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Abstract

Speech impairment is one of the most intriguing and least understood effects of

alcohol on cognitive function, largely due to the lack of data on alcohol effects on

vocalizations in the context of an appropriate experimental model organism. Zebra

finches, a representative songbird and a premier model for understanding the

neurobiology of vocal production and learning, learn song in a manner analogous to

how humans learn speech. Here we show that when allowed access, finches

readily drink alcohol, increase their blood ethanol concentrations (BEC)

significantly, and sing a song with altered acoustic structure. The most pronounced

effects were decreased amplitude and increased entropy, the latter likely reflecting

a disruption in the birds’ ability to maintain the spectral structure of song under

alcohol. Furthermore, specific syllables, which have distinct acoustic structures,

were differentially influenced by alcohol, likely reflecting a diversity in the neural

mechanisms required for their production. Remarkably, these effects on

vocalizations occurred without overt effects on general behavioral measures, and

importantly, they occurred within a range of BEC that can be considered risky for

humans. Our results suggest that the variable effects of alcohol on finch song

reflect differential alcohol sensitivity of the brain circuitry elements that control

different aspects of song production. They also point to finches as an informative

model for understanding how alcohol affects the neuronal circuits that control the

production of learned motor behaviors.
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Introduction

Alcohol consumption has wide-ranging effects on behavioral and cognitive

functions, including verbal and non-verbal retention [1], and can lead to

structural brain changes [2, 3]. Particularly intriguing are the effects on human

speech, with alcohol exposure leading to markedly altered and degraded

vocalizations [4, 5]. Indeed, measurements of altered speech have been proposed

as diagnostic of an inebriated state [6, 7]. While many of the major effects of

alcohol in humans have been replicated in rodent [8] and non-human primate [9]

models, yielding insights into how alcohol disrupts cognitive traits and their

underlying neuronal mechanisms, the alcohol impairment of human speech

production remains poorly understood. This is due in part to the intrinsic

difficulties in performing detailed mechanistic studies in humans, but also because

an appropriate animal model has not yet been developed for investigating speech-

related deficits due to alcohol.

To investigate how alcohol affects a behavioral trait with significant analogies

with human speech, we used the zebra finch, a representative songbird species,

and a powerful model for the study of mechanisms that underlie vocal learning

and production. Vocal learning is a vital prerequisite for human language

acquisition, but is rare among animals, described only in cetaceans, bats, and

broadly among three avian lineages, namely songbirds, hummingbirds, and

parrots [10, 11]. Most of these mammalian species do not easily lend themselves

to mechanistic studies of brain function in laboratory settings, and traditional

model organisms like rodents and non-human primates lack vocal learning and

associated brain circuits [12]. Importantly, male zebra finches are highly

motivated to sing under a variety of conditions, and there are remarkable

analogies in how zebra finch song and human speech are learned and produced

[10, 13]. Both groups require a prolonged development period with proper

environmental cues and specialized brain circuitry for vocal acquisition. In

humans, this process depends on exposure to vocalizations by parents or peers

[14] and on auditory-vocal motor feedback acting on brain regions associated

with verbal and vocal-motor processing [15–17], resulting in neural encoding that

is required for the consolidation of learned vocal patterns. Similarly, juvenile zebra

finches require exposure to tutor song to form an auditory memory, and learn to

imitate that song over a prolonged period of vocal practice that relies on auditory

feedback [13, 18]. Importantly, a set of sophisticated tools and algorithms are

currently available for quantitative analyses of bioacoustics features of finch song

[19].

The vocal control circuitry of humans and songbirds also have remarkable

similarities: while human vocal production is known to depend on cortical

regions, the production and learning of birdsong requires a set of cortical-like and

basal ganglia structures, whose primary output is onto vocal and respiratory

neurons in the brainstem (Fig. 1A). Of note, nucleus RA occupies a position in

this pathway analogous to the layer 5 motor neurons within the oral-motor and

laryngeal representation areas of the human primary motor cortex, which project
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onto brainstem laryngeal centers for vocal control [10, 20], allowing for cortical

control of the production of refined acoustic (spectral and temporal) features that

are characteristic of learned vocalizations. Vocal learning in finches and humans

also share important molecular underpinnings: both organisms require an intact

FOXP2 gene for the proper learning of vocal patterns [21–23]. Thus finches stand

out in their applicability to understanding how complex motor abilities like

learned vocalizations are affected by alcohol.

We show here that zebra finches will consume alcohol when it is provided to

them, resulting in elevated blood ethanol content (BEC). While alcohol exposure

does not visibly affect general behaviors, willingness or motivation to sing, or

variability of vocal output, it has marked effects on acoustic features of learned

song, particularly entropy and amplitude. Thus, our study points to a songbird

species as an informative model organism for further mechanistic studies on the

cognitive actions of alcohol. Based on the organization of the song control

Fig. 1. The finch song system and experimental paradigm. (A) The neuronal song system consists of a
posterior vocal motor pathway (black): pre-motor cortical nucleus HVC projects to motor nucleus RA (robustus
of the arcopallium), which projects to brainstem medullary nXIIts respiratory and vocal (syrinx) motor neurons,
and the anterior pathway (white): HVC (a proper name), which projects to striatal Area X (X), and from there,
sequentially to thalamic nucleus DLM (dorso-lateral division of the medial thalamus), to cortical nucleus LMAN
(lateral magnocellular nucleus of the nidopallium) and to RA. (B) The study design assigned adult male
finches to alcohol or control drinking treatments. They were then taken through three sequential Phases
where they were provided with water (Phase I), 50% juice (Phase II), and alcohol in juice or juice only (Phase
III).

doi:10.1371/journal.pone.0115427.g001
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circuitry, we suggest that some of the major effects of alcohol on vocalizations are

exerted at the level of cortical vocal pathways.

