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Abstract

In this paper, we propose an approach for modeling and analysis of a number of
phenomena of collective behavior. By collectives we mean multi-agent systems that
transition from one state to another at discrete moments of time. The behavior of a
member of a collective (agent) is called conforming if the opinion of this agent at
current time moment conforms to the opinion of some other agents at the previous
time moment. We presume that at each moment of time every agent makes a
decision by choosing from the set {0,1} (where 1-decision corresponds to
action and 0-decision corresponds to inaction). In our approach we model
collective behavior with synchronous Boolean networks. We presume that in
a network there can be agents that act at every moment of time. Such
agents are called instigators. Also there can be agents that never act. Such
agents are called loyalists. Agents that are neither instigators nor loyalists
are called simple agents. We study two combinatorial problems. The first
problem is to find a disposition of instigators that in several time moments
transforms a network from a state where the majority of simple agents are
inactive to a state with the majority of active agents. The second problem is
to find a disposition of loyalists that returns the network to a state with the
majority of inactive agents. Similar problems are studied for networks in
which simple agents demonstrate the contrary to conforming behavior that
we call anticonforming. We obtained several theoretical results regarding
the behavior of collectives of agents with conforming or anticonforming
behavior. In computational experiments we solved the described problems
for randomly generated networks with several hundred vertices. We
reduced corresponding combinatorial problems to the Boolean satisfiability
problem (SAT) and used modern SAT solvers to solve the instances
obtained.
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Introduction

In recent years the interest to the analysis of various phenomena of collective
behavior has significantly increased. It can be explained by the fact that in almost
all areas of human activity there are processes involving information exchange
inside collectives. Such processes deeply affect the future behavior of a collective
and can lead to positive or negative consequences not only for the collective
considered but also for a much larger social formation. For example an intensive
sale of shares on the stock exchange market by players that have a big influence on
others can lead to a drastic drop of global economic indexes. Riots and
revolutionary situations proceed in a similar fashion when a relatively small group
of instigators activates such a large number of people that state security systems
are not able to cope with it.

The active development of social networking services in later years greatly
increased the possibilities in collective behavior manipulation. This thesis can be
proved by analyzing such revolutionary phenomena as Arab Spring, 2011-13
Russian protests, Euromaidan etc. In the majority of these cases the corresponding
actions were planned via social networks. It is worth mentioning that such
processes are usually coordinated by small groups of designated activists.

The modeling of collective behavior was studied in a large number of papers.
Following many other authors we base our work on the paper of M. Granovetter
[1], in which threshold models of collective behavior were studied. The threshold
behavior means that a state of every member of a group (agent) changes only
when the value of a special function, that is associated with this agent, reaches
some threshold. The simplest example of such behavior is following the decision
of the majority. In Granovetter’s model the network connecting the agents is
specified by a complete graph — every agent takes into account the opinion of
every other agent. In many real situations such approach cannot be used. For
example, in real world social networks an agent usually bases its opinion on that
of agents from some neighborhood. In this case the opinion of agents outside of
such neighborhood would have no impact on the opinion of the agent considered.
Similar situations can be observed in genetics: in many gene networks the amount
of genes that directly affect each particular gene is small relative to the total
number of genes in the network.

Similarities of dynamical processes that can be observed in gene networks and
social networks led us to an idea to introduce and analyze models of collective
behavior that are based on Boolean networks. The apparatus of Boolean networks
have been used in mathematical biology for 50 years. Below we consider the so
called synchronous Boolean networks (SBNs) first introduced by S. Kauffman in
[2] with the purpose of analyzing dynamical properties of gene networks. In our
approach we consider a collective as an SBN with special functions associated with
the network vertices. From our point of view the language of Boolean networks is
well suited for explaining a number of phenomena of collective behavior. For
example, equilibrium states from [1] can be viewed as fixed points of a discrete
function specified by the corresponding SBN. Another important feature of such
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models is that to solve combinatorial problems that arise during the analysis of
SBN, it is possible to use modern methods of solving large systems of Boolean
equations. For this purpose in our paper we use algorithms for solving the
Boolean satisfiability problem (SAT).

Let us present a brief outline of the paper. First we describe SBNs and define
fixed points and cycles of discrete functions determined by these networks. Then
we introduce two models of collective behavior that are based on SBNs. In the first
model we consider a situation when each network agent at the next moment of
time makes a decision to act if at least a specific amount of agents in its
neighborhood are currently active. Otherwise the agent decides not to act. This
form of collective behavior is usually referred to as conformity. The second model
is used to illustrate the phenomenon of anticonformity - an agent decides not to
act if at the present moment at least a specific amount of its neighbors decide to
act and vice versa. After this, we extend the models proposed by introducing two
special types of agents: instigators and loyalists. Instigators are the agents that
always act regardless of other agents decisions. Loyalists are the agents that never
act. For the extended models we formulate the following combinatorial problem:
for a network with the majority of inactive agents to find such a disposition of
small amount of instigators, that after several moments of time the majority of
agents in this network becomes active. An opposite problem is also considered: for
a previously activated network (with instigators) to find a disposition of a
relatively small number of loyalists, such that after several moments of time the
majority of agents becomes inactive. In the context of problems considered we
state a number of theoretical properties of discrete functions defined by the
corresponding SBNs. Then we note that modern combinatorial algorithms can be
used to solve such problems. In particular, we use algorithms for solving SAT.
Further we describe our computational experiments and discuss the results
obtained. In these experiments we constructed SBNs according to widely known
models of random graphs (Gilbert-Erdos-Renyi model, Watts-Strogatz model,
Barabasi-Albert model). Using modern SAT solvers we managed to solve
combinatorial problems outlined above for corresponding networks with 500
vertices and more. In the conclusion we give some final remarks and outline our
future plans.

Related Works

As we already noted, the paper [1] is the fundamental work in the field of
threshold models of collective behavior. In a number of later works, for example
[3-5], the ideas from [1] were detailed and applied to analysis of various
sociological situations.

In [6-9] and others it was shown that various phenomena of collective behavior
may be studied from the game theory point of view. In particular, equilibrium
states [1] in collectives can be considered as Nash equilibria. In this context we
would like to mention the work [7] in which the conformity and anticonformity
were considered from the game theory positions.
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In the paper [10] the influence of thresholds distributions on the genesis and
development of several phenomena (in particular, the so called bandwagon effect)
in the networks with arbitrary structure is analyzed.

As we said above, synchronous Boolean networks were introduced by S.
Kauffman in [2]. In that paper problems of analysis of fixed points and cycles of
corresponding discrete functions were considered as important and helpful for the
study of dynamics of real gene networks. Apparently, [11] is the first example of
application of combinatorial algorithms to the search for cycles of discrete
functions specified by Kauffman networks. Later the same authors used the SAT
approach for similar purposes [12]. In [13] we considered the problem of search
for fixed points of discrete functions specified by networks, in which vertex weight
functions take natural values and at the same time act as threshold functions. In
order to solve the corresponding problems, we used both SAT and ROBDD
approaches. Also in [13] we studied an opposite problem: given fixed points of the
function specified by some network, to restore the structure of the network.

In recent years there were published a lot of works about the analysis of
structure of big networks and processes that can occur in them. Works [14] and
[15] are quite complete reviews of relevant topics.

