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Abstract

Human observers are able to perceive the motion direction of actions (either

forward or backward) on the basis of the articulatory, relative motion of the limbs,

even when the actions are shown under point-light conditions. However, most

studies have focused on the action of walking. The primary purpose of the present

study is to further investigate the perception of articulatory motion in different point-

light actions (walking, crawling, hand walking, and rowing). On each trial,

participants were presented with a forward or backward moving person and they

had to decide on the direction of articulatory motion of the person. We analyzed

sensitivity (d’) as well as response bias (c). In addition to the type of action, the

diagnosticity of the available information was manipulated by varying the visibility of

the body parts (full body, only upper limbs, or only lower limbs) and the viewpoint

from which the action was seen (from frontal view to sagittal view). We observe that,

depending on the specific action, perception of direction of motion is driven by

different body parts. Implications for the possible existence of a life detector, i.e., an

evolutionarily old and innate visual filter that is tuned to quickly and automatically

detect the presence of a moving living organism and direct attention to it, are

discussed.

Introduction

The Leuven psychologist Albert Michotte, a pioneer in research on the perception

of animate motion, pointed out already several decades ago that ‘‘a thorough

study of behaviour must take into account the way in which people and animals

‘understand’ the actions of other people and animals, as well as those they

perform themselves’’ [1], p. 34. Indeed, accurate perception and understanding of

the actions and intentions of conspecifics is a crucial prerequisite for adequate

social interaction [2, 3]. A remarkable demonstration of this ability is the
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perception of point-light actions [4]: A handful of point lights attached to

strategic positions on the body of a moving human body is sufficient to allow the

observer to pick up several behaviorally relevant properties both of the moving

person and of the action performed (see [5–8] for reviews and some historical

background; note that, in his seminal paper on biological motion perception,

Johansson refers to Michotte’s work on the perception of animate motion:

‘‘Stimulus patterns representing animals in motion have been rarely studied.

Michotte’s [1963; originally published in 1946] study of perception of larva

motion may be pointed to as an important exception’’ [4], p. 201.)

Although it has been documented repeatedly that human observers easily

identify different types of human (inter)actions under point-light conditions (e.g.,

[9–12]), most studies of biological motion perception focused on the perception

of human walking. One aspect that has received attention in the literature is the

perception of the direction of walking (forward vs. backward) of a walker moving

on a treadmill, in human observers (e.g., [8, 13–16]), as well as in nonhuman

primates [17]. With this stimulus configuration the global translatory component

of motion (common motion) is set to zero and discrimination of the direction of

motion can only be based on the articulatory movements of the body parts in

relation to each other (relative motion; e.g., [18, 19]).

For instance, in a study of Verfaillie [20], participants had to discriminate

between a biological motion walker and a similar distractor. The point-light

walker was facing either to the right or to the left and walking either forward or

backward. Forward walking figures were identified faster than backward walking

figures. (Note that the walking direction was task irrelevant in this study.) In a

follow-up study [8] participants had to discriminate between forward and

backward walking figures (making perception of walking direction task relevant).

Latencies to forward walking displays were again shorter than to backward

walking displays (but the difference was not statistically significant).

There are several possible, not necessarily mutually exclusive, reasons to

speculate why backward walking might be more difficult to perceive and interpret

than forward walking. First, human observers are relatively rarely confronted with

backward moving walkers, so familiarity might play a role. It has indeed been

suggested repeatedly that stored knowledge of actions (or the identity of the actor)

play a pivotal role in action and posture perception (e.g., [21–24]). Second, the

anatomy of the human body probably is not optimally suited for backward

walking. Under the assumption that motor knowledge influences visual

perception of human movements (e.g., [25–28]), perception of backward

movement might therefore be compromised.

The primary aim of the present study is to further investigate the perception of

the direction of motion (either forwards or backwards) on the basis of the

articulatory, relative motion of the limbs, not only when observers view a walking

action but also when perceiving other actions. More specifically, perception of the

direction of articulatory motion is studied in walking, crawling, hand walking,

and rowing. We use a signal detection paradigm. On each trial, participants are

presented with a forward (signal) or backward (noise) moving person and they
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have to decide on the direction of articulatory motion of the person. We analyze

sensitivity (d’) as well as response bias (c).