Results

General effects of exposure to alcohol

Our basic paradigm (Fig. 1B) consisted of recording female-directed song while

sequentially providing birds with water (Phase I), juice (Phase II), and alcohol

plus juice vs juice only (alcohol vs. control groups; Phase III) over several

consecutive days. Fluid intake did not differ between control and experimental

birds during phases I and II, but the experimental birds increased their fluid

consumption by ,50% between phases II and III, illustrated by an interaction

effect between group and phase (S1 Fig., repeated measures ANOVA F1, 1055.4,

p50.042). The experimental birds at Phase III consumed a daily ethanol dose of

16.4¡2.6 (s.e.) g/kg, or ,0.26ml per bird per day. All birds that were provided

alcohol in Phase III showed detectable BECs (mean 44.0 mg/dl), but with

considerable variability among individuals (One-way ANOVA F5, 1853.26,

p50.04; Fig. 2). BEC ranged from undetectable on some days for some birds, to a

maximum of 82.4 mg/dl for one bird. The relationship between daily dose and

BEC was not significant (F1, 2251.75, p50.20), indicating that the finches could

have varied their fluid intake throughout the day, or metabolized alcohol at a very

high rate.

To examine the latter possibility, we conducted a small scale metabolic

clearance study, akin to a paradigm commonly used to study alcohol clearance

rates in rodents [24]. Zebra finches received injections of two different doses of

alcohol, and BECs were determined at increasing intervals after the injection. The

results show a high BEC within 30 minutes of the injection, followed by a very

gradual decline, such that 3 hours later the birds had metabolized only ,25% of

the original dose (S2 Fig.). This contrasts with existing data for C57BL/6 mice,

where nearly all alcohol has been removed within 3 hours after the injection (2 g/

kg). Thus, finches appear to have a slow metabolic clearance of alcohol, and are

likely to sustain relatively stable BEC for periods of hours.

We did not detect visible effects on the birds’ general behaviors or health, as

indicated by the normal appearance of feathers and the ability to perch, feed,

maintain normal posture and fly inside the cage. We also did not observe overt

signs of stress in either alcohol or control groups, including postural changes,

drooped wings or puffed feathers, or changes in behavior, including inactivity,

panting, closed eyes or non-responsiveness towards other finches. Alcohol did not

affect the birds’ use of perches when females were presented, and birds appeared

to sing from the same position in the chamber throughout all phases of the study.

Body mass also remained constant across phases for the birds that were provided

alcohol (F2, 3451.03, p50.37). Importantly, all birds maintained their ability to

sing, and produced zebra finch-typical song; even though the birds varied in the

amounts of song produced, as normally happens for finches, enough recording
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data were obtained for quantitative analysis. No detectable BECs were seen in

control birds that did not receive alcohol in Phase III.

Effects of alcohol on singing behavior

To assess whether alcohol affects the motivation to sing, we analyzed whether it

affected the number of bouts sang, the numbers of motifs within each bout, or the

number of lead notes prior to each bout during the 60 minutes of recording

following the introduction of the target female to the recording chamber. We used

repeated measures models to test for effects of alcohol on these song variables,

separately comparing groups (alcohol vs. controls) and experimental Phase. We

note that both the alcohol and control groups sang robustly on all days, with no

significant group differences in the levels of singing (Fig. 3; Table S1 in S1 File).

Interestingly, we detected a phase effect on the number of lead notes produced,

with a decline over the course of the experiment (Fig. 3A; F2, 851.13, p,0.05).

Yet the number of lead notes did not differ between the alcohol and control

groups (F1, 950.0004, p50.95). Since the presence of multiple lead notes in zebra

finch song is more typically associated with female-directed than undirected song

[25], it can be considered an indicator of the motivation of males to sing to

females. We therefore interpret the decline in the number of lead notes seen in

both groups as a small decline in the motivation to sing to females after prolonged

exposure to same housing conditions, regardless of the presence of alcohol.

We next tested whether BEC correlated with any of the song measures, and

found no significant effects of BEC level on the mean number of motifs (p50.53)

or lead notes (p50.73) associated with each bout (individual birds varied greatly,

p,0.0001) and no interactions (p50.66 and 0.92, respectively). When testing the

BEC level against the number of song bouts per hour, there was a significant bird

by BEC interaction (p50.001); examination of the data scatter revealed that one

Fig. 2. Blood ethanol concentrations (BEC) in male zebra finches. Birds were provided with 6.5% alcohol
in 50% juice during Phase III of our experimental paradigm.

doi:10.1371/journal.pone.0115427.g002
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of the birds deviated markedly from the others, its singing rate increasing with

high BECs (S3 Fig.). Repeating the analysis with this individual omitted made the

interaction disappear (p50.47), and the number of songs decrease with BEC

(p50.029), indicating that a typical finch response to high BEC is more likely to

be a small decrease in song rate.

