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Abstract

Background: Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the

airway epithelium in response to respiratory viruses and it is known to promote

allergic Th2 responses in asthma. This study investigated whether virally-induced

secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are

TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in

the asthmatic state.

Methods: Primary human bronchial epithelial cells (HBEC) from control (n53) and

asthmatic (n53) donors were differentiated into polarized respiratory tract

epithelium under air-liquid interface (ALI) conditions and treated apically with

dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in

human airway smooth muscle cells (HASMC) from normal (n53) and asthmatic

(n53) donors. Clinical experiments examined nasal airway secretions obtained

from asthmatic children during naturally occurring rhinovirus-induced exacerbations

(n520) vs. non-asthmatic uninfected controls (n520). Protein levels of TSLP,

CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-a and CXCL8 were determined

with a multiplex magnetic bead assay.

Results: Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated

apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure
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induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC

and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-

induced asthma exacerbations in children are associated with in vivo airway

secretion of TSLP and CCL11/eotaxin-1.

Conclusions: There are virally-induced TSLP-driven secretory immune responses

at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/

eotaxin-1 secretion in asthmatic airways. These results suggest a new model of

TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced

exacerbations.

Introduction

The conducting airway epithelium in humans is organized as a pseudostratified

columnar structure with a functional polarity and well-defined apical and

basolateral compartments [1, 2]. Using proteomic analysis we have recently

identified that this respiratory epithelial polarity is responsible for the presence of

directional (apical and basolateral) airway secretomes [1]. Directional secretion is

essential to regulate the molecular interactions between environmental challenges

(apical) and sub-epithelial structures (basolateral) [1, 2]. For instance, apical

recognition of allergens and pathogens through innate receptors (i.e. toll-like

receptors, TLRs) may determine the nature of the inflammatory response

generated in the sub-epithelial basolateral compartment [3, 4]. Understanding the

directional immune response of the bronchial epithelial barrier may provide

valuable insights about the pathogenesis of various respiratory disorders, such as

asthma, that are characterized by airway inflammation elicited by apical

environmental challenges, especially viruses [5, 6].

Respiratory viruses, the most common apical environmental challenges in

asthma [5, 6], modulate innate Th1 and Th2 immune responses in the airways via

the release of epithelial-derived cytokines [7]. Indeed, there is evidence that

double stranded (ds) RNA, a viral surrogate that activates innate pattern

recognition receptors in human bronchial epithelial cells (HBEC) [7], promotes

sub-epithelial Th2 immune responses through the secretion of the Th2 master

cytokine thymic stromal lymphopoetin (TSLP) [8]. Given that TSLP’s primary

function is to prime the differentiation of naïve T lymphocytes into Th2 cells via

activation of antigen presenting cells [9–13], this crucial molecule is now

considered the potential missing link between innate antiviral epithelial immunity

and the Th2 atopic immune response characteristic of asthma [12, 13]. The pro-

asthmatic effects of TSLP in the human asthmatic condition have been recently

highlighted by a recent clinical trial that demonstrated that the administration of

an anti-TSLP monoclonal antibody completely ablate allergen-induced bronch-

oconstriction and airway eosinophilic responses in asthmatic subjects [14].
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Notwithstanding the compelling evidence supporting the pivotal role of TSLP

in regulating the balance of antiviral Th1/allergic Th2 responses in the airways

[13, 15], we still do not know basic details about the secretory biology of this

molecule in the human airways. For instance, it is unclear whether virally-induced

secretion of TSLP is directional in nature in HBEC (apical vs. basolateral) and/or

if there are TSLP-mediated Th2 effects occurring at both sides of the bronchial

epithelial barrier. To address these fundamental questions, we first examined the

hypothesis that dsRNA stimulates bilateral (apical and basolateral) secretion of

TSLP in primary HBEC differentiated at air-liquid interface (ALI) to form a

polarized, pseudostratified epithelium. We also studied the specific effect of apical

TSLP in differentiated HBEC and the potential sub-epithelial immunomodulatory

action of TSLP in human airway smooth muscle cells (HASMC) obtained from

control and asthmatic subjects. Extended studies investigated whether TSLP

induces CCL11/eotaxin-1 in asthmatic HBEC and HASMC given the strong link

between TSLP and airway eosinophilia in asthmatics [14]. Lastly, we conducted a

clinical study in asthmatic children to examine if rhinovirus-induced asthma

exacerbations are in fact associated with in vivo airway secretion of TSLP and

CCL11/eotaxin-1. Collectively, our findings suggest a potential TSLP-driven

autocrine mechanism occurring at the apical surface of the asthmatic respiratory

epithelia that may amplify atopic responses via unidirectional (apical) secretion of

CCL11/eotaxin-1 in the lumen of the airways of asthmatic subjects during viral

respiratory infections.