One obvious (and the most important for the present examination) reason for

studying direction of motion perception not only when observers view a walking

action but also when perceiving other actions has to do with generalizability from

findings on walking to other actions. However, in addition to that, there are other,

more theoretical, reasons. The perception of the direction of walking probably is

mainly driven by the movement of the extremities of the moving human body,

especially the movement of the feet. Troje and colleagues even have suggested [29–

34] that during the perception of human locomotion a specialized life detector

mechanism is activated, an evolutionarily old and innate visual filter that is tuned

to quickly and automatically detect the presence of a moving living organism and

direct attention to it. In fact, Michotte [35] already alluded to this possibility: ‘‘les

mouvements exécutés par l’homme ou l’animal possèdent un caractère special qui

les différencie nettement, d’ordinaire, des mouvements des objects inanimés, et

qui permet de reconnâitre aisément la présence d’une vie animale, fait capital au

point de vue biologique (the movements performed by men or animals have a

special nature that differentiates them clearly from the movements of inanimate

objects and that allow effortless recognition of the presence of animate life, an

important fact from a biological point of view)’’.

Because of the presence of gravitational forces, perceived acceleration patterns

in the movements of the feet during walking play a prominent role in this process.

Research on the perception of the articulatory direction of motion, also in other

actions than walking, might lead to a better understanding of this life detector.

Given the evolution of the human species towards upright, bipedal, walking, it

is not surprising that perception of motion direction indeed probably is mainly

driven by the movements of the lower limbs during the perception of most

common forms of human locomotion. However, for other, less common,

locomotion styles, it can be expected that the upper limbs also carry important

information. In Experiments 1 and 2, participants viewed the traditionally studied

action of walking, in which motion of the limbs probably is most diagnostic for

direction discrimination. In Experiment 3, observers were presented with a

crawling action [36–38]. It can be expected that, even though the action is

uncommon, for this quadruped mode of locomotion both lower and upper limbs

carry information of the direction of articulatory motion. In Experiment 4, we

showed subjects an even less familiar action, namely hand walking [39], in which

the movements of the arms probably are most diagnostic (and the legs carry no

useful information). The action stimulus in Experiment 5 consisted of a rowing

action. In contrast to the intransitive (i.e., no accessory devices are necessary for

locomotion) actions of walking, crawling, and hand walking, rowing is a transitive

action (i.e., motion is realized not by direct contact of the limbs with the ground

surface, but indirectly by making use of locomotory tools like a boat). In the case

of rowing, direction of articulatory motion probably mainly is signaled by the

movements of the upper limbs.
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Apart from varying the type of action, a second way in which we manipulated

the diagnosticity of different body parts simply consisted of restricting the

available stimulus information either to the upper limbs or to the lower limbs (in

comparison to a control condition in which the full body was presented) for the

different types of actions (see[40] for related research on the role of different body

parts in direction discrimination of point-light actions).

Thirdly, perception of movement direction probably varies with the viewpoint

from which the point-light stimulus is seen. For instance, the profile orientation

of a walker is likely to carry more information than the frontal orientation of a

walker. Kuhlmann, Lussanet, and Lappe [13] reported research on the perception

of point-light limited-lifetime full body human walkers going either backwards or

forwards and shown in different orientations and observed that walking direction

could be readily seen in profile and half-profile views, but direction discrimina-

tion became very difficult in frontal views.

In sum, we predict that sensitivity to perceive the direction of motion depends

on the perceived action, the perceivable body part, and the viewpoint from which

the action is seen. We also analyzed response bias, but predictions are less

straightforward here. A bias for forward motion when the uncertainty about the

direction of motion is increased could be predicted. Indeed, under the latter

circumstances observers might be prompted to perceive forward motion (if

familiarity and/or motor knowledge influence perception of direction of

articulation). In Bayesian terms, the perceptual system integrates available sensory

evidence with expectations about the state of the external environment priors [41–

44]. Prior expectations (e.g., on the basis of familiarity) are expected to bias

observer’s performance especially when stimulus-driven processing is made more

difficult (i.e., by manipulating the figure’s in-depth orientation and visible body

part).