Models

Synchronous Boolean Networks

A Synchronous Boolean Network (SBN) is defined as a directed graph in which
with each vertex there is associated a total function that takes values from {0,1} at
discrete moments of time. Hereinafter we will refer to such functions as vertex
weight functions. The value of a weight function for an arbitrary vertex v at
moment £+ 1 is calculated based on the values of weight functions of some set of
network vertices at moment f. In SBNs values of all weight functions are updated
simultaneously (synchronously). Note that the weight functions can be specified
in various ways: by truth tables, Boolean formulas or predicates. Values of weight
functions of all vertices at an arbitrary moment ¢, ¢t >1 can be considered as a
result of computing a value of a discrete function that takes a Boolean vector of
length # as input and outputs a Boolean vector of length 7, where 7 is the number
of vertices in the network. We denote a Boolean vector consisting of weight
functions values at moment ¢ as W(t) and call it a network state at moment t. We
will refer to W(0) as an initial network state. It is clear that an arbitrary SBN with n
vertices has 2" different network states.

Thus, more formally, let us assume that G is a directed graph with n vertices
that represents some SBN. Below we will consider only graphs without loops and
without multiple arcs. For convenience let us mark vertices by natural numbers
from 1 to n. With an arbitrary vertex v;, i€{1,...,n} we associate a weight
function f,,(¢), whose values are defined at discrete moments of time
t€{0,1,2,...}. We assume that at t =0 each weight function has some initial value.
By V; we denote such a set of network vertices that for each v;eV;, v #v; the graph
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G has an arc (vj,0;). Essentially it means that V; contains vertices that directly affect
v;. We also call V; a neighborhood of v;.

From here on by {0,1}" we mean the set of all possible binary words of length
n. The rules that specify each weight function f,,, i€{1, ...,n} are the same at any
moment of time. It means that in total these functions specify a vector function
that is defined everywhere in {0,1}" and takes values from {0,1}". We denote this
function as Fg : {0,1}"—{0,1}" and refer to it as a discrete function defined by
network G. The transitions between network states, represented by Boolean vectors
from {0,1}", can be naturally illustrated using special graphs called State
Transition Graphs (STGs). We denote the STG of network G as I'. An example of
a simple SBN with 3 vertices where weight functions are specified by Boolean
formulas is displayed in Fig. 1.

As we already noted, the amount of different states of an arbitrary SBN with n
vertices is 2", and the rules, according to which the network transitions from one
state into another, do not depend on ¢. Therefore, regardless of the network state
at moment t =0, there are such k and [, 0 <k <, that W(k)= W(I). In this
situation we call the sequence of transitions W(k)— ... —»>W(I) a cycle of length
I—k [2]. In some works on the analysis of dynamical properties of gene networks
the cycles are called "attractors". The cycle of length 1 is called a fixed point of
function Fg. For the network in Fig. 1 it is easy to see that (000)—(000) is a fixed
point, while a sequence (100)—(001)—(100) forms a cycle of length 2. Note that
the neighborhood of every vertex of the network in Fig. 1 is formed by other two
vertices.

Models of Collective Behavior Based on Synchronous Boolean
Networks

In this section we introduce and analyze two phenomena of collective behavior
that can be observed in the real world. The first one is conforming behavior. It
means that an agent agrees with the opinion of some agents from its
neighborhood. It is easy to find many examples of conformity in real life: from
riots and financial crises mentioned above to presidential elections, etc. The
second phenomenon we study is anticonforming behavior. The agent demon-
strating anticonforming behavior acts as an opposite to an agent with conforming
behavior: it chooses not to act while certain amount of agents from its
neighborhood are active and vice versa.

Let us consider an SBN G with #n vertices interpreting agents. We will say that
an arbitrary agent v;, i€{1,...,n} is active (inactive) at moment t if f, (t)=1
(f,,(t) =0, respectively). We assume that an arbitrary agent v; is associated with the
weight function of one of the following two types:

Y ﬂj(t)ZQi-|Vi|
UjEVi

0, > fu,()<0:| Vil
vjeV-

ﬁ)i(t+l)= (1)
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G v Jor(t+1) = fu, (1) V fu,(t)
fvz(t+ 1) = fvl(t) /\fUS(t)
fos(E+1) = fo, (8) © fu, (t)

U3 U2

(O(@ (001)—(190)—{(091)

(011)—(101)—(111)—(110)

Ta

Fig. 1. An example of a Kauffman network and its State Transition Graph. The left part shows a simple
Kauffman network with 3 vertices. Weight functions are specified by Boolean formulas in the right upper part
of the figure. The lower right part demonstrates the state transition graph (STG) for the discrete function
specified by this network. It contains one cycle of length 2 and one fixed point.

doi:10.1371/journal.pone.0115156.9001

0, ¥ f0= Vi

z)jEVi

Uj i

fut+1)=

where 0,,(;€[0,1] are called conformity threshold and anticonformity treshold,
respectively.

Essentially, (1) means that the agent v; becomes active at moment t+ 1 only if
at least [ 0;-|V; | agents from its neighborhood are active at moment ¢. Otherwise v;
becomes inactive at moment f+ 1. Hereinafter we refer to such agents as
conformists. Likewise (2) means that v; becomes inactive at moment ¢+ 1 if at least
[{;:]Vi]] agents from its neighborhood are active at moment ¢ and becomes active
otherwise. These agents will be refered to as anticonformists. Values ®;=[0;-|V;| ]
and Z;=[{;-|Vi|'| we will call conformity level and anticonformity level, respectively.
Further we assume that if V;= 0 then the sum of corresponding weights is 0.

Let v; be a conformist with the conformity threshold 0; =0 and £,,(0)=1. Then
it is clear that f,,(t)=1, i.e. that f,(¢) takes the value of 1 at any moment ¢. It
means that agent v; is active at any moment regardless of decisions of agents in its
neighborhood. We will refer to such agents as instigators.

Now let v; be an anticonformist with anticonformity threshold {;=0 and
£,,(0)=0. Following the similar reasoning we can conclude that such agent is
inactive at any moment of time regardless of decisions of agents from its
neighborhood. We call such agents loyalists.

To an arbitrary agent that is neither instigator nor loyalist we will refer as a
simple agent. Thus an arbitrary simple agent v; is either a conformist with 0; >0 or
an anticonformist with {;>0.

In Fig. 2 we demonstrate the notation that we use below.
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Inactive simple agent
My

Active simple agent

Conformity level

Fig. 2. Example of an SBN representing a collective with conforming behavior. This figure shows a network with different types of vertices. Each vertex
represents a member of a collective (an agent). Crimson vertices correspond to instigators — agents that are always active. Bright green vertices represent
loyalists — agents that are always inactive. The vertex corresponding to simple agent is marked with orange if the agent is active and with blue otherwise.
The arcs going from active agents (including instigators) are marked with red. The arcs going from inactive agents (including loyalists) are marked with
green. Each simple agent has a conformity level.

doi:10.1371/journal.pone.0115156.9002

The networks with described types of agents can often be observed in real life.
Indeed, for example one can notice that on the early stage of every revolutionary
situation there are instigators. Their purpose is to activate as many initially
inactive simple agents-conformists as possible. Once they become active,
conformists help activating other inactive agents-conformists in the following
moments of time. This process gradually involves even agents that are not directly
connected to instigators. The goal of loyalists in such situations is to launch the
deactivation process aimed at making active simple agents inactive.