Methods

Human bronchial epithelial cell (HBEC) cultures and in vitro
differentiation

Human bronchial epithelial cells (HBEC) were purchased from Lonza,

Walkersville, MD. Donors were three disease-free and non-smokers (Catalog

number CC-2540, Lonza Inc., Switzerland) and three adult asthmatic subjects

(Catalog number 194911, Lonza Inc., Switzerland). HBEC were amplified on

collagen-coated T-75 flasks as previously described [1, 16], then plated apically on

type IV collagen coated 12 well transwell plates (Fisher Scientific, Pittsburgh, PA),

grown submerged for 7–10 days until 100% confluency. Apical media was

removed and cells differentiated at air-liquid interface (ALI) to mimic a polarized

conducting airway epithelium. After 20 days at ALI, cells were gently washed 4

times with PBS apically and baso-laterally and protein-free BEBM was added to

the basal side. Confluent HBEC cells on ALI were stimulated apically under

different experimental conditions including TSLP (10ng/ml) and dsRNA analogue

(polyinosine-polycytidylic acid, poly I:C; InvivoGen San Diego, CA, USA). The

poly I:C concentration used (50 ug/ml) was established by a dose-dependent

experiment (Fig 1A). TSLP concentrations were selected based on prior studies

[17–19]. Reagents remained in contact with HBEC for different time points as

specified in the Figure Legends, after which HBEC supernatant, at the apical and
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basal secretions surface, was removed and maintained at 280 C̊ until further

analysis.

Human airway smooth muscle cell (HASMC) culture and

treatments

Human ASM cells (HASMC) were purchased from Lonza, Walkersville, MD.

Donors were three adult asthmatic subjects (Catalog number 194850, Lonza Inc.,

Switzerland) and three disease-free and non-smokers (Catalog number CC-2576,

Lonza Inc., Switzerland). HASMC were cultured in vitro as previously described

[20, 21]. Briefly, HASMC were cultured in growth medium supplemented with

10% FBS (Bio Whittaker), and maintained in an incubator containing 5% CO2 in

air at 37 C̊. After attaining ,95% confluence, the cells were starved in

Fig. 1. Double stranded (ds) RNA-induced secretion of thymic stromal lymphopoietin (TSLP) in human bronchial epithelial cells (HBEC). (A) Air-
liquid interface (ALI) differentiated HBEC stimulated in the absence (medium) or presence of increasing concentrations (10, 25, 50, 100 ug/ml) of apical
dsRNA (B) Time response of apical and basal TSLP secretion after apical administration of dsRNA (50 ug/ml) in ALI-differentiated HBEC. Data represent
the means ¡ SE of triplicate values from 3 different asthmatic (n53) and control (n53) donors. **P,0.01 (DsRNA vs. medium), #P,0.05 (DsRNA-treated
asthmatic HBEC apical vs. basal).

doi:10.1371/journal.pone.0115398.g001
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unsupplemented Ham’s F12 media for 24 hr. For all experiments cells were used

at passage 2–4. HASMC were stimulated with either TSLP (10 ng/ml R&D

Systems, Minneapolis, MN, USA) or dsRNA analogue (Poly I:C 10 ug/ml,

polyinosine-polycytidylic acid; InvivoGen San Diego, CA, USA). Concentrations

of these reagents were based on prior studies [21, 22]. After exposure to drugs and

control media, confluent HASM cells were stimulated for 0, 24 or 48 h by adding

dsRNA or TSLP to the wells. Cell supernatant was collected at the different time

points and maintained at 280 C̊ until further analysis.

Nasal washing collection and viral PCR analysis

Nasal airway secretions were collected from hospitalized children aged 2–15 years

seen in our medical center at the onset of their acute respiratory illnesses. Nasal

washings were obtained by standard nasal lavage technique using saline (3–5 ml)

and gentle suctioning of each nostril. For the rhinovirus-induced asthma

exacerbation group, patients were eligible for the study if they had all of the

following criteria: 1) history of physician-diagnosed asthma; 2) acute respiratory

symptoms such as cough or shortness of breath; 3) documented wheezing; and 4)

PCR (+) for rhinovirus. Subjects included in the control group were age-matched

(2–15 years old), non-asthmatic children without clinical wheezing or detectable

respiratory viral infection by PCR. Nasal samples were analyzed by a viral

multiplex PCR panel for 14 targets used for clinical purposes in our institution

(Luminex, TX, USA) according to the microbiology laboratory protocol. All

clinical and demographic variables were obtained by reviewing electronic medical

records at Children’s National Medical Center. The Institutional Review Board

(IRB) of Children’s National Medical Center, Washington D.C. approved the

study and granted a waiver of informed consent given that this research involved

materials (data, documents, records, or specimens) collected solely for non-

research purposes (clinical indications).