Effects of alcohol on acoustic features of songs

Initially we tested for the effect of alcohol on four song spectral features (pitch,

frequency modulation (FM), amplitude modulation (AM), and Wiener entropy)

as well as amplitude averaged over the duration of whole motifs, and motif

duration. We used a MANOVA to test for effects when comparing songs recorded

Fig. 3. Effect of alcohol drinking on singing behavior. Plotted are the individual and treatment group
means of (A) number of lead notes per bout, (B) the mean number of motifs within a bout and (C) the mean
number of bouts per hour across Phases for birds that received alcohol (red) in Phase III and for controls
(blue). Small symbols connected by dotted lines represent individual bird means, while large symbols
connected by solid lines represent the treatment groups. An * indicates a significant change across phases for
both the control and alcohol treatments, combined.

doi:10.1371/journal.pone.0115427.g003
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in Phases II and III, while also controlling for variation in individual birds. For

birds that were provided with alcohol during Phase III, there were strong

individual effects (Wilk’s l6, 3652.126109, p,0.0001) and a detectable difference

in the multiple variables analyzed between Phases II and III (F6, 1751.04,

p50.0375). For the control birds, however, no significant differences were

found between Phases II and III in the multiple acoustic variables analyzed

(F6, 1950.74, p50.0715), despite similarly large differences among individuals

(Wilk’s l6, 36526.75961010, p,0.0001). A post hoc analysis of the birds that

received alcohol in Phase III showed that amplitude significantly decreased

(p,0.0001) and entropy increased with alcohol (p,0.01), whereas other song

features did not change (Fig. 4; Table S2 in S1 File), even though there were

trends suggesting declines in several features. Control birds showed no significant

changes in any spectral feature over the 7-day recording period (Table S2 in

S1 File), excluding the possibility that the changes in amplitude and entropy in the

alcohol group result from non-specific factors, such as stress related to the

extended stay in the recording box.

To better understand the effects of alcohol on song acoustic features we

subjected the measurements obtained over entire songs from the Alcohol and

Control groups (including Phases I/II and III) to Principal Component Analysis

(PCA). The correlation matrix that parses the major axes of variation in the data

indicate that the first eigenvector (PC1; ,40% of the variation) explains primarily

the non-entropy spectral features of pitch, FM and AM, whereas the second

eigenvector, (PC2; ,20% of the variation) is composed primarily of entropy and

to a lesser degree motif duration and amplitude (Fig. 5A,B; note the opposite

signs for entropy vs. amplitude and duration). Thus, the six acoustic features that

we measured can be conveniently described in terms of two condensed

eigenvectors. When plotting PC2 vs. PC1 to create an acoustic space for the

alcohol treatment (Fig. 4C), we noted that the shifts between the Phase I/II and

Phase III (alcohol) conditions occurred along both PC1 and PC2 axes with shifts

down and to the left. For most birds the shifts were consistently towards higher

values, likely a consequence of higher entropy and lower amplitude values under

alcohol. One bird with no shift along either axis (Fig. 5C, blue) also had the lowest

BECs among all subjects in the study (from undetectable to 34.7 mg/dl). Another

bird showed a shift in the opposite direction, indicating a increase in PC2

(Fig. 5C, black). This bird had the least amount of singing (2 to 17 bouts per day),

regardless of Phase, and its recordings had numerous female calls overlapping the

male’s song. This resulted in a much limited dataset for acoustic analysis,

suggesting that this bird was under-sampled compared to the others. No shifts in

the acoustic space were observed when the same analysis was performed for the

control group (Fig. 5D). Overall, our data show that these multiple acoustic

features can be reduced to one or two primary axes, and that alcohol has

significant global effects on some song spectral features, decreasing amplitude and

increasing entropy.

We next examined how amplitude and entropy, the two variables for which we

detected significant effects of alcohol, changed across the range of BECs measured.

Alcohol Effects on Zebra Finch Song
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We found that the values decreased with BEC for amplitude (t524.53, p50.0001;

Fig. 6A) and increased for entropy (t52.15, p50.04; Fig. 6B); the effects were

most obvious in the lower range of BECs, up to ,40 mg/dl.

Fig. 4. Effects of alcohol drinking on song acoustic features. Plotted are the values of least-square means of each acoustic feature (A–F) from whole-
motif measurements of all individuals; error bars are standard errors of the means. * indicates a significant difference.

doi:10.1371/journal.pone.0115427.g004
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Fig. 5. Principal Component Analysis (PCA) of the effects of alcohol drinking on acoustic parameters
of whole song motifs. A. Relative contributions of different acoustic parameters to PCA eigenvectors; the
darkness of the print indicates the strength of contribution. B. Scree plot indicating the percent contribution by
each eigenvector to the total variation along the axis. Plots of PC2 vs. PC1 for (C) the Alcohol treatment and
(D) the Control treatment: unique colors denote individual birds; open and solid circles indicate daily values
recorded in Phase II (no alcohol) and Phase III (alcohol) respectively; some individual values are not visible as
they overlap.

doi:10.1371/journal.pone.0115427.g005
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Effects of alcohol on spectral features of song syllables

The various syllables that make up a zebra finch song motif differ greatly in

acoustic structure, reflecting a diversity in the neural encoding and vocal

production mechanisms the birds use for generating them. We therefore

wondered whether alcohol may exert differential effects on different syllables. To

address this possibility, we conducted an analysis of spectro-temporal features in

repeated measures comparisons of multiple vocal renditions with or without

alcohol, but now using single syllables instead of whole motifs as analyzed units.