It should be noted that the disposition of instigators and loyalists in the
network can significantly affect the activation/deactivation of the network. In
Fig. 3 we display the behavior of the same network with two different dispositions
of instigators at the initial time moment. The considered network does not have
loyalists and all its simple agents are conformists. We assume that at the initial
moment all the simple agents are inactive (i.e. for every simple agent f£,,(0)=0). In
the first case 5 instigators after 5 moments of time manage to activate only 17
simple agents. In the second case 3 instigators after 5 moments of time activate
almost the whole network — 26 simple agents. An important detail here is that in
the first case there is more instigators but their disposition is worse.

Further we establish a number of theoretical results regarding the dynamical
properties of SBNs with agents of the described types. The main achievement here
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The behavior of the network with 30 vertices under the influence of two different dispositions of instigators.

Disposition 1 (5 instigators) Disposition 2 (3 instigators)

RN

A fp 12 ASttgp 2 18
ctive : AN ctive :
Inactive : 18 ke Inactive : 12

b :
)
AL

PN X / N
N 758X T ’ Wi K 7
2 .\ A \(a" Pra A N
O o

Active : 18 7 2 0
Inactive : 12 S Inactive : 8 O

4 Step 4 C 4 4 Step5
“ Active:24 o7 A Active: 29
Inactive : 6 o= Inactive : 1

N

Fig. 3. The behavioral dynamics of the network under the influence of two different dispositions of instigators. In the initial state all simple agents
are inactive. In the first case (left part of the figure), 5 instigators after 5 steps activate 17 simple agents. In the second case (right part of the figure) 3
instigators after 5 steps activate 26 simple agents.

doi:10.1371/journal.pone.0115156.9003

consists in the justification of the fact that the networks in which all simple agents
are conformists and networks where all simple agents are anticonformists can
demonstrate significantly different activation/deactivation dynamics.

Conforming Behavior

Consider an arbitrary SBN G with n agents. We assume that all the simple agents
in the network are conformists and that there can be instigators and loyalists.
Hereinafter we study two problems that we believe to be interesting from the
practical point of view.

In the context of the first problem (to which we will refer below as Problem 1)
we consider a network with n agents among which there can be I, I <# instigators,
while all the other n—1I agents are simple agents-conformists. We assume that a
priori I instigators can be arbitrarily placed in the network. Also we assume that at
the initial time moment ¢ =0 all the simple agents are inactive. The goal is to find
such disposition of instigators that starting from t =0 the network after some time
moments transitions to the state with the majority of active agents.

PLOS ONE | DOI:10.1371/journal.pone.0115156 December 19, 2014 81/28
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The second problem (to which we will refer below as Problem 2) consists in the
following: we consider the network with a fixed disposition of I, I <n instigators
and all the other n—1I simple agents-conformists are active at the initial moment
t=0. We assume that it is possible to replace L, L <n—1I arbitrary simple agents
by loyalists. We need to find such disposition of these loyalists that starting from
t=0 the network after some time moments transitions to the state with the
majority of inactive simple agents.

Let us show that the following theorem holds.

Theorem 1

Consider an arbitrary SBN with n agents among which there are I, I <n instigators
and the remaining n—1I simple agents are conformists. We assume that at the initial
time moment t =0 all n—1I simple agents are inactive. Then for any disposition of
instigators and any conformity thresholds of simple agents the network starting from
t=0 will transition to a fixed point after T <n—1I time moments.

Proof
Assume that G is an SBN with » vertices, weight functions (1), an arbitrary
disposition of I instigators and arbitrary conformity thresholds of simple agents.
Suppose that all simple agents are inactive at t =0. If after the transition from t=0
to =1 none of simple agents have changed their decisions (0— 1) then we have a
fixed point (since instigators do not change their decisions by definition). Now
suppose that at moment ¢ =1 some simple agents have changed their decisions
from 0 to 1. Let v be one of them. It means that v has changed its decision from 0
to 1 only because it had enough (relative to its conformity threshold) instigators
in its neighborhood. But since instigators are always active then the number of
active agents in the neighborhood of v at any £>1 can not be less than that at
t=0. Therefore this agent will not change its decision 1 at any of the following
moments of time. If at moment t=2 none of simple agents have changed their
decisions then we have a fixed point. Suppose v is an arbitrary agent that has
changed its decision during the transition from t=1 to t=2. From the above it
follows that v changed decision from 0 to 1. It could have occured only because it
had enough (relative to its conformity threshold) instigators and active agents in
its neighborhood. However all agents that have become active at t=1 cannot
change their decisions at the following moments of time. Therefore agent v will
remain active at all £ >2. If we continue by analogy we can conclude that not later
than after n—I time moments our network will reach a fixed point. B

Using the reasoning technique from the proof of Theorem 1 it is easy to prove
the following corollary.

Corollary 1

Consider an arbitrary SBN with n agents among which there are I, I <n instigators
and the remaining n—I simple agents are conformists. Assume that some disposition
of instigators is fixed and all simple agents are active at the initial time moment t =0.
Also assume that we can replace any L, L<n—1 simple agents by loyalists. Then for
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any disposition of these L loyalists and any conformity thresholds of remaining
n—1I—L simple agents the network starting from t =0 will transition to a fixed point
after T<n—I—L time moments.

Note that the Theorem 1 despite its simplicity makes it possible to explain the
situations when a relatively small number of instigators thanks to their
advantageous disposition manage to activate quite a big network quickly.
Apparently, the development of revolutionary situations, epidemics and critical
processes in stock markets proceed in the similar fashion.

The principal possibility of the phenomenon when a small number of
instigators can activate the network starting from the state in which all simple
agents-conformists are inactive means that the network itself is vulnerable to
instigators. Intuitively it is clear that such networks can be activated by instigators
even faster if some simple agents are already active at the initial time moment.
This thesis is proved by the following theorem.

Theorem 2

Assume So(I) is a state of an SBN with n vertices with weight functions (1) and I,
I < n instigators, in which all simple agents-conformists are inactive. Denote by S(I) a
network state, with the same disposition of instigators as in So(I), in which there is at
least one active simple agent. By Wo(T) and W(T) we denote states reached by the
network after T time moments starting from So(I) and S(I), respectively. Then for any
TeN

wt(Wo(T)) <wt(W(T)),

where wt(x) stands for a Hamming weight of a Boolean vector x.