Cytokine measurements

The supernatant from HASMC and HBEC (apical and basal) experiments and

nasal washings were analyzed for protein levels of human TSLP and CCL11

(eotaxin-1). Cell supernatants were also assayed for CCL22 (macrophage-derived

chemokine [MDC]), CCL17 (TARC), TNF-alpha and CXCL8 (IL-8). Cytokine

levels were determined using a commercially available multiplex magnetic bead

immunoassay (Millipore, MA, USA) according to the manufacturers’ instructions.

Statistical analysis

Data were analyzed using Minitab 16 software package for Windows (Minitab

Inc., State College, PA, USA). All data are reported as mean +/2 standard errors

(SE), 95% confidence intervals (CI) or as fold changes relative to control values.

Data within each group (asthma and control) and between asthma and control
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groups were analyzed with two sample t-test or non-parametric Mann Whitney U

test when appropriate. For multiple comparisons one way ANOVA followed by

post- test Bonferroni correction was used. Linear regression and Pearson

correlation were used to evaluate the link between TSLP and CCL1/eotaxin-1

adjusting by covariates. A probability of ,0.05 was considered statistically

significant.

Results

DsRNA elicits a disproportionate apical secretion of TSLP in

asthmatic Human Bronchial Epithelial Cells (HBEC)

Prior studies have reported that the TLR-3 agonist, dsRNA (poly I:C) induces

TSLP secretion in submerged HBEC [8, 23]. However, the effect of dsRNA apically

administered (viral infection mimic) to HBEC differentiated at air-liquid interface

(ALI) is still unclear. An initial dose response study established that increasing

concentrations of dsRNA increased TSLP secretion in a dose dependent manner

and that 50 ug/ml was the optimal apical dsRNA dose to elicit appropriate TSLP

secretion (apical) in ALI-differentiated HBEC (Fig 1A). We then exposed

asthmatic (n53) and control (non-asthmatic, n53) HBEC to apical dsRNA (poly

I:C, 50 ug/ml) and examined apical/basal TSLP secretion at different time points

(0, 4 h, 12 h, 24 h and 48 h). As seen in Fig. 1B, there was a time-dependent

increase in TSLP protein levels in both, the apical and basal compartments, with a

maximal significant response at 24 h–48 h after treatment. There were no

significant differences between the apical vs. basal TSLP peak responses in control

HBEC (peak TSLP apical 21¡SE 3.3 pg/ml vs. peak basal TSLP 18.8¡SE 3.2 pg/

ml, p.0.05, Fig 1B). In contrast, experiments conducted in HBEC obtained from

asthmatic donors (n53) demonstrated that dsRNA elicited a greater TSLP

response in the apical vs. basolateral compartment (peak TSLP apical 39¡SE

3.2 pg/ml vs. peak basal TSLP 20.6¡SE 3.5 pg/ml, p,0.05, Fig 1B). However,

there were no significant differences in the basal secretion of TSLP observed in

control vs. asthmatic HBEC after apical dsRNA exposure (Fig 1B).

TSLP elicits apical secretion of CCL11/Eotaxin-1 in asthmatic

HBEC

There is increasing evidence linking TSLP to eosinophilic responses in the airways

[14]. To investigate if the disproportionate secretion of TSLP in the apical side

may potentially lead to secretion of the pro-eosinophilic C-C motif chemokine 11

(CCL11)/eotaxin-1, we exposed normal and asthmatic HBEC to apical TSLP

(10 ug/ml during 48 h) based on previously reported optimal concentration

[17, 19]. As shown in Fig. 2, asthmatic HBEC exhibited a unique polarized

response to TSLP with significant apical, but not basal, secretion of CCL11/

eotaxin-1 (fold increase 10.2¡SE 2.5). Apical TSLP exposure did not elicit

CCL11/eotaxin-1 secretion in HBEC from non-asthmatic donors (Fig 2). Of note,
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dsRNA did not elicit CCL11/eotaxin-1 secretion in HBEC from normal or

asthmatic donors (data not shown).

TSLP modulates the secretion of Th2-related chemokines and

other pro-inflammatory molecules in HBEC

We next investigated additional immune modulatory effects of the apical

exposure of TSLP in HBEC. Fig. 3A-B illustrates that apical TSLP (10 ug/ml

during 48 h) induced bilateral secretion (apical and basolateral) of two important

Th2-related chemokines in asthma [13], C-C motif chemokine 22 (CCL22), also

called macrophage derived chemokine (MDC), and the C-C motif ligand 17

(CCL17), well known as thymus and activation regulated chemokine (TARC).