To the human ear the differences in amplitude in individual syllables between

Phases II and III were apparent and there were noticeable differences in the

spectral quality of sounds when the speed of recordings was slowed down (See

S2 File for an audio-video presentation of songs and spectrograms). With

quantitative acoustic analysis we detected significant effects, but close examination

revealed that, as predicted, not all syllables were equally affected (Fig. 7 shows a

representative example of this analysis). Different syllables showed effects on

different acoustic parameters, while several other syllables showed no effects in

any parameters. Consistent with the whole motif analysis, of 21 syllables analyzed,

11 increased entropy, but other syllables also had detectable changes in parameters

for which no effects were seen when analyzing across the whole motifs. This

included changes in duration (n52 increases and 14 decreases), decreases in pitch

(n58), decreases in FM (n55), and decreases in AM (n510), in varying

combinations for different syllables. Duration was the only parameter that showed

Fig. 6. Dose-relationships between BEC and motif-level (A) amplitude and (B) entropy. The vertical axis
is centered on residual values calculated around individual birds, and individual birds are represented by
unique colors. The traces are spline fits (l5100,000).

doi:10.1371/journal.pone.0115427.g006
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Fig. 7. Effects of alcohol drinking on individual song syllables. Shown are sample spectrograms of single
motifs from the same bird in the alcohol group, recorded during (A) Phase II (no alcohol) and (B) Phase III
(alcohol); individual syllables are color-coded and labeled 1–4. (C) Plotted are mean values of acoustic
features of each syllable during Phases II and III; error bars are Bonferroni-corrected 95% confidence
intervals, * indicates significant differences between no alcohol and alcohol conditions.

doi:10.1371/journal.pone.0115427.g007
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changes in both directions, while the other spectral features changed either in one

direction or showed no change. We also tested how acoustic features of individual

syllables may change across the range of BEC values that we recorded on different

days. From the song recordings we obtained we first calculated the mean acoustic

features for each syllable for each day with a given BEC. Using a model where

syllables were nested within bird ID as random factors, and BEC was included as

the main factor, we found that amplitude and syllable duration both decreased

and that entropy increased with increased BEC (Table 1, S4 Fig.). In contrast,

although some individual syllables were noted to change in terms of pitch, FM or

AM, these acoustic features did not reliably change with increased values of BEC.

We next tested whether the fraction of acoustic features that changed from the

control values increased with increases in BEC. Here BEC did not have a

measurable effect on the fraction of responding acoustic features in the model

(F1, 4852.5, p50.12). However, we again noted strong differences in the fraction

of responding acoustic features among syllables (F17, 4853.1, p50.001), in line

with our observations that alcohol alters some, but not all, of the acoustic features

of individual syllables within a bird’s motif (e. g. see Fig. 7). There was also an

individual bird effect (F5, 4853.5, p50.02), where some birds had more acoustic

features altered than others.

We next wondered whether syllables of the same type showed consistent

changes under alcohol. A distinctive quality of zebra finch song is the occurrence

of harmonic stacks in some, but not all syllables. Depending on the presence of

stacks, in combination with occurrence of a discrete temporal shift in acoustic

structure, we categorized syllables into four types (representative examples in

Fig. 8A–D), and recorded whether their acoustic parameters were affected by

alcohol (a representative example of simple stack syllable analysis in Fig. 9). As

summarized in Fig. 8E, syllables of the same type showed different effects under

alcohol, thus syllable type did not predict the specific combination of spectral

shifts under alcohol. We note, however, that except for duration, which could

increase or decrease, the effects of alcohol on a given parameter were consistently

in the same direction, even across syllable types, namely an increase in entropy

and a decrease in all other acoustic parameters.

Effects of alcohol on song stereotypy

The song of adult male zebra finches typically consists of bouts of repeated motifs

with minimal differences across motif renditions. To test whether alcohol might

affect song stereotypy, we examined whether motif % similarity, which measures

the correlation between two songs assuming no shifts in syntax, was affected by

alcohol. Because motif variability is low for motifs that occur early in a song bout

[26], we separately analyzed motifs 1 and 3 to test whether alcohol has greater

effects on motifs that occur late within song bouts. We did not find a significant

effect of alcohol on similarity scores across bouts for motifs 1 (repeated measures

ANOVA, F1, 551.08, p50.0678) or for motifs 3 (F1, 550.0001, p50.98). We also
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did not detect effects within song bouts between motifs one and three (F1, 550.06,

p50.617). Values are presented in Table S3 in S1 File.

Discussion

Here we found that when zebra finches drink alcohol, they can reach BECs

comparable to those commonly seen in humans [27, 28], which measurably affects

their song. The BECs achieved in our paradigm (Fig. 2) can be considered ‘‘risky’’

drinking based on the NIH definition for adult humans (between 50–80 mg/dl),

with one bird approaching the NIH definition of binge drinking of .80 mg/dl

[29]. Interestingly, when given alcohol finches showed increased fluid intake,

indicating that alcohol-supplemented juice was not aversive. Consistent with

moderate alcohol intake and absence of adverse effects like dehydration, we did

not detect changes in the birds’ overall behavior or motor coordination. These

observations indicate that drinking patterns and alcohol levels that are of

relevance to human consumption have significant effects on the production of

learned vocalizations in zebra finches. Thus, alcohol effects are distinct those of

other factors known to affect song, such as age [30], social context [31] or stress

[32]. Given the important parallels between birdsong and human speech and

language, the zebra finch is potentially a powerful animal model system for

understanding how alcohol affects a set of learned social behaviors that are highly

relevant to humans.