Proof
Consider a state So(I) in which all simple agents are inactive and a state S(I) where
some k, k>1 simple agents are active. Denote these active agents as ay, . .. ,ar. We

assume that the disposition of I instigators is the same in both Sy(I) and S(I). First
let us prove that wt(Wy(1)) <wt(W(1)). Let us analyze all possible cases. First,
both Sy(I) and S(I) can be fixed points of Fg. In this case the property holds. If
So(I) is a fixed point and S(I) is not, then even if all agents ay, ... ,ar become
inactive in W(1) it holds that wt(Wy(1)) <wt(W(1)). Now suppose that Sy(I) is
not a fixed point, i.e. some simple agents in Wy(1) become active. It can only
occur if they have enough instigators in their neighborhoods (relative to their
conformity thresholds). But it means that the same simple agents will be active in
W(1). Additionally some (possibly all) agents from ay, .. .,a; can become inactive
or remain active in W(1). Also in W(1) there can appear other active simple
agents because ay, ... ,aq; are active in S(I). In any case we have

wt(Wo(1)) <wt(W(1)). Since So(I) is not a fixed point of Fg then some simple
agents in Wy(1) become active. Denote these agents as by, . . .,b;. From Theorem 1
it follows that these agents cannot become inactive in any of states
Wo(1),Wo(2), . ... Consider an arbitrary agent b;, ie{1,...,s} and let V}, be its
neighborhood. From the above the number of active agents in Vj, in states
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W(1),W(2),... is not less than that in V}, in the state So(I). Therefore by, ... ,b;
will be active in all states W(r), r>1. It means that Wy(1) and W(1) can be
considered as initial states of the network with a set of I+ s instigators: this set is
formed by I original instigators and s new instigators by, . ..,bs. After that by
analogy we can show that wt(Wy(2)) <wt(W(2)), etc. B

Anticonforming Behavior
Consider an arbitrary SBN G with n agents. We assume that all simple agents in G
are anticonformists and also that the network can contain instigators and loyalists.
On the first glance it may seem that the dynamical processes we studied for the
collectives of conformists should have some simple analogues in the collectives of
anticonformists. However, more thorough investigation reveals that this is not the
case. In particular, assume that G is a network in which any agent v; has a
nonempty neighborhood (V;# f). Also let this network contain neither
instigators nor loyalists. Then it is easy to see that if all the agents in the network
are conformists (with non-zero conformity thresholds), then the states 0" and 1"
are fixed points. However, if all the agents are anticonformists (with non-zero
anticonformity thresholds) then there is the cycle of length 2: 0" —1"—0". Indeed,
let G be the network for which all listed conditions are satisfied, all its simple
agents are anticonformists and they are inactive at moment t=0. Let v; be an
arbitrary agent of the network and V; be its neighborhood. Since V;# 0 (by
assumption), then at t =0 all the agents from V; have the 0 state. Therefore for any

value of {>0 we have: ) f,(0)<{:|Vi|, so at moment ¢t =1 the agent v; will
D]E‘/,'

switch its state to 1. Since v; is an arbitrary network agent, it means that at
moment ¢ =1 every agent of the network will switch to the state 1. Now let us
consider what occurs at moment ¢ =2. Let v; be an arbitrary agent-anticonformist.
Then at moment ¢t =1 all the agents in V; are in the state 1. It means that for any
0<{<1 the following holds:  f,(1)>{:|Vi|. In this situation at moment ¢ =2

v;eV;

the agent v; switches to the state 0. But since v; is an arbitrary agent, then all the
network agents switch to 0 at ¢t =2. Therefore we have the cycle 0" —1"—0".

The following theorem describes the dynamics of collectives of anticonformists
with the initial conditions similar to that in Theorem 1. It can be noted that in this
situation, generally speaking, the collective of anticonformists has more complex
behavior than that of the collective of conformists. In particular, if the network of
anticonformists starts from an initial state in which all simple agents-antic-
onformists are inactive, then it may not reach an equilibrium state (a fixed point).

Theorem 3

Consider an arbitrary SBN with n agents, where I, I <n agents are instigators and
the remaining n—1I simple agents are anticonformists. Assume that at the initial
moment t =0 all n—I simple agents are inactive. Additionally we assume that if v; is
a simple agent then V;# . Then for any disposition of instigators and any
anticonformity thresholds of simple agents the network starting from t=0 after
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T <n—1I time moments will either transition to a fixed point or will enter the cycle of
length 2.

Proof
Let G be an SBN with n vertices, weight functions (2), an arbitrary disposition of I
instigators and arbitrary anticonformity thresholds of simple agents. Also we
assume that all simple agents have nonempty neighborhoods. Below we denote
the set of all vertices of G as V. Let Sy(I) be an initial state of a network with an
arbitrary disposition of I instigators and with inactive simple agents. Let Wy(1) be
the state to which the network transitions from Sy(I) at moment ¢t =1. If in Wy (1)
none of simple agents have changed their decisions (from 0 to 1) then we have a
fixed point. Suppose that m=n—1I, m>0 and r, 0 <r <m simple agents have
switched from 0 to 1. If r=m, i.e. all simple agents have switched, then with the
transition from Wy (1) to Wy(2) all these agents will switch back from 1 to 0 since
in Wy(1) each of them has a neighborhood consisting only of active agents.
Therefore in this case we have the following cycle of length 2:
So(I)—= Wo(1)—So(I). Now suppose that r <m. Consider g=m—r, g>0 simple
agents that have not switched from 0 to 1 with the transition from Sy(I) to Wo(1).
It could have occured only if in their neighborhoods there were enough (relative
to their anticonformity thresholds) instigators (which are always active). But since
instigators do not change their decisions, then each of these g agents will not
switch from 0 to 1 at any of the following time moments. Denote by Ry, |R;|=r
the set formed by all simple agents that have switched (0—1) at moment t=1.
Note that every agent from V\R; does not change its state from 0 to 1 at time
moments £, t >1. Further let us look only at the behavior of agents from R;.
Consider moment t=2. If none of agents from R; have switched (1—-0) then we
have a fixed point (since all agents from V\R; do not change their decisions at any
t>1). Suppose that p agents from R;, 0 <p <r have switched at t=2 (1-0). It is
clear that if p=r (all agents from R; have switched) then we have a cycle of length
2. Assume p <r, by Q, Q= R, denote the set of all »—p agents that have not
switched (1—0) at moment t=2. Consider an arbitrary agent veQ. This agent has
not changed its decision (1—0) at t =2 only because at t =1 its neighborhood had
enough inactive agents from V (relative to v anticonformity threshold). However
these inactive agents could not belong to R; (since at =1 all agents from R; are
active). Therefore they must belong to V\R;. But as we noted above all such agents
do not change their decisions from 0 to 1 at any of moments ¢ > 1. It means that
any agent veQ will not change its decision at any of the following moments t >2.
The set containing p, p <r simple agents that have switched at t =2 from 1 to 0 we
denote by R, and further analyze only the behavior of agents from R,. By analogy
we note that each agent from V\R, does not change its decision at ¢ > 2, etc. Thus
at most after T=»n—1I time moments the network considered will either reach a
fixed point or enter a cycle of length 2. Il

The reasoning technique from the proof of the Theorem 3 can be generalized
for the cases of the networks with instigators, loyalists and simple agents-
anticonformists with possibly empty neighborhoods. For all such situations one
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can show that starting from the initial state, in which either all simple agents-
anticonformists are active or inactive, the network will transition to a fixed point
or will enter the cycle of length 2 after at most n—1I—L time moments, where I
stands for the amount of instigators and L — for the amount of loyalists.