TSLP-induced CCL22/MDC secretion was more pronounced in apical asthmatic

HBEC than in controls (Control HBEC: Baseline 83.5¡SE 4.6 pg/ml and TSLP

48 h 270.5¡SE 43.1 pg/ml, [fold increase 3.3¡SE 0.6] vs. Asthmatic HBEC:

Baseline 138.6¡SE 49.4 pg/ml and TSLP 48 h 1745¡SE 431 pg/ml, [fold increase

13.5¡SE 1.4], p ,0.01, Fig 3A). CCL17/TARC responses were comparable in

control and asthmatic HBEC both, in the apical compartment (Control HBEC:

Fig. 2. Unidirectional TSLP-induced secretion of CCL11/eotaxin-1 in HBEC. CCL11/eotaxin-1 is secreted
apically (A) but not basally (B) by ALI-differentiated HBEC treated with TSLP (apical 10 ng/ml648 h). Bars
represent means ¡ SE of triplicate values from 3 experiments done with cells from 3 controls and 3 asthmatic
donors. Results are expressed as fold increase from baseline relative to control values (medium alone).
**P,0.01, *P,0.05.

doi:10.1371/journal.pone.0115398.g002
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Baseline 2.18¡SE 0.6 pg/ml and TSLP 48 h 7.1¡SE 1.2 pg/ml, [fold increase

4.9¡SE 1.4] vs. Asthmatic HBEC: Baseline 2.04¡SE 0.4 pg/ml and TSLP 48 h

7.3¡SE 1.1 pg/ml, [fold increase 4.2¡SE 0.9], p50.4, Fig 3B) and in the basal

compartment (Control HBEC: Baseline 1.73¡SE 0.4 pg/ml and TSLP 48 h

4.9¡SE 0.9 pg/ml, [fold increase 3.2¡SE 0.5] vs. Asthmatic HBEC: Baseline

1.5¡SE 0.3 pg/ml and TSLP 48 h 4.0¡SE 0.8 pg/ml, [fold increase 3.4¡SE 0.2],

p50.6, Fig 3B). In contrast, asthmatic HBEC exhibited a polarized response to

TSLP with apical, but not basal, secretion of tumor necrosis factor (TNF) alpha

(fold increase 5.2 ¡SE 0.8, p ,0.01, Fig 3C), which was not present in the basal

secretion of asthmatic HBEC or in the apical/basal compartments of control

HBEC. Apical exposure to TSLP also induced bilateral secretion of CXCL8 (IL-8),

which was more prominent in the apical side of asthmatic HBEC (Fig 3D).

Immune modulatory role of TSLP in Human Airway Smooth

Muscle Cells (HASMC)

To examine the potential immune modulatory role of TSLP in the sub-epithelial

compartment, we next evaluated the effect of TSLP exposure in HASMC. Initial

experiments investigated whether dsRNA exposure elicits enhanced TSLP

secretion in asthmatic HASMC as a potential source of sub-epithelial TSLP in the

asthmatic state. As shown in Fig. 4A, there were time-dependent increments in

TSLP protein levels secreted by HASMC exposed to dsRNA (poly I:C, 10 ug/ml).

Maximal TSLP secretory responses were observed at 24 h–48 h in HASMC from

healthy controls (n53) vs. HASMC from asthmatic donors (n53) (Fig 4A).

Interestingly, there were no significant differences in the TSLP peak responses in

control vs. asthmatic HASMC (peak TSLP 31¡SE 4.1 pg/ml in control HASMC

vs. peak TSLP 29¡SE 3.5 pg/ml in asthmatic HASMC, p.0.05, Fig 4A). In

contrast, HASMC exhibited increased secretion of CCL11/eotaxin-1 after TSLP

exposure (10 ug/ml 48 h), which was more prominent in asthmatic vs. control

HASMC (Fig 4B, fold increase 5¡SE 0.7 in asthmatic HASMC vs. 2¡SE 0.7 in

control HASMC, p5,0.05). TSLP also induced the secretion of CXCL8 in

control and asthmatic HASMC but it did not elicit the release of Th2-related

chemokines (CCL22/MDC and CCL17/TARC) or TNF alpha in HASMC (data

not shown).