Table 1. ANOVA tables for the effects of BEC (a main effect) and individual Bird ID and syllable nested within bird ID as random effects.

Acoustic Feature Model effects DF F p Direction of change

Amplitude BEC 1, 65 41.3724 ,.0001* Decrease

Bird ID 5, 65 6.5446 0.0020*

Syllable [Bird ID] 15, 65 111.8904 ,.0001*

Duration BEC 1, 65 5.6347 0.0206* Decrease

Bird ID 5, 65 0.2991 0.9058

Syllable [Bird ID] 15, 65 1502.681 ,.0001*

Pitch BEC 1, 65 0.0020 0.9647 No change

Bird ID 5, 65 1.1221 0.3904

Syllable [Bird ID] 15, 65 222.0660 ,.0001*

FM BEC 1, 65 0.0010 0.9751 No change

Bird ID 5, 65 0.5750 0.7184

Syllable [Bird ID] 15, 65 206.4407 ,.0001*

AM BEC 1, 65 0.7012 0.4055 No change

Bird ID 5, 65 0.8497 0.5360

Syllable [Bird ID] 15, 65 152.0767 ,.0001*

Entropy BEC 1, 65 4.2399 0.0435* Increase

Bird ID 5, 65 0.6701 0.6522

Syllable [Bird ID] 15, 65 208.5539 ,.0001*

doi:10.1371/journal.pone.0115427.t001
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Daily alcohol consumption in our paradigm did not correlate well with

measured BECs. This is perhaps not surprising, given that the consumption

measurements were integrated over the entire day, whereas the blood samples

were taken at a single time. It is thus possible that the birds had highly variable

drinking patterns, or that alcohol was very rapidly metabolized after ingestion.

Compared to rodents [24], however, we found that finches clear alcohol quite

slowly once high BEC levels are achieved, despite the relatively high general

metabolic rates of birds [33]. These clearance data suggest that the variability in

BECs is not due wide variations in ethanol metabolism in finches. While further

analysis is required to better understand the relationship between voluntary intake

and BEC levels, the free drinking paradigm we developed offers several

advantages. Most importantly, significant increases in BECs can be achieved

through an easy administration route that preserves normal zebra finch behaviors,

allowing us to readily record song. Furthermore, we did not observe overt signs of

stress with the free drinking paradigm. This was in sharp contrast to the injections

Fig. 8. Left: Syllable types in zebra finch song. Shown are representative examples of (A) simple stacked (SS), (B) simple noisy (SN), (C) complex
stacked (CS) and (D) complex noisy (CN) syllables. Simple stacked syllables are represented by single harmonics stacks or clear tones, whereas simple
noisy syllables are single elements that lack well defined harmonic structure. Complex stacked types contain a combination of harmonic stacks and noisy
elements, whereas complex noisy have multiple noisy elements but no harmonic stacks. Right: Effects of alcohol on zebra finch song syllable types.
Direction of arrows indicate direction of change (up or down), dashes indicate lack of change. Frequencies of directional shifts are tallied at the bottom
(yellow).

doi:10.1371/journal.pone.0115427.g008
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for the clearance study, which were highly stressful and did not allow us to readily

assess the effects of alcohol on song behavior. We also note that the use of a free

drinking administration will be important for future analysis of the brain circuitry

that are affected by alcohol. Previous studies in rodents, for example, have shown

differences in brain activation patterns when given alcohol as an IP injection

compared to self-administration [34, 35], possibly due to effects of fear associated

with handling and unexpected intoxication.

Most birds did not appreciably adjust their singing rate or modify song

stereotypy under alcohol, except for a small decline in the number of song bouts

at the highest intake levels. The lack of a strong effect on these variables could be

due to the fact that we evaluated only female-directed song, which differs from

Fig. 9. Effects of alcohol drinking on a specific zebra finch song syllable. Shown are spectrograms of a
representative syllable recorded in Phases II (no alcohol; left) and III (alcohol, mean BEC553.4 mg/dl; right)
overlaid with traces of (A) amplitude, (B) pitch, and (C) Wiener entropy (respective scales on the right). For
this syllable there were significant decreases in mean amplitude and pitch, and an increase in entropy under
alcohol; other acoustic features did not change (not shown).

doi:10.1371/journal.pone.0115427.g009
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non-directed song and is under the control of different neuronal circuitry [36]. It

is possible, for example, that significant stereotypy changes would require higher

levels of intoxication or alternatively, song stability might be more sensitive to

alcohol during undirected singing, which is less stereotyped [37–39]. Zebra

finches exhibit ample song in the presence of either females or males [40], thus

providing excellent opportunities to investigate how alcohol may affect activation

of the song circuit during different social contexts.