Final Remarks
In this part we presented several theoretical results regarding the conforming and
the anticonforming behavior. From our point of view these results explain a
number of phenomena observed in the real world. In particular, fast activation of
a large network by a relatively small number of instigators can be explained not
only by the network structure (for example by its strong connectivity) or by small
conformity thresholds but also by advantageous disposition of instigators. If there
exists such disposition of small number of instigators, that forces the network to
transition from the state with inactive simple agents to the state with the majority
of active agents, then this network is vulnerable to instigators. To determine the
degree of such vulnerability for some particular disposition of I instigators it is
sufficient to study the behavioral dynamics of the network for at most n—1I time
moments. This fact is the assertion of the Theorem 1. Evidently, for many real-
world networks the vulnerability to instigators is highly undesirable. On the other
hand, as it follows from the Corollary 1, even if the network was already activated
by instigators, but there is a solution of Problem 2, then, roughly speaking, the
situation can be improved by transforming a number of simple agents to loyalists.
Theorem 3 shows that the activation dynamics of collectives of anticonformists
can significantly differ from that of the collectives of conformists even for the
similar initial conditions. Unfortunately, we could not obtain any analogues of
Theorems 1 and 3 for collectives in which simple agents are represented by both
conformists and anticonformists. In the section about the experiments we give an
example when such network displays more complex behavior.

SAT Approach to the Study of SBN-Based Models of Collective
Behavior

Note that in the real world the conforming behavior is spread much more than
the anticonforming. On the other hand, the collectives of anticonformists
demonstrate more complex behavioral dynamics compared to that of collectives
of conformists. It follows from theorems 1 and 3. That is why in our
computational experiments we studied the collectives of conformists and
concentrated our attention on Problem 1 and Problem 2, formulated above. We
would like to point out the fact that the considered problems are combinatorial
since they presume the analysis of many possible variants of dispositions of
instigators and loyalists. We applied to Problem 1 and Problem 2 the algorithms
that are used to solve the Boolean satisfiability problem (SAT). This choice is
motivated by the fact, that modern SAT solving algorithms are very powerful
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computational methods that successfully cope with combinatorial problems from
a wide spectrum of practical areas [16].

For an arbitrary Boolean formula the Boolean satisfiability problem (SAT)
consists in answering a question if this formula is satisfiable, i.e. if there exists such
an assignment to Boolean variables of this formula, that makes the formula true.
This problem in the general case can be effectively (in polynomial time on the
length of a binary encoding of the considered formula) reduced to the problem of
deciding if a Boolean formula in a conjunctive normal form (CNF) is satisfiable.
Taking this fact into account, below we consider SAT in the following
formulation: for an arbitrary CNF C over the set of Boolean variables X we need
to answer a question if C is satisfiable, and if the answer is ‘yes’, to present a
corresponding variable assignment that evaluates C to 1. This problem is NP-
hard, therefore, it cannot be solved in polynomial time if P# NP. Nevertheless,
SAT is very important in a practical sense because a lot of industrial problems can
be effectively reduced to it and solved using modern algorithms developed during
recent 15 years. Basic algorithmic constructions used in solving SAT and main
directions of development and applications of SAT approach are described in
[16].

The reducibility of an arbitrary NP problem to SAT (in the form of decision
problem) follows from the Cook theorem [17]. However, in practice the analysis
of specific details of the considered problem makes it possible to significantly
decrease the size of the CNF formula produced. A number of general techniques
used to reduce combinatorial problems to SAT can be found in [18].

The SAT approach was successfully applied to the search for cycles of functions
defined by Boolean networks in [12] and [19]. It should be noted, however, that
networks studied in that papers have their own specifics motivated by the source
of origin: essentially they are Kauffman networks in which the power of the
neighborhood of an arbitrary agent does not exceed some relatively small number
K (usually Ke{1,2,3}). Also, weight functions used in [12] and [19] are
completely different from the ones we use. That is why below we present a
relatively detailed description of the SAT encoding process for problems outlined
above.

Basic idea that is used to encode many combinatorial problems to SAT,
including problems studied in our paper, is to represent the computation process
for the considered discrete function (in our case it is Fg : {0,1}"—>{0,1}") as a
Boolean circuit B(F) formed by logical gates from a complete basis (for example
{A,—}). Formally, circuit B(Fg) is a directed acyclic graph where n nodes are
labeled as inputs. All other nodes of this graph are called inner nodes. Each inner
node corresponds to logical gate from the chosen basis. Usually, nodes that form
the output of the considered function are referred to as output gates. In our case
circuit B(F) has n output gates.

Circuit inputs are labeled by Boolean variables x, ... ,x,. Below we refer to
these variables as input variables. An output of each logical gate E is marked by an
auxiliary variable u(E). By {y1,...,y,} we denote a set of n variables
corresponding to output gates. We refer to yi, . ..,y, as output variables. Let U be
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the set of all auxiliary variables. Then {x;,...,x,} U= 0, {»1,....y.} = U. For
circuit B(F) it is possible to effectively construct (in linear time on the total
number of nodes in the circuit) a CNF C(Fg), using the Tseitin transformations
[20] procedure, described below.

Assume E is an arbitrary gate in B(Fg). If E is a NOT-gate then it has a single
input labeled by variable p. Then for NOT-gate E we construct a formula
u(E)—>—p where by <> we mean logical equivalence. The CNF-representation of
the Boolean function specified by formula u(E)——p is

(w(E) V p) A (~u(E) V —p)

If E is an AND-gate, and p,q are variables corresponding to its inputs, then for
E we construct formula u(E)<>p A q and CNF

(~u(E) V p) A (—u(E) V q) A (u(E) V =p V =q)

We say that CNFs constructed this way encode the corresponding logical gates.
Then the CNF encoding circuit B(Fg) is

C(Fg)= A C(E)
EeB(Fg)

where C(E) is a CNF that encodes gate E.
Once we have a CNF C(F) we can extend it by adding new constraints in the

clausal form that specify function F; properties we are interested in. For example,
a CNF

C'(F6) = C(F) A Clxrop) A - .. A Clneoyn)

in which C(xi—y;) = (x; V i) A (—x; V p;), i€{1, ... ,n} specifies a fixed point of
function Fg. To be more precise, CNF C'(Fg) is satisfiable if and only if function
Fg has fixed points. If C'(Fg) is satisfiable and its satisfying assignment is obtained,
then we can effectively extract the corresponding fixed point: it is sufficient to
write down values of the input variables. To make a SAT instance that specifies the
problem of finding a cycle of length k we need to represent a superposition

FE=Fgo...oFg

as Boolean circuit B(Fé), and construct the CNF of the kind C’(F'é).

Instead of logical gates we actually can use more complex basic Boolean
functions, such as predicates over finite sets. In this case elements of the
corresponding sets are represented by Boolean vectors. In fact this is what we do
to encode functions Fg : {0,1}"—{0,1}" for networks with weight functions (1)
and (2).

Now let us consider an SBN with #n vertices and weight functions (1) that can
have both instigators and loyalists. Assume that the network is functioning for T
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time moments. The decision of agent v;, i€{1,...,n} at moment t{0,1,...,T}
we encode with Boolean variable x;.

We would like to stress out once more that a priori we do not know
dispositions of instigators and loyalists in the network and therefore presume that
any agent can take one of these roles. To take into account that an arbitrary vertex
v; can be either an instigator, a loyalist or a simple agent, we introduce two
additional sets of Boolean variables {a;};_,, {l;};_,. We assume thatifa;=1, ;=0
then v; is an instigator; if a;=0, [;=1, then it takes the role of a loyalist; if
a;=1;=0 then our vertex represents a simple agent. The situation corresponding
to a;=1;=1 would mean that the vertex is simultaneously an instigator and a
loyalist. That is why it is forbidden by means of a clause (—a; V ;).