Experiment 1

In Experiment 1 we focused on the perception of walking. On each trial,

participants were presented with a sagittal 0˚view of a point-light walker, facing to

the left. (Viewpoint was not yet manipulated in Experiment 1.) They pressed one

button when they perceived the figure as walking forward and another button

when they perceived the walker as walking backward. Under the assumption that

walking direction is carried primarily by information in the lower part of the

body, we predicted that performance would be worst when only the upper part of

the body was visible and that performance in the condition in which only the

diagnostic lower part was visible wouldn’t differ much from the full-body

condition.
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Method

Participants

14 students of psychology at the University of Leuven (KULeuven) (13 women, 1

man, Mage518.78 years, SDage51.03 years) participated in this experiment. All

observers had normal or corrected to normal vision and were naive to the purpose

of the experiment. The study (and all other experiments reported in the present

article) was approved by the Ethical Committee of the Faculty of Psychology and

Educational Sciences of the University of Leuven and in accordance with the

ethical standards laid down in the 1964 Declaration of Helsinki. Participants

provided written informed consent (following the consent procedure approved by

the Ethical Committee). A few participants were under 18: 1 participant in

Experiment 1 (age 17.78), 1 participant in Experiment 3 (age 17.83), and 1

participant in Experiment 5 (age 17.90). For these participants we did not obtain

consent from their parents or legal guardians, because the Ethical Committee of

our faculty urges this only for participants under the age of 16. Just before the

beginning of the experiment, written instructions were given and practice took

place to make sure that participants understood the task and were well prepared

for the main task.

Stimulus

The stimulus consisted of a point-light human walker in profile orientation going

either backwards or forwards. The point-light walker was designed using motion

capture data from a real walker and a 3D animation technique [12, 45]. The

animation was created with MATLAB for Windows XP to play 60 still images (for

one step cycle, consisting of two steps) with a frame refreshing rate of 60 Hz on

the screen of a Dell monitor. Each image in the full body version consisted of 13

white dots positioned on the major joints of the walker (the head, two shoulders,

two elbows, two wrists, two hips, two knees, and two ankles; radius 53 pixels) on

a gray background. The walker subtended 4 cm at a viewing distance of 45 cm.

Upper body and lower body walkers were generated drawing only the dots

corresponding to the upper (head, two shoulders, two elbows, and two wrists) and

lower (two hips, two knees, and two ankles) joints of the body, respectively. For

the upper and lower body only stimuli, the dots corresponding to the lower and

upper body, respectively, were invisible. To generate the animation of backward

motion, the sequence of frames was reversed.

Procedure and design

The experiment was run in a dimly lit and sound-attenuated lab room. On each

trial, participants were presented with a sagittal 0˚view of the upper, lower, or full

body of a point-light walker, facing to the left. They were instructed to press one

button when they perceived the figure as walking forward and another button

when they perceived the walker as walking backward. Stimuli were presented for

4.5 sec. After stimulus presentation, a response screen appeared asking whether

the stimulus figure was moving forward or backward. Two blocks of trials were

administered to each participant. Each block contained 20 trials in each of the 6
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conditions (2 directions of motion 63 types of walkers). Stimuli were presented

in a random order. Before the beginning of experiment, the set of all stimuli was

shown (named as forward or backward walking) and written instructions were

given. Feedback was provided after each trial and after each block of trials (by

giving the percentage of correct responses).

Data availability

The full data set is available by email request to Alex Davila, who now is at the

Pontifical Catholic University of Peru (adavila@pucp.edu.pe).

Results and Discussion

A signal detection analysis was performed (classifying forward motion as the

‘‘signal’’ and backward motion as the ‘‘noise’’). Sensitivity (d’) values are depicted

in Fig. 1. In a repeated measures one-way analysis of variance (ANOVA) with

visible body part (upper, lower, full) as within-subject variable, Mauchly’s tests

indicated that the assumption of sphericity for that variable had been violated

(x2(2) 510.912, p5.004). Therefore, degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity (e5.606). The ANOVA yielded a

significant main effect of body part, F(1.212, 15.758) 5470.541, p,.001. Planned

comparisons showed that d’ for the upper part condition (M52.079, SE5.114)

was lower than d’ for the lower part (M54.078, SE5.160), p,.001, and the full

body conditions (M54.402, SE5.046), p,.001. As expected, when only the (less

informative) upper body part was visible, discrimination between forward and

backward motion was impossible. When the (more informative) lower part was

visible, discrimination was equivalent to performance with the full body. It is

obvious that, for the walking action, direction discrimination based on the

analysis of relative motion is primarily driven by the motion of the lower limbs.

