdly, there is no need for probability maps to initiate segmentation. The atlas-based ap-
proaches, such as SPM tool packages, are initially created by a default standard tissue probabili-
ty atlas, and are helpful in yielding accurate and consistent segmentation of multispectral brain
MRI. But, there are drawbacks including the prior probability images tending to be very
blurred and uninformative, as well as registration and labeling errors. Most of the default prob-
ability maps are only feasible in segmentation of normal brain tissue [9]. The approaches have
commonly been applied to segmentation of GM, WM, and CSF in healthy subjects, but are not
for segmentation of the diseased brain. Instead of using probability maps to initialize classifica-
tion, the hybrid classifier works with a small set of the manually labeled training samples based
on the prior knowledge of operators. The experimental results illustrated that process achieves
effective classification of GM, WM, and CSF not only for normal young adults, but also for
healthy elderlies and dementia patients.

Finally, the process of the TRIO algorithm is simple and the operator burden is minimal.
Usually, high-level segmentation techniques need a longer processing time and typically not
capable of performing whole multislice-multispectral MRI data in a one shot operation. FAST
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uses a MRF model and Expectation-Maximization (EM) algorithm to account for the pixel in-
tensity information with the neighborhood spatial information for the outperforming segmen-
tation [14]. However, in the segmentation of multispectral images, the information from each
channel of multispectral MRI is taken from a slice of brain at a time and the segmentation of a
single image is performed using only three channels of brain images [16]. Additionally, the
computational complexity may also impair its performance [16, 17]. In the TRIO algorithm,
the training samples of 3x3 pixels of GM, WM, CSF, and BG were manually depicted from one
slice of multislice-multispectral MRI for SVM to produce a large pool training samples from
this particular image slice, which serve as the training samples for IFLDA. The whole process
takes about 30 seconds to complete classification. The time consumption is considerably less
than other segmentation tools, such as SPM8 and FAST, which took minutes and hours to
complete a segmentation process [17].

Though the proposed method could perform a robust classification of multislice-multispec-
tral MRI of normal brain with operator independent results, fully automated techniques would
be superlative for image segmentation and classification in order to remove any operator inter-
vention as well as to efficiently enhance the image processes. The TRIO algorithm would be po-
tentially extendable to an unsupervised method for labeling the training sample automatically.
Nevertheless, the issues will not be discussed in this paper. There is the lack of a gold standard
for in vivo MRI data available for testing the performance of a given method. Recently, some
standard test image data sets, such as IBSR, have been proposed for the evaluation of sensitivity
of the single-image segmentation techniques. However, there is still a lack of the standard test
multi-spectral image data available for assessment the accuracy of the multispectral classifiers.
We had attempted to create a gold standard for clinical data by performing manual segmenta-
tion of GM, WM, and CSF in multispectral brain MRI. However, the results showed lower sim-
ilarities of intra- and inter-operator measurements in manual segmentation of multispectral
brain MRI (the results were not reported in this paper). We believed that manual segmentation
of multispectral brain MRI may not show sufficient amount of reliability. Therefore, we em-
phasized the issues of consistency in brain segmentation rather than accuracy. In our experi-
ments, the aim was focused on testing the reproducibility, instead of accuracy, of the TRIO
algorithm for multislice-multispectral MRI.

Conclusions
This study presents a new application of a supervised hybrid classifier for the classification of
multislice-multispectral MRI and also demonstrates its clinical feasibility in volume assessment
of brain tissue in different subject groups. The proposed method intelligently integrates three
different algorithms, ICA, SVM, and IFLDA. Based on the multispectral remote sensing tech-
niques, this TRIO algorithm can perform robust classification of brain MR images with signifi-
cantly reduced computational complexity while avoiding the registration problems in
transformation to a standard coordinate space. In addition, there is also no need for probability
maps in segmentation. The method has shown to be promising and practicable by experiments
in cross-sectional and longitudinal studies of brain volumetric analysis in different subject
groups, particularly some challenging subjects. Since the experimental results demonstrated
the clinical feasibility in classification of GM, WM, and CSF by manually labeling the target
normal brain tissues, the TRIO algorithm derived from multispectral remote sensing tech-
niques might also be potentially expandable and applicable to automated classification of mul-
tislice-multispectral brain MRI as well as simultaneous segmentation of brain normal tissues
and pathologies to further enhance clinical practicability.
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