Let v; be an arbitrary network vertex, Vi={v;,, ... ,iji‘} and ®; be a conformity
level of v;. We introduce the following predicate

True (1), if > x> 0;
, , je J'1s~-~,j\vl.|
Pe, (xh"“’xﬁvi) = False (0), if > %<6 (3)
Jje f1’~~~’f|vi\

Then from the above we can conclude that the decision of agent v; at moment
t+1 is associated with the following formula:

(xl?Jrl(_,—.l,- A <a,- V Pg, (x}l, . ’leVz))) A (—a; V =l) (4)

Additional constraints on the initial network state are encoded in a similar
fashion. For example a constraint that specifies that an arbitrary agent v; at the
initial state is active only if it is an instigator is equivalent to satisfiability of the
following formula:

(X?‘_’ai) A (—a; V ;) (5)

In fact, all clauses of the kind (—a; VV —I;) are added to the result CNF only once.

By applying Tseitin transformations to formulas (4) and (5) we can produce
CNFs that are satisfiable if and only if the original Boolean formulas are satisfiable.
To do this we need to be able to effectively encode predicate (3). It can be
represented as a Boolean circuit implementing a function that counts ones in a
Boolean vector and then compares the obtained result with ®;. Such circuit can
then be encoded to CNF in accordance with the procedure described above.
However, there are algorithms that produce more effective SAT encodings for
predicates (3). These algorithms are based on various methods that work with so
called cardinality constraints ([21-25]). In the present paper we encode predicates
(3) using sorting networks. The main idea of the corresponding approach is very
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simple: we can sort bits in an arbitrary Boolean vector (o, . ..,x,,) descending
from left to right, as we consider them as natural numbers from the set {0,1}. Let

m
(B1,---.Bm) be a result of such sorting. Then it is clear that ) o;>k,

j=1
ke{1,...,m} if and only if §, =1. Essentially, in our work to sort Boolean vectors
we used binary variants of Batcher sorting networks [26,27]. A SAT encoding of
such network with input (o, ...,u,) and output (f,...,S,,) requires

O(m-log*m) auxiliary variables and O(m-log*m) clauses. SAT encodings for the
constraints that specify that after T time moments the network must contain at
least m, m <n active agents and the constraints of the kind wt(a, . ...,a,)<I,
wt(ly, . ..,l,) <L are produced in a similar way.

It is easy to see that in the general case, if we encode the evolution of network G
with n vertices during T moments of time, then in the CNF obtained the number
of variables and clauses will be upper-bounded by O(T-n*:log*n). Taking into
account the theorems proved above for the combinatorial problems considered
we can study only cases when T'<n—I—L.

We would like to briefly mention algorithms underlying the solvers that we
have used to study the proposed models. As we said above, the book [16] is
probably the most complete source of information about the algorithms for
solving SAT. There are several classes of such algorithms and their effectiveness is
justified by their ability to solve real practical problems. To solve SAT instances
encoding the combinatorial problems outlined above we used modern CDCL
solvers, basic design features of which are described in [28]. This choice is
motivated first by the fact that CDCL solvers provide us with exact solutions, and,
second, these particular algorithms successfully cope with many hard SAT
instances, for example, with instances that encode some cryptanalysis problems.

Results and Discussion

Computational Experiments
In our computational experiments we constructed networks according to the
known models of random graphs. In particular, we used the Gilbert model [29]
also known as the Erdos-Renyi model [30] (see also [31]), the Watts-Strogatz
model [32] and the Barabasi-Albert model [33].

Informally the process of constructing tests for combinatorial problems
outlined above for SBNs in which simple agents are conformists (tests for
networks of anticonformists are generated in a similar way) looks as follows.

1. We generate a random oriented simple graph (without loops and without
multiple arcs) with n vertices, in the form of adjacency matrix where main
diagonal is filled with zeros.

2. For each of n vertices we generate a conformity threshold that is randomly
selected from [0,1] according to the uniform distribution.
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3. For a fixed number of time moments T we encode to SAT the problem of
search for a disposition of instigators with given constraints on their number
(Problem 1).

4. The CNF obtained is given to a SAT solver.

5. If the SAT solver managed to solve the instance, before exceeding the time
limit, and found a satisfying assignment, then the corresponding disposition
of instigators is extracted.

6. For the instigators disposition obtained we encode the problem of search for a
disposition of loyalists with given constraint on their number (Problem 2).

7. The CNF obtained on the previous step is given to a SAT solver.

8. If the SAT solver managed to solve the provided instance and found a
satisfying assignment then a corresponding disposition of loyalists is
extracted.

Now let us briefly describe random graph models that we used. In fact, original
models generate undirected graphs, so we modified them to take into account all
features of formulas (1) and (2) (the neighborhood V; of vertex v; is formed by
vertices in G that have arcs going to v;).

When generating a graph according to the Gilbert-Erdyos-Renyi model we fix
the parameter pe[0,1] that is the probability of an arc. Then an arbitrary element
g;» i#j of an adjacency matrix of graph G takes the value of 1 with probability p

and the value of 0 with probability 1—p.

An important feature of the original Watts-Strogatz model is that random
graphs generated according to this model have the small-world property that can
often be observed in real world networks. The parameters of the Watts-Strogatz
model include k, k >2 and fe|0,1]. First we generate a regular lattice network with

. . . .k
n vertices, where each vertex v;, i€{1, ...,n} is connected with an arc (Uj,v,-) with 3
vertices on either side of v; if k is even. If k is odd then we can consider LEJ and

k
FEW similar arcs (vj,v,-). On the second stage of graph generation each arc (uj,vi)

with probability f is rewired to (vs,0;), where s is chosen according to the uniform
distribution from some subset of {1,...,n} in such a way that in the resulting
graph there will be no loops and no multiple arcs.

The Barabasi-Albert model is important because it allows one to generate
random networks with scale-free property. The construction of a network
according to the Barabasi-Albert model can be considered as an iterative process
consisting of S+ 1 steps. On the step s=0 an initial network G, with m; vertices is
built. The result of each step se{1,...,S} is the network G; which is constructed
by adding to G;_; one new vertex v" connected to m <my existing vertices of
G;_1. The procedure of constructing edges (v,0"), veG;_; is probabilistic and is
referred to as preferential attachment. According to this procedure for v’ and an
arbitrary veG,_; the edge (v,0") is added to G with probability
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deg v
> degd

5€G5_ 1

Pr(v',0)=

Step se{1,...,S} lasts, i.e. the corresponding probabilistic experiments are
repeated, until vertex v is connected with m vertices of the graph G;_;. In our
experiments we use the following modification of the Barabasi-Albert model. An
open cycle, i.e. a cycle in which an edge connecting the first and the last vertices is
removed, is used as an initial network Gy. On each step s{1,...,S} the
probabilistic experiment is carried out for all pairs of the kind (v',v) where veG;_ 1,
and as a result of the step new vertex v’ is connected with >m existing vertices. In
the final network every edge (v',0) is replaced by a pair of arcs (v',v) and (v,0").

Defining the conformity thresholds of agents in real networks is a highly
nontrivial task and in each particular case it requires a thorough analysis of the
corresponding specifics. Since the main goal of our computational experiments
was to test the general applicability of the SAT approach to the study of the
considered models, we chose conformity thresholds for each vertex randomly
(according to the uniform distribution on (0,1)).