Fig. 3. Bilateral TSLP-induced secretion of Th2-related chemokines and pro-inflammatory mediators in
HBEC. CCL22/MDC (A),CCL17/TARC (B), TNF alpha (C) and CXCL8 (D) secreted by ALI-differentiated
HBEC treated with TSLP (apical 10 ng/ml648 h). Bars represent means ¡ SE of triplicate values from 3
experiments done with cells from 3 controls and 3 asthmatic donors. Results are expressed as fold increase
from baseline relative to control values (medium alone). **P,0.01, *P,0.05.

doi:10.1371/journal.pone.0115398.g003
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Airway Secretory Response of TSLP and CCL11/Eotaxin-1 in

Rhinovirus-induced Asthma Exacerbations

To investigate if the TSLP and CCL11/eotaxin-1 responses of asthmatic airways in

vitro pertain to the in vivo state, we conducted a clinical study contrasting TSLP

and CCL11/eotaxin-1 nasal airway protein levels in children with rhinovirus-

induced asthma exacerbation, defined as hospitalization of a known asthmatic

child due to active wheezing and (+) rhinovirus PCR testing (n520) vs. age-

matched, non-asthmatic controls without wheezing or detectable respiratory virus

by PCR (n520). Table 1 shows that there were no significant differences in the

baseline characteristics of enrolled subjects. Fig. 5 shows that relative to controls,

asthmatic children with rhinovirus-induced exacerbation had significantly higher

nasal protein levels of TSLP (20.9¡SE 2.8 pg/ml in asthmatics and 11.9¡SE

2 pg/ml in controls, p50.014, Fig 5A) and CCL11/eotaxin-1 (19¡SE 3.8 pg/ml in

asthmatics and 8.6¡SE 2.2 pg/ml in controls, p50.026, Fig 5B). Moreover, TSLP

levels correlated positively with elevated CCL11/eotaxin-1 levels in asthmatic

Fig. 4. Antiviral and TSLP-induced immune responses in human airway smooth muscle cells
(HASMC). (A) Time response of TSLP secretion after administration of dsRNA (10 ug/ml) in HASMC. (B)
CCL11/eotaxin-1 secreted by HASMC treated with TSLP (10 ng/ml648 h). Data represent the means ¡ SE
of triplicate values from 3 different asthmatic (n53) and control (n53) donors. Bars data expressed as fold
increase from baseline relative to control values (medium alone). **P,0.01, *P,0.05.

doi:10.1371/journal.pone.0115398.g004
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children with rhinovirus-induced wheezing (Pearson correlation of CCL11/

eotaxin-1 and TSLP50.54, p50.039, Fig 6A). Multivariate linear regression

analysis demonstrated that the link between TSLP and CCL11/eotaxin-1 is

independent of age, gender and ethnicity (adjusted p50.045, Fig 6B).

Discussion

Thymic stromal lymphopoetin (TSLP), a master Th2 cytokine that promotes

allergic responses in different cell systems [9–13], has been shown to be secreted

from submerged (undifferentiated) human bronchial epithelial cells (HBEC)

exposed to the double-stranded (ds) RNA (viral exposure mimic) [8] and in the

nasal airway of children with rhinovirus [24]. TSLP has also been associated with

the generation of airway eosinophilic responses during asthma exacerbations in

human adult subjects [14]. Interestingly, the secretory biology of TSLP in

asthmatic human airways is still largely unknown. In this study we examined the

effects of TSLP at both sides (apical/basal) of the human epithelial barrier using a

multi-scale approach that included an in vitro model of polarized, primary

differentiated HBEC at air-liquid interface (ALI), human airway smooth muscle

cells (HASMC) and clinical experiments in nasal airway secretions obtained

during naturally occurring rhinovirus-induced asthma exacerbations. Our results

Table 1. Baseline characteristics for subjects.

Group Control Asthma

N 20 20

Male, n (%) 12(60) 11(55)

Age (y), mean (SD) 6.08 (5.1) 5.84 (4.7)

Black, n (%) 8(40) 12(60)

doi:10.1371/journal.pone.0115398.t001

Fig. 5. TSLP and CCL11/Eotaxin-1 secretion during rhinovirus-induced asthma exacerbation. Nasal airway protein levels of TSLP (A), CCL11/eotaxin-
1 (B) in asthmatic children with PCR-confirmed rhinovirus and clinical wheezing (asthma; n520) vs. age-matched non-asthmatic children without clinical
wheezing or rhinovirus (control; n520).

doi:10.1371/journal.pone.0115398.g005
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identified that: 1) Apical dsRNA exposure induces bidirectional (apical/

basolateral) secretion of TSLP in HBEC; 2) Asthmatic HBEC exhibit an

exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure;

3) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in

asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC;

and 4) Rhinovirus-induced asthma exacerbations in children are associated with

in vivo airway secretion of TSLP and CCL11/eotaxin-1. These data provide new

insights about the nature of the TSLP-induced secretion of CCL11/eotaxin-1 at

both sides of the bronchial epithelial barrier and suggest a new model of bilateral

(apical and basolateral) TSLP-driven eosinophilic responses in the asthmatic

airway during viral-induced exacerbations (Fig.7).