The strongest effects of alcohol on song were on amplitude and entropy,

detectable over whole motifs and at the individual syllable level. The effect on

entropy, in particular, indicates a destabilizing effect of alcohol on song

production, disrupting a bird’s ability to maintain its normal acoustic structure of

song and its component syllables. Duration and several spectral features also

showed measurable effects at the scale of certain syllables, but the extent and

degree of change varied considerably across syllables and individuals, as opposed

to the broad effects for amplitude and entropy seen over whole motifs. These

effects were confirmed when analyzing how the magnitude of the acoustic changes

were affected by increasing BEC values, with notable changes detected in a

transition at around 40 mg/dl. Interestingly, this dose effect was not seen when

examining the frequency of changes, as the fraction of syllables that showed a

significant change did not correlate well with BEC levels. Overall, these

observations suggest a possibly stochastic relationship between BEC levels and the

number of acoustic features affected at the syllable level. Importantly, the different

syllables of a typical finch song differ considerably in their spectral-temporal

structure, reflecting diversity in the underlying neuronal encoding and/or modes

of production, and some syllables likely require more complex encoding or

production mechanisms. Based on the diverse response among syllables, we

suggest that alcohol differentially affects the neuronal and/or neuromuscular

mechanisms responsible for encoding specific syllables. We also note that the

vocal learning process reflects the ability of a bird to modify its own vocalizations

to match a model, or template. That ability implies that the vocal learning and

production circuits are able to exert a fine control over the acoustic parameters of

the learned vocalizations the bird produces, and we suggest that alcohol disrupts

this control. Exploring these various effects through electrophysiological

recordings of neuronal activity during singing under the influence of alcohol,

would elucidate how neuronal firing patterns contribute to the acoustic structure

of specific song syllables, besides addressing the mechanisms of alcohol action on

vocalizations. Interestingly, although different syllables were not uniformly

affected, the directions of change under alcohol were nearly always the same,

resulting in a predictable effect for most acoustic features. The exception was

duration, where syllables increased, decreased, or did not change. A comparative

analysis of firing patterns across syllables may thus be particularly informative

with regards to the neuronal encoding of the temporal structure of song elements.

Previous investigations of acute alcohol effects on human vocalizations include

acoustic analyses of repeatedly occurring suprasegmentals (e.g. spectral features of

individual syllables) such as pitch or fundamental frequency, formant tracking in
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individuals, changes in speaking frequency and duration, vocal intensity, and

occurrence of non-fluencies. While even the best-controlled experiments cannot

reliably identify a consistent spectral feature that changes with alcohol across all

distinct elements of human speech [4], human inebriation generally increases

fundamental frequency of speech elements [41]. Other factors such as the

duration and intensity of phonation may also increase, and non-fluencies may

occur, but mostly in severely intoxicated states. Despite this, the variability of

acoustic features (e.g. fundamental frequency) has not been shown to change with

intoxication [4], and not all subjects nor all elements of speech within an

individual show a uniform response. For instance, 20% of subjects did not change

their fundamental frequency despite dramatic changes in most (,80%)

individuals [41]. Thus, we conclude that alcohol effects on both human and

songbird vocalizations are not uniform, but rather are specific to specific vocal

elements both in extent and direction of change. Also importantly, acute alcohol

exposure in humans does not strongly alter general peripheral motor function, as

measured by isokinetic and isometric muscle performance, and creatine kinase

levels [42], suggesting that the speech impairments of alcohol are more likely

caused by acute effects on higher-level motor control pathways than on the

neuromuscular system.

Alcohol may affect birdsong at several levels in the vocal control system

(diagram in Fig. 1A). Beginning with pre-vocal motor areas the cortical-like song

nucleus HVC contains individual neurons that project to vocal motor nucleus RA

(HVC-RA cells) and express sparse temporal coding by firing at discrete points

during the production of a song motif. HVC-RA neurons are important

determinants of song temporal features, and based on our findings may also be an

important target of alcohol on the timing aspects of song. RA output neurons, in

turn, project to the medullary nXIIts nucleus that controls vocal (syringeal) and

respiratory musculature and fires robustly throughout song duration. The firing

patterns of these neurons could thus play important roles in mediating the effects

of alcohol on the acoustic structure of most song syllable elements. Given the

differential effects we observed, we predict that neuronal subsets within HVC and/

or RA are differentially susceptible to alcohol, but we also note that possible effects

at the level of the neuromuscular junction or syringeal musculature cannot be

discarded.

Overall, alcohol has clear effects on zebra finch song, establishing this species as

an informative model to study the effects of alcohol on a cognitive skill with

similarities to human speech acquisition. Because the song control circuitry is well

mapped and the neuronal activity of its elements can be readily accessed by

various methods, including analysis of activity-dependent immediate early genes,

and in vivo electrophysiological recordings in freely singing birds, specific

hypotheses about how alcohol affects the neuronal control of learned

vocalizations are highly testable. Such advances would help elucidate how alcohol

affects vocal motor control in humans, where speech is markedly affected through

as yet unclear mechanisms. An intriguing potential application would be the use
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of bioacoustics analysis of vocalizations to reliably detect inebriation or even mild

intoxication in humans.

Methods

Study Animals

Adult male zebra were obtained from a commercial breeder or were born in our

aviary and were at least 120 days old at the time of the experiments. Finches were

housed 12D/L conditions in single-sex group cages in our institutionally managed

aviary prior to the onset of the experiments, and brought to the lab for the

behavioral experiments described in this paper. All research was approved by the

Oregon Health and Science University Institutional Animal Care and Use

Committee (protocol no. IS2313).