In the series of experiments we considered networks with 500 vertices. SAT
instances were solved using the Plingeling SAT solver [34] working on 32 threads
(two 16-core AMD Opteron 6276 CPUs with 64 GB RAM). The corresponding
results are shown in tables 1, 2 and 3.

Below we demonstrate several figures that illustrate the dynamics of SBNs with
30 vertices modeling the conforming behavior under the influence of instigators
and loyalists. In Fig. 4 the evolution of the network generated according to the
Barabasi-Albert model is displayed. In Fig. 5 we show that some networks (the
particular network displayed was generated in accordance with the Watts-Strogatz
model) are highly vulnerable to the influence of instigators. For the network
shown it is sufficient to place one instigator to activate the whole network in 6
steps. However, it is possible to find such disposition of 9 loyalists that transforms
the network to a state with the majority of inactive agents.

Intuitively, one of the most natural strategies of constructing dispositions of
instigators is to place them into vertices with the largest number of outgoing arcs.
In Fig. 6 (the network is generated according to the Erdos-Renyi model) we show,
that even if we forbid instigators to replace agents with the most advantageous
positions (in the sense explained above), that does not exclude the existence of
other possible variants of dispositions of instigators that transform the network
into states with the majority of active agents. The corresponding constraints that
forbid instigators and loyalists to take place of particular vertices are quite easily
encoded into SAT.

Also we considered optimization variants of Problem1 and Problem2, i.e. to
find corresponding dispositions of instigators and loyalists of a minimal
cardinality. These problems can also be effectively reduced to SAT using
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Table 1. Results of the computational experiments for Barabasi-Albert networks with 500 vertices.

Pr1 CNF size, Kb Pr1 solving time, sec. Pr2 CNF size, Kb Pr2 solving time, sec.
0 13911.9 31.46 14350.9 1.97
2 22514.6 8.61 22957,4 3.44
4 51694.2 15.81 52187.1 168.73
8 134728.8 57.11 135232.6 342.43

Results of the computational experiments for Barabasi-Albert networks, averaged for 10 tests (for each value of parameter m). Pr1 and Pr2 stand for
Problems 1 and 2 of finding dispositions of at most 50 instigators and at most 100 loyalists, respectively.

doi:10.1371/journal.pone.0115156.t001

techniques described above. On the current stage we managed to solve
corresponding problems for networks with 100—150 vertices.

In tables 1, 2 and 3 we present the information about the size of encodings and
about the time required to solve Problems 1 and 2 on determining dispositions of
instigators or loyalists. We considered networks with 500 vertices. For each value
of parameter p in case of Erdos-Renyi networks, combination of values of ff and k
in case of Watts-Strogatz networks, and m in case of Barabasi-Albert networks we
generated 10 different tests. Note, that solving time can greatly vary even within
one test series (for a particular random graph model). From our point of view it
can be explained by the fact that among randomly generated tests there can appear
instances that are very complex for the particular SAT solver. However, such
instances appear quite rarely while the majority of tests are solved relatively fast.

Additional Materials

In this section we propose some additional materials. In particular, there are
videos that illustrate the dynamics of collectives of conformists under the
influence of instigators and loyalists (in the context of Problems 1 and 2 outlined
above). Corresponding collectives are represented by SBNs with 200 vertices. On
S1 Video we show the behavior of the Barabasi-Albert network under the
influence of 29 instigators and 60 loyalists. S2 Video demonstrates the dynamics
of the Watts-Strogatz network with 10 instigators and 60 loyalists. On S3 Video
the behavior of the Erdos-Renyi network under the influence of 16 instigators and
44 loyalists is shown.

Table 2. Results of the computational experiments for Watts-Strogatz networks with 500 vertices.

_— Pr1 CNF size, Kb Pr1 solving time, sec. Pr2 CNF size, Kb Pr2 solving time, sec.

53531.1 148.34 54023.1 811.55
10 0.3 51997.7 26.79 52490.8 3098.48
10 0.4 50891.1 16.51 51387.4 172.37

Results of the computational experiments for Watts-Strogatz networks averaged for 10 tests (for each combination of values of parameters k and f3). Pr1 and
Pr2 stand for Problems 1 and 2 of finding dispositions of at most 50 instigators and at most 100 loyalists, respectively.

doi:10.1371/journal.pone.0115156.t002
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Table 3. Results of the computational experiments for Erdos-Renyi networks with 500 vertices.

Pr1 CNF size, Kb Pr1 solving time, sec. Pr2 CNF size, Kb Pr2 solving time, sec.
0.01 17983.2 5.63 18425.5 46.69
0.02 51423.8 14.79 51918.6 16.74
0.03 105791.8 25.2 106293.8 34.49

Results of the computational experiments for Erdos-Renyi networks, averaged for 10 tests (for each value of parameter p). Pr1 and Pr2 stand for Problems
1 and 2 of finding dispositions of at most 50 instigators and at most 100 loyalists, respectively.

doi:10.1371/journal.pone.0115156.t003

Conclusions and Future Works

In the present paper we introduce the models of collective behavior, that are based
on the synchronous Boolean networks, and study several phenomena related to
conformity and anticonformity. In the context of the proposed models we
formulate several combinatorial problems on the search for dispositions of agents
with special properties (instigators and loyalists) in a network. To these
combinatorial problems we applied modern algorithms for solving the Boolean
satisfiability problem (SAT).

We do not pretend that the results of our paper can be directly applied to
practice since all computational experiments were performed for artificially
generated networks with a random structure. However, our main goal was to
show the principal possibility of solving corresponding combinatorial problems
for networks with hundreds of vertices.

We believe that the use of various SAT parallelization techniques will make it
possible to develop our approach in such a way that it will be applicable to
networks with 1000 and more vertices. The corresponding methods will be useful
in the study of networks that represent strongly connected components extracted
from the real world networks with a much greater number of vertices. The
vulnerability of such strongly connected components to instigators in our opinion
can have highly undesirable consequences for the corresponding large networks.
To extract strongly connected components from real world networks, one can use
methods from [35].

As we mentioned above, determining correct thresholds is probably the hardest
stage of construction of any collective behavior model. In our experiments we
generated such thresholds randomly. To study real world processes this task
should be performed by a specialist in a relevant field of science (such as economy,
biology, sociology, psychology, etc.).

Unfortunately we could not obtain the results similar to theorems 1 and 3 for
the networks, in which simple agents are represented both by conformists and
anticonformists. In Fig. 7 we show how such network starting from the state in
which all simple agents are inactive enters the cycle of length 4. It means that these
networks display more complex behavior than that described by theorems 1 and 3.

Also it should be noted that the key condition in theorems 1 and 3 is that all
simple agents must be either all inactive or all active at the initial time moment. If
we drop this condition, the corresponding networks can display the behavior
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The behavior of the network with 30 vertices under the influence of 3 instigators.
Disposition of instigators was found as the solution of Problem 1.

4 Step 1 Step 2
Active : 3 Active : 7 Active : 11
Inactive : 27 Inactive : 23 Inactive : 19

Step 3 ¥ | Step 4 o | Step 5
Active : 13 Active : 17 Active : 19
Inactive : 17 Inactive : 13 Inactive : 11

Step 6 & Step 7 o Step 8
Active : 22 { Active : 28 Active : 30
Inactive : 8 <) Inactive : 2 () Inactive : 0

The behavior of the network under the influence of instigators and loyalists.
Disposition of 7 loyalists was found as the solution of Problem 2 for previously found
disposition of instigators.