One the most important findings of our current study is that dsRNA induces a

disproportionate amount of apical vs. basolateral TSLP secretion in ALI-

differentiated asthmatic HBEC (Fig 1). DsRNA is an intermediate product of

several RNA viruses (i.e. rhinovirus) that binds innate pattern recognition

receptors such as toll-like receptor 3 (TLR-3), retinoic acid-inducible gene (RIG)-

I, and melanoma differentiation-associated gene (MDA)-5, in a cell-type and

pathogen-specific manner [25]. In the case of rhinovirus infection, the most

common cause of asthma exacerbations at any age [26], dsRNA elicits TLR-3–

mediated antiviral responses in the bronchial epithelium through the activation of

TIR-domain-containing adapter-inducing interferon-b (TRIF) pathway [25, 27].

Importantly, submerged HBEC from asthmatic donors exhibit dysfunctional

Fig. 6. Linear correlation of TSLP and CCL11/Eotaxin-1 secretion during rhinovirus-induced asthma
exacerbation. (A) Positive linear relationship of nasal airway protein levels of TSLP and CCL11/eotaxin-1 in
subjects with rhinovirus-induced asthma exacerbation P,0.01 (r5Pearson correlation). (B) Multivariate linear
analysis demonstrates that the link between TSLP and CCL11/eotaxin-1 in subjects with rhinovirus-induced
asthma exacerbation (n520) is independent of age, gender and ethnicity. Values in boldface represent
statistical significance (p,0.05).

doi:10.1371/journal.pone.0115398.g006
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antiviral signaling in response to rhinovirus or dsRNA [25, 28], which results in

overproduction of TSLP and attenuated secretion of type I interferons relative to

control HBEC [23]. Similarly, dsRNA or rhinovirus infection enhances in vivo

TSLP release in the airways of animal models of allergic asthma [13]. Using an in

vitro model of a human asthmatic bronchial epithelium (ALI-differentiated

HBEC), we now demonstrate that dsRNA exposure leads to time-dependent

increases in unilateral (apical) TSLP secretion in asthmatic HBEC relative to

control. DsRNA induces comparable levels of TSLP basolateral secretion in

control and asthmatic ALI-differentiated HBEC. These data suggest that bilateral

(apical/sub-epithelial) TSLP secretion is part of the normal innate antiviral

immunity of the human bronchial epithelia, however, there is a distinct immune

secretory signature in asthmatic individuals, consistent on dysfunctional apical

TSLP hyper-secretion in response to dsRNA exposure. Future studies are

necessary to confirm that our observations using dsRNA as a viral surrogate are

also pertinent to infection with rhinovirus and other respiratory viruses.

TSLP is an epithelial-derived cytokine that contributes to the generation of

allergic airway inflammation in asthma [10–13]. Epithelial and sub-mucosal

bronchial samples from adult asthmatic patients contain enhanced TSLP mRNA

expression [29], and bronchoalveolar lavage samples from these patients have

higher concentrations of TSLP protein compared with those seen in healthy

control subjects [29]. Furthermore, selective inhibition of TSLP prevents allergic

airway inflammation in animal models of asthma [30] and completely ablates

allergen-induced bronchoconstriction and airway eosinophilia in asthmatic

subjects [14]. These later findings suggest a direct mechanistic link between TSLP

and eosinophilic responses in the lung. In overall agreement with this notion, we

identified that asthmatic HBEC exposed to TSLP leads to unidirectional (apical)

secretion of CCL11/eotaxin-1 (Fig 2). CCL11/Eotaxin-1 is a Th2-related

chemokine that activates the chemokine (C-C motif) receptor 3 (CCR3), a G

protein coupled receptor that is essential for pulmonary eosinophil recruitment

Fig. 7. Model of TSLP-induced eosinophilic responses in the asthmatic airways during viral-induced
exacerbations. After activation of airway antiviral immunity the asthmatic bronchial epithelium exhibit
prominent secretion of TSLP in the apical compartment, which may amplify Th2 luminal responses (apical
secretion) via secretion of CCL11/eotaxin-1. Sub-epithelial Th2 responses maybe further augmented by the
TSLP-induced secretion of CCL11/eotaxin-1 by the underlying airway smooth muscle.

doi:10.1371/journal.pone.0115398.g007
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and the development of airway hyper-reactivity (AHR) in animal models [31].