Fig. 2 depicts the c values. Mauchly’s test indicated that the assumption of

sphericity for the body part had not been violated (x2(2) 51.776, p5.411). The

ANOVA did not yield a significant main effect of body part, F(2, 26) 5.641,

p5.535.

Experiment 2

In Experiment 2, we again manipulated the available body part information (full,

upper, or lower) of a point-light walker. In addition, under the assumption that

the diagnosticity of the information signalling walking direction varies with the

viewpoint from which the walker is observed, the in-depth orientation of the

point-light walker was varied.

We predicted, as in Experiment 1, that performance would be worst when only

the upper part of the body was visible and that performance in the condition in

which only the lower part was visible would not differ much from the full-body

condition. The new prediction in Experiment 2 was that performance would
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Fig. 1. d’ (including standard error bars) as a function of visible body part for the walking action in
Experiment 1.

doi:10.1371/journal.pone.0115117.g001

Fig. 2. c as a function of visible body part for the walking action in Experiment 1.

doi:10.1371/journal.pone.0115117.g002
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deteriorate in frontal orientation conditions in comparison to the other

orientation conditions.

Methods

Participants

14 students of psychology at the KU Leuven with normal vision or corrected to

normal vision (12 women, 2 men, Mage518.57, SDage5.542 years) participated in

this experiment. None of them had taken part in the previous experiment.

Stimuli

The point-light human walker as used in Experiment 1 was now shown in one of

four possible orientations: the 0˚profile orientation, the 90˚ frontal orientation or

the 30˚or 60˚ orientation in between. Again, the walker was going either forwards

or backwards as moving on a treadmill and the full body, only the upper body, or

only the lower body was shown.

Procedure and design

As in Experiment 1, participants on each trial had to indicate whether the walker

was moving forward or backward. Two blocks of trials were administered to each

participant. Each block contained 120 trials consisting of 5 trials for each of the 24

conditions (2 directions of motion 63 types of walkers 64 orientations). The

sequence of trials within each block was again randomized.

Results and discussion

In a repeated measures ANOVA on d’ (see Fig. 3) with visible body part (upper,

lower, full) and depth orientation (0 ,̊ 30 ,̊ 60 ,̊ and 90 )̊ as within-subject

variables, Mauchly’s tests indicated that the assumptions of sphericity for the

effect of body part (x2(2) 511.261, p5.004), orientation (x2(5) 517.357,

p5.004), and the interaction between body part and orientation (x2(20) 584.215,

p,.001) were violated. Therefore, degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity for the body part (e5.622),

orientation (e5.555), and the interaction (e5.439). The ANOVA yielded a

significant main effect of body part, F(1.243, 16.162) 5237.005, p,.001, and

orientation, F(1.665, 21.650) 56.472, p5.009. The interaction between body part

and orientation, F(2.635, 34.253) 52.156, p5.118 was not significant. Planned

comparisons showed that d’ for the upper part conditions (M5.277, SE5.159)

was lower than d’ for the lower part (M52.972, SE5.085, p,.001) and full body

conditions (M53.196, SE5.022, p,.001) and that d’ for the frontal orientation

(M51.773, SE5.144) was lower than d’ for the profile (M52.246, SE5.106,

p5.014), 30˚ (M52.339, SE5.094, p5.006), and 60˚ orientation (M52.237,

SE5.060, p5.001), as predicted.

In an ANOVA on c (Fig. 4), Mauchly’s tests indicated that the assumptions of

sphericity for body part (x2(2) 56.941, p5.031), orientation (x2(5) 512.352,

p5.031), and the interaction between body part and orientation (x2(20) 583.587,
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Fig. 3. d’ as a function of visible body part and figure orientation for the walking action in Experiment 2.

doi:10.1371/journal.pone.0115117.g003

Fig. 4. c as a function of visible body part and figure orientation for the walking action in Experiment 2.

doi:10.1371/journal.pone.0115117.g004
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p,.001) were violated. Degrees of freedom were corrected using Huynh-Feldt

estimate of sphericity for body part (e5.752), and Greenhouse-Geisser estimates

for orientation (e5.597) and the interaction (e5.349). (One note is in order here.