[ § Q
(58 O
@ @&

/ p—s

@ by / @

3 2) ®
o o /
/ Step 0 ) Step 1 J Step 2
(€] Active : 23 Active : 10 Active : 5
Inactive : 7 Inactive : 20 Inactive : 25

Fig. 4. The behavior of the Barabasi-Albert network with 30 vertices under the influence of instigators
and loyalists. In the upper part of the figure the functioning of the network under the influence of 3 instigators
is shown. In the lower part of the figure the functioning of the network under the influence of 3 instigators and 7
loyalists is shown. Dispositions of instigators and loyalists were found as solutions of Problem 1 and Problem
2,

doi:10.1371/journal.pone.0115156.9004

different from that described by Theorems 1 and 3. For example in Fig. 8 we
demonstrate the cycle of length 3 for the network with instigators, where all
simple agents are conformists, but at the initial state there are both active and
inactive simple agents.

We would like to note that for the models proposed it is possible to study more
complex dynamical properties using the formalism of quantified Boolean
formulas with two quantification levels (2QBF) [36]. Suppose that ® is a
disposition of instigators and W is a disposition of loyalists. Then, for example,
the condition that there exists such disposition of instigators, that for any

PLOS ONE | DOI:10.1371/journal.pone.0115156 December 19, 2014 22 /28
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The behavior of the network with 30 vertices under the influence of 1 instigator.
Disposition of this instigator was found as the solution of Problem 1.

Step 0 Step 1 Step 2 “ step 3
Active : 1 Active : 3 Active : 7 Active : 15
Inactive : 29 Inactive : 27 Inactive :23 Inactive : 25

Step 4 Step 5 & Step 6
Active : 23 Active : 28 Active : 30
Inactive : 7 Inactive : 2 Inactive : 0

The behavior of the network under the influence of instigators and loyalists.
Disposition of 9 loyalists was found as the solution of Problem 2 for previously found
disposition of the instigator.

L] 2~ 7
Step 0 T step 1 T step 2 T step 3
» Acti\?e :21 Acti\rl,e :17 " Acti\?e 12 Acti\?e :8
Inactive : 9 Inactive : 13 Inactive : 18 Inactive : 22

~ Step 4 Step 7

Step 5 Step 6
Active : 5 Active : 4 Active : 3 Active : 1
Inactive : 25 Inactive : 26 Inactive : 27 Inactive : 29

Fig. 5. The behavior of the Watts-Strogatz network with 30 vertices under the influence of instigators
and loyalists. In the upper part of the figure the functioning of the network under the influence of 1 instigator is
shown. In the lower part of the figure the functioning of the network under the influence of 1 instigator and 9
loyalists is shown. Dispositions of instigators and loyalists were found as solutions of Problem 1 and Problem

2,

doi:10.1371/journal.pone.0115156.9005

disposition of loyalists the network, starting from the state with inactive simple
agents after several time moments transitions to a state in which almost all simple

agents are active, can be described using the 2QBF of the following kind:

IOV R(G.Fg, ®,P)

This condition can be considered as an improved variant of condition

describing the vulnerability of the network to instigators. To solve such problems

PLOS ONE | DOI:10.1371/journal.pone.0115156 December 19, 2014

23/28



@'PLOS | ONE

Using Boolean Networks to Model Collective Behavior

The behavior of the network with 30 vertices under the influence of 4 instigators.
Disposition of instigators was found as the solution of Problem 1 with an additional constraint,
that limited instigators of taking place of first 10 agents with the largest number of outgoing arcs

Step 3
Active : 9
Inactive : 21

Step 0
Active : 4
Inactive : 26

Step 1
Active : 6
Inactive : 24

Step 2
Active : 7
Inactive : 23

Step 5 Step 6 N
Active:13 W Active:18 W
Inactive : 17 © Inactive : 12

Step 7
Active : 22
Inactive : 8

Step 4
Active : 10
Inactive : 20

Step 9
Active : 30
Inactive : 0

Step 8
Active : 28
Inactive : 2

The behavior of the network under the influence of instigators and loyalists.
Disposition of 6 loyalists was found as the solution of Problem 2 for previously found

disposition of instigators.

Step 3
Active : 15
Inactive : 15

Step 2
Active : 20
Inactive : 10

Step 1
Active : 22
Inactive : 8

Step 0
Active : 24
Inactive : 6

< S
A\ Step 4 \ Step 7
¥ Active : 12 / 2 Active - 4
he! Inactive : 18 Y Inactive : 21 ¥ Inactive : 24 Inactive : 26

Fig. 6. The behavior of the Erdos-Renyi network with 30 vertices under the influence of instigators and
loyalists. In the upper part of the figure the functioning of the network under the influence of 4 instigators is
shown. In the lower part of the figure the functioning of the network under the influence of 4 instigators and 6
loyalists is shown. Dispositions of instigators and loyalists were found as solutions of Problem 1 and Problem

2. Instigators could not take place of top 10 vertices with the largest number of outgoing arcs.

doi:10.1371/journal.pone.0115156.g006

one can use modern 2QBF-solvers [36], [37]. We can also take into account any

constraints on the cardinality of ® and V.

Finally, one natural extension of the proposed models is to assign various types
of weights to network arcs and modify vertex weight functions accordingly. Arc
weights can represent social pressure, authority, etc. for each particular member of
a collective. In addition to that, it would be interesting to study the dynamics of
networks in which weight function of a vertex can take into account the influence
of vertices that are at a distance > 1 in G from the vertex considered. All the listed
aspects can be quite easily implemented into corresponding SAT encodings. We

plan to do it in the nearest future.
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The nontrivial cycle of length 4 for the network with 50 vertices with conformists and anticonformists.

Step 1 P
Active : 43 Active : 13
Inactive : 7 Inactive : 37

Step 3
Active : 42
Inactive : 8 Inactive : 43

Fig. 7. The cycle of length 4 for the network with both conformists and anticonformists. The agents-conformists are marked with "C" and agents-
anticonformists are marked with "A". The network contains 7 instigators (crimson vertices). At the initial time moment all simple agents are inactive.

doi:10.1371/journal.pone.0115156.9007

The nontrivial cycle of length 3 for the network with 50 vertices with no restrictions on the initial state.

Step 1
Active : 9
Inactive : 41

Step 2
Active : 9
Inactive : 41

Fig. 8. The nontrivial cycle of length 3 for the network of conformists with instigators. At the initial state
in the network there are both active and inactive simple agents.

doi:10.1371/journal.pone.0115156.g008

PLOS ONE | DOI:10.1371/journal.pone.0115156 December 19, 2014 25/28



@'PLOS | ONE

Using Boolean Networks to Model Collective Behavior

Supporting Information

S1 Video. The behavior of the Barabasi-Albert network with 200 vertices under
the influence of instigators and loyalists.
doi:10.1371/journal.pone.0115156.s001 (MP4)

S2 Video. The behavior of the Watts-Strogatz network with 200 vertices under the
influence of instigators and loyalists.
doi:10.1371/journal.pone.0115156.s002 (MP4)

83 Video. The behavior of the Erdos-Renyi network with 200 vertices under the
influence of instigators and loyalists.
doi:10.1371/journal.pone.0115156.s003 (MP4)
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