CCL11/eotaxin-1 and CCR3 are co-localized in the bronchial mucosa of asthmatic

patients and the intensity of their expression correlates with increased AHR [32].

Our current experiments in ALI-differentiated HBEC now suggest that TSLP-

mediated induction of CCL11/eotaxin-1 in the apical compartment of the

bronchial epithelia may lead to selective eosinophil accumulation in the lumen of

the airways, a classical feature of the human asthmatic condition, particularly in

severe cases [33].

Although TSLP and CCL11/eotaxin-1 play a critical role in the pathogenesis of

asthma, it is noteworthy that TSLP alone was not enough to induce CCL11/

eotaxin-1 in control HBEC. The latter indicates that there are intrinsic molecular

differences between control and asthmatic HBEC that are collectively necessary for

the development of the asthmatic condition. This concept is supported by

genome-wide expression analysis of baseline and rhinovirus-infected HBEC from

normal and asthmatic donors that have identified a unique transcriptomic pattern

at baseline and during rhinovirus infection. [34] Complementing these genome-

based observations, functional analysis of asthmatic HBEC have also identified

dysregulated innate immune responses [3, 23] and abnormal repair mechanisms

that promote airway remodeling [16], both of which are considered critical

drivers of the asthmatic phenotype. Another important consideration in regard to

the pro-asthmatic effect of TSLP in the airways is that in our airway epithelial

model dsRNA did not elicit CCL11/eotaxin-1 secretion. The latter suggests that

dsRNA-induced endogenous TSLP is not necessarily active under in vitro

conditions. These findings are in agreement with the recent notion that there is a

complex regulation of TSLP bioavailability in epithelial tissues. Indeed, TSLP

protein is post-translationally activated by endogenous proteases in nasal polipoid

tissue [35] and in the skin [36]. Notably, Briot et al. have recently reported that

there is a biological cascade elicited by Kallikrein 5 (KLK5) that is crucial for the

bioactivity of TSLP in the epidermis and so may play a role in the pathogenesis of

atopic dermatitis [36]. Although the mechanisms that determine local activation

of TSLP in the airways still need to be elucidated, our in vitro results suggest that

there might be additional factors that determine TSLP activity in the in vivo

microenvironment of the human airway epithelium.

Extended in vitro experiments identified that TSLP also induces unidirectional

(apical) secretion of TNF-alpha in asthmatic HBEC (Fig 3). Since TNF-alpha

heightens the development of airway TSLP/Th2 pro-asthmatic responses after

dsRNA exposure [37], our findings suggests that TNF-alpha may amplify the

potential effect of TSLP in viral-induced asthma exacerbations. Further

supporting this concept is the recent evidence that TNF-alpha induces TSLP

secretion in differentiated HBEC [28, 38], which has been previously described in

different cell systems [39]. More studies are needed to investigate if the complex

regulatory interplay between TNF-alpha and TSLP is dysregulated in the

asthmatic condition, as suggested by our current results. In addition to CCL11/

eotaixn-1 and TNF-alpha, HBEC exposed to TSLP induced the secretion of

CCL22/MDC and CCL17/TARC, two CCR4-ligands that are considered critical
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Th2-related chemokines in asthma exacerbations [40]. CCL22/MDC and CCL17/

TARC were secreted bilaterally (apical/basal) in control and asthmatic HBEC,

although asthmatic donors showed higher CCL22/MDC apical responses (Fig 3).

Collectively, these results suggest that virally-induced TSLP apical secretion

modulate the immune secretory phenotype in asthma, characterized by the

production of Th2-related chemokines in the bronchial epithelium during acute

exacerbations [40].

Our study found that cytokines and chemokines are produced differentially in

apical and basal sides of the human bronchial epithelium, which is in agreement

with our prior proteomic analysis that identified directional (apical and basal)

airway secretomes [1]. In this context, it is important to mention that although it

is not fully understood why cytokine/chemokine production shows specific apical/

basal patterns in the human bronchial epithelium, it is possible that these

directional secretory patterns are due to intrinsic differences in the molecular

phenotype and biology of the airway basal epithelial cells [41]. In support of this

notion is the work of Hackett and colleagues [41] that recently identified the

‘‘human airway basal cell signature’’ consistent on 1,161 unique genes with .5-

fold higher expression level in basal cells compared to differentiated epithelium.

The physiological role of these differences is illustrated by the hierarchical

mapping of Gene Ontology categories enriched in the human basal cell

transcriptome [41] and basal vs. apical secretomes [1], which suggested clear

differences in the predicted functional and cell-to-cell attributes of apical and

basal compartments. Futures studies are needed to investigate if human airway

basal cells exhibit differential secretion of cytokines/chemokines (i.e TSLP and

CCL11) and if this immune responses are abnormally regulated in the asthmatic

condition.