Experimental Design

We housed zebra finches in sound isolation chambers, equipped with a duplex

cage with perches, food, and drink. With longitudinal sampling we measured

changes in song in individual finches over several days of recording, as we changed

the contents of their drinks (Fig. 1B). Initially we presented birds with water in a

single bottle and recorded song for 1–2 days to establish baseline conditions

(Phase I). We then switched the drinking solution to 50% white grape juice and

recorded song for 1–2 days (Phase II), to control for the possibility that juice alone

had an effect, We then added 6.5% ethanol to the juice and sampled song over 3–4

days of drinking (alcohol group, Phase III); we also recorded song from a parallel

set of birds that continued to be exposed to juice only for a similar number of days

(control group, Phase III). Since the finches freely consumed the drinking

solution the degree of intoxication was dependent on the drinking characteristics

of each bird. Thus, alcohol consumption was not directly forced, but a fresh water

alternative was not provided. We monitored birds closely for changes in weight or

other signs of dehydration such as stupor or changes in tissue turgor, for general

behaviors including feeding, preening, perching, flying inside the cage and calling,

as well as stress related behaviors such as posture, puffed feathers, inactivity or

non-responsiveness towards other birds.

To study the metabolic clearance of alcohol, separate groups of finches were

administered two different doses, 2.0 g/kg (n54 birds) or 3 g/kg (n53) of alcohol

(delivered as 20% in PBS; 150–240 ml injection volume). In order to approximate

the paradigm used for rodents, we attempted an intraperitoneal (IP) adminis-

tration, consisting of injections ,5 mm above the cloacal opening along the

midline, taking care to avoid the liver, which is visible through the skin. We note

the absence of cackling with breathing, which would occur if we injected into the

birds’ pulmonary air sac system, and that the initial BEC measurements had low

variability, indicating that the injections were all correctly placed. We then

replaced the birds individually in a quiet cage. At 30, 60, 90, 150 or 210 min
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following the alcohol administration, we lanced the brachial vein with a

disposable needle and drew a ,50 ml blood sample into a heparinized capillary

tube. Serum was isolated by centrifugation in a microcentrifuge for 3 min and

analyzed with an Analox GL5 analyzer calibrated to a known standard. Injected

birds showed rapid changes in posture and quickly entered an intoxicated stupor

marked by puffed feathers, closed eyes and general inactivity. At the 3 g/kg dose,

birds did not fly or perch, but sat on the cage floor with their eyes closed. If

handled, birds would briefly open their eyes; 30–60 minutes into the experiment

birds were capable of moving about the floor of the cage, but did not perch.

Recording

In the presence of females, male zebra finches reliably produce female-directed

song as part of their courtship behavior [25]. Cages were set up for singing males

to perch and sing towards a female, and into a microphone at the opposite end of

the female’s cage. Cages were fit into acoustically isolated boxes supplied with

fresh air and broad spectrum LED lights on a 12D/L timer. We used Audix TR40

microphones connected to an SM Pro Audio PR8-MK2 preamplifier, fed into a

microcomputer with an Aardvark Direct Pro LX6 sound card running Sound

Analysis Pro software. Singing was recorded and processed with the settings for

zebra finch song. Four hrs after lights on, a female was added to the adjacent cage

for a 2 hr recording session. At the termination of each session, the female was

removed, males were weighed, and a blood sample was collected for measurement

of BEC; sample processing was as above for the alcohol metabolic clearance study.

The amount of liquid consumed over the previous 24 hrs was also measured.

Thus, fluid intakes are reported over 24 hour periods and the BECs were point

measurements made at the termination of each recording session. We then

replenished food and drink, according to their treatment.

Analysis

To address whether alcohol affects song, we analyzed rates of song production,

song acoustic features and song stereotypy. For the song production analysis, we

tallied the number of songs produced during 2 hrs of female exposure, and

calculated the mean number of motifs in each song, and the number of lead notes

that preceded each song.

Acoustic features of song were acquired with the Explore and Score feature of

SAP for all full motifs that were produced during the two hrs of female presence,

excluding background noise or artifacts. We analyzed motif duration, amplitude,

pitch, frequency modulation (FM), amplitude modulation (AM) and Wiener

entropy. Duration was determined manually and blind to Phase as the interval

between the beginning of the first syllable and the end of the last syllable of the

motif, and the other acoustic features were based on mean values within this

interval. We imposed a smoothed amplitude-based segmentation rule over all

recordings so that measurements did not include silent gaps between syllables.
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Amplitude calculated by SAP is the absolute deviation of the vocal signal from the

baseline. Pitch is broadly defined as the oscillation frequency of sound, and is

calculated from SAP’s cepstrum pitch, which is a combination measurement of

the fundamental frequency of oscillation for harmonic sounds, and the mean

frequency of oscillation for sinusoidal (clear) or poorly defined frequencies. FM is

the change of sound frequencies with time and AM is the time derivative in

amplitude across all frequencies. Wiener entropy is the width and uniformity of

the power spectrum. The last four features are largely independent of the

amplitude of sound [19] and do not depend on the proximity of the bird to the

microphone.