In concert with effects in the bronchial epithelium, TSLP also directly targets

the sub-epithelial human airway smooth muscle cells (HASMC) via activation of

the TSLP receptor-(R), which has constitutive and inducible expression in this

airway cell type [42, 43]. Importantly, TSLP expression is increased in the

bronchial airway smooth muscle bundles of asthmatics [42, 43], suggesting that

TSLP may exert sub-epithelial autocrine/paracrine roles [43]. In our current work

we identified that dsRNA elicit time-dependent secretion of TSLP in HASMC, but

that this immune response is not different in asthmatic vs. control preparations

(Fig 4A]. Given that TSLP-R activation in HASMC also elicits the release of pro-

inflammatory mediators such as CCL11/eotaxin-1 [22], we compared immune

secretory responsiveness to TSLP in control vs. asthmatic HASMC. Akin to the

apical secretory response seen in asthmatic HBEC, asthmatic HASMC exhibited

enhanced TSLP-induced secretion of CCL11/eotaxin-1 relative to controls

(Fig 4B). These data indicated that asthmatic airways have a dysregulated hyper-

responsiveness to TSLP that potentially leads to augmented CCL11/eotaxin-1

secretion at both sides of the bronchial epithelial barrier (Fig 7). In this model, the

sub-epithelial TSLP/CCL11/eotaxin-1 responses of the asthmatic bronchial

smooth muscle might underlie the presence of airway wall eosinophilc
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infilitration, one of the most striking features in the pathology of severe asthma

[44].

To investigate the clinical relevance of the proposed model of TSLP-driven

eosinophilic responses via CCL11/eotaxin-1 secretion in the asthmatic airways, we

conducted a clinical study to see if virally-induced asthma exacerbations are

associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. In this

‘‘proof of concept’’ cross-sectional study we collected nasal secretions of asthmatic

children with acute rhinovirus-induced wheezing leading to hospitalization (viral-

induced asthma exacerbation) and compared them with age-matched, non-

asthmatic children without wheezing or detectable virus (control). We identified

that TSLP and CCL11/eotaxin-1 levels were not only significantly elevated in the

group with rhinovirus-induced asthma exacerbation (Fig 5), but that their levels

had a linear correlation independently of age, gender and ethnicity (Fig 6). It is

important to emphasize that in our study the control group only included non-

asthmatic children without RV. Accordingly, based on our current findings we

cannot conclude that RV-induced TSLP secretion is specifically present in

asthmatic subjects. Longitudinal studies that include a control group of non-

asthmatic subjects are still needed to clarify this important point. Nonetheless, our

current results support the novel concept that there is apical (luminal) TSLP-

induced secretion of CCL11/eotaxin-1 in the asthmatic airways. CCL11/eotaxin-1

could play a key role in mediating the pro-asthmatic effects of TSLP in the airways

of asthmatic individuals facilitating recruitment and survival of eosinophils in the

apical side of the bronchial epithelial barrier. The clinical relevance of this process

is that eosinophilic airway inflammation has been linked to increased asthma

severity [33]. Moreover, CCL11/eotaxin-1 levels in bronchoalveolar lavage fluid

(BALF), exhaled breath condensate (EBC) and sputum are being investigated as

potential biomarkers for the asthmatic condition [45]. Based on our current

findings it is possible that a combination of TSLP/CCL11/eotaxin-1 can serve as a

better marker of the TSLP-driven eosinophilic airway pro-asthmatic responses,

and perhaps it might provide useful information for risk stratification and

evaluation of treatment strategies for viral-induced asthma exacerbations.

In summary, this study is the first to identify intrinsic differences in the

directional secretion of TSLP and CCL11/eotaxin-1 between normal and

asthmatic differentiated airway epithelium. It is also the first to evaluate TSLP/

CCL11/eotaxin-1 responses in asthmatic airway smooth muscle, a sub-epithelial

tissue implicated in the pathologic bronchoconstrictive response seen in the

asthmatics during viral respiratory illnesses. In addition, we provide new evidence

of the in parallel airway secretion of TSLP/CCL11/eotaxin-1 during rhinovirus-

induced asthma exacerbations in children. Our findings set the stage for future

mechanistic studies to define the role of TSLP/CCL11/eotaxin-1 in virally

mediated Th2 immune responses, as well as potential therapeutic studies designed

to detect and attenuate virally induced changes in the bronchial epithelium and

airway smooth muscle of asthmatic individuals.
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