The motif-scale analysis was followed by a syllable-level analysis for all birds in

the alcohol group, where all syllables within a motif (2–6 per bird) that were

recorded on the day of the highest BEC obtained for that individual (Phase III)

were compared to the same syllables recorded before the alcohol exposure (Phase

II). We first segmented the sounds based on smoothed amplitude to identify

putative syllables. Next we calculated the mean spectral features for each of the

segmented sounds, and used these spectral features in a nearest-neighbor

clustering algorithm (in SAP) to classify individual syllables. Sounds that did not

cluster, such as cage noise and non-song vocalizations, were discarded. The

clustering quality was confirmed by visual examination of syllable assignments

within the spectrograms to ensure correct cluster assignments for all syllables. We

note that cluster assignment was consistent across days and not affected if the bird

had alcohol in its system. In two cases SAP could not reliably separate syllables

within the birds’ motifs, likely due to a flat spectral quality of these songs. Thus,

we assigned syllables manually for these birds. Next we compared the values

between the corresponding syllables recorded under alcohol (Phase III) and prior

to exposure (Phase II).

We next categorized syllables into one of four groups based on their visual

appearance in the spectrogram, as in [43]: (1) simple stacked syllables, represented

by only harmonic stacks or clear tones, (2) simple noisy syllables, represented by

sounds that lacked harmonic structure, but had no temporal variation,

(3) complex stacked syllables, illustrated by those syllables that contained both a

harmonic stack, and a component whose spectral structure varied temporally, and

(4) complex noisy syllables, whose spectral structure varied temporally, but which

lacked a clear harmonic component. We compared for each syllable type the

acoustic features recorded under alcohol (Phase III) vs prior to exposure

(Phase II).

For the stereotypy analysis, we tested the effect of alcohol with single motif

libraries of 16-bit.WAV files (10–20 high quality randomly selected motifs that

lacked background cage noises or female calls) obtained both prior to alcohol

exposure (Phase II) and on the day of highest measured BEC for each bird in the

study (Phase III). We analyzed the first and third motifs in each song bout

separately, as previous reports suggest these differ in their degree of stereotypy

across renditions [26]. Not all birds in our study produced sufficient numbers of

bouts with greater than three motifs, so we did not examine stereotypy that
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occurred later in songs, as in [26]. To calculate % stereotypy scores for each motif,

we performed all possible pairwise comparisons of all renditions of the same

motif, with the SAP batch feature [19] and recorded the resulting means. We then

compared values obtained for each motif across experimental Phases (Table S3 in

S1 File, Motifs 1 and 3). To generate a ‘‘Within Bout’’ average % similarity score,

we next performed pairwise comparisons of the first and third motifs from all

song bouts. We then compared the resulting values across experimental Phases

(Table S3 in S1 File, ‘‘Within Bout’’).

To analyze these longitudinal data we used MANOVA and repeated measures

models, followed by post hoc clustering with principle components analysis (PCA).

We used separate MANOVAs to look for changes in any of the six response

variables when we contrasted the different experimental Phases. We calculated

zero-centered residuals of whole-motif amplitude and entropy around the mean

values of individual finches for each BEC measurement. We also tested acoustic

features measured at the syllable level with t-tests, adjusting for multiple

comparisons with a Bonferroni correction to a, followed by comparison of Phase

III values at each day to the Phase II value using Dunnett’s Method. We also tested

the effects of BEC on the (1) magnitude of the acoustic features and on (2) the

fraction of acoustic features that changed (number of acoustic features that

changed relative to the total number of features analyzed) for each syllable that

each bird produced. For the latter two comparisons we used separate general

linear models for each feature with BEC as the main effect and individual bird and

syllable nested within individual bird as random effects. Data, once extracted from

databases created with SAP, were stored and managed in Microsoft Excel and

statistical tests were performed with JMP Version 10.

Supporting Information

S1 Fig. Total fluid intake across phases of the experiment. Plotted are mean

daily fluid intake values of zebra finches under the experimental paradigm shown

in Fig. 1B. Error bars are standard errors of the means. * indicates a significant

difference.

doi:10.1371/journal.pone.0115427.s001 (TIF)

S2 Fig. The relationship between BEC following IP injections of 2 and 3 g/kg

alcohol. Symbols connected by black lines are finches and grey lines are C57 mice,

from [24].

doi:10.1371/journal.pone.0115427.s002 (TIF)

S3 Fig. Effect of BEC on mean number of song bouts per hour. Black symbols/

line show the decline in song rate of most birds in the alcohol group (p50.0084,

R250.29), while one individual (in orange) shows exceptionally high singing rates

during Phase III.

doi:10.1371/journal.pone.0115427.s003 (TIF)
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S4 Fig. Dose-relationships between BEC and syllable-level (A) amplitude and

(B) duration, and (C) entropy. The vertical axes are residual values centered

around syllable and individual bird means. Individual birds are represented by

unique colors; the traces are spline fits (l5100,000).

doi:10.1371/journal.pone.0115427.s004 (TIF)

S1 File. Combined supporting tables of alcohol effects singing parameters.

Table S1 documents statistical effects of alcohol on the amount of song, Table S2

documents statistical effects of alcohol on song acoustic features and Table S3 lists

the effect of alcohol on song stereotypy.

doi:10.1371/journal.pone.0115427.s005 (DOCX)

S2 File. Video of alcohol effects on the acoustic features of select zebra finch

syllables. Syllables include, first, the example from Fig. 9, and second, a syllable

with higher spectro-temporal complexity. Vocalizations are shown serially, first

while drinking juice and then while drinking 6.5% alcohol in juice, at normal and

reduced speeds.

doi:10.1371/journal.pone.0115427.s006 (MP4)
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