Sphericity within this context means equality between any pair of variances of

differences. For instance, we have three body parts conditions and three possible

pairs of variances of differences: variance of the difference between upper and

lower vs. variance of the difference between upper and full, variance of the

difference between upper and lower vs variance of the difference between lower

and full, variance of the difference between lower and full vs. variance of the

difference between upper and full. There at least two possible corrections for

violations of sphericity: the Greenhouse-Geisser estimate (e‘) and the Huynh-

Feldt estimate (e,). e‘ is too conservative causing incorrect acceptance of the null

hypothesis that sphericity does hold, when it does not (Type II error). e, is too

liberal causing incorrect rejection of the null hypothesis that sphericity does hold,

when it does (Type I error). Girden (1992 [46]; also see Barcikowski & Robey,

1984 [47]) recommends that when e‘.0.75 then the df should be corrected using

e,. If e ‘,0.75, or nothing is known about sphericity at all, then the conservative

e‘ should be used to adjust the df.)

The ANOVA yielded a significant main effect of body part, F(1.503, 19.544)

538.659, p,.001. The main effect of orientation, F(1.790, 23.275) 51.452,

p5.254 and the interaction effect between body part and orientation, F(2.092,

27.192) 5.597, p5.565 were not significant. Post-hoc comparisons showed that c

values for the upper part conditions (M5.360, SE5.049) were higher than for the

lower part (M5.018, SE5.026, p,.001), and full body conditions (M52.021,

SE5.013, p,.001). However, this was not observed in Experiment 1 (and neither

in subsequent experiments). The reason for this discrepancy is unclear at present.

Experiment 3

In Experiments 1 and 2, we observed that the perception of motion direction of a

walker on the basis of the articulatory, relative motions of the limbs is mainly

driven by the motion of the lower limbs. This indirectly supports the hypothesis of

a life detector mechanism particularly sensitive to the movements of the legs.

However, for other, less common, types of human locomotion the movements of

the arms might become more informative. In Experiment 3, participants were

presented with a crawling action instead of a walking action, again either showing

the full body or only the upper or lower body. We expected that in this case not

only the lower body but also the upper body would be diagnostic for the direction

of articulation. In addition, the depth orientation of the actor was manipulated as

in Experiment 2, again under the assumption that, as the orientation was further

away from the most informative sagittal view, performance would deteriorate.

Perceiving the Direction of Biological Motion

PLOS ONE | DOI:10.1371/journal.pone.0115117 December 19, 2014 10 / 22



Method

Participants

14 students of psychology at the KU Leuven (12 women, 2 men, Mage518.95,

SDage51.18 years) participated in this experiment. They did not take part in the

previous experiments, had normal or corrected-to-normal vision, and were naïve

to the purpose of the study.

Stimuli

Participants were presented with the crawling action of the action database of

Vanrie and Verfaillie [12]. On each trial, the action was again presented in one of

four possible depth orientations: 0˚ (sagittal), 30 ,̊ 60 ,̊ or 90˚ (frontal). Either the

full crawler or only the upper or lower body part was shown.

Procedure and design

The procedure was the same as in Experiment 2. Participants had to indicate the

perceived direction of articulatory movement of upper, lower, or full crawlers

shown in different depth orientations. Two blocks of trials, each containing 120

trials (5 repetitions of 24 unique trials resulting from the manipulation of 2

directions of motion, 3 types of crawlers, and 4 orientations) were administered to

each participant.

Results and discussion

A repeated measures ANOVA was performed on d’ (see Fig. 5) with visible body

part (upper, lower, or full) and depth orientation (0 ,̊ 30 ,̊ 60 ,̊ or 90 )̊ as within-

subjects variables. Because Mauchly’s tests indicated that the assumptions of

sphericity for body part (x2(2) 58.842, p5.012), orientation (x2(5) 542.807,

p,.001), and the interaction between body part and orientation (x2(20) 590.214,

p,.001) were violated, degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity for body part (e5.657), orientation (e5.397), and

the interaction (e5.323). The ANOVA yielded a significant main effect of

orientation, F(1.192, 15.501) 584.019, p,.001. Planned comparisons showed that

d’ for the frontal orientation (M5.742, SE5.257) was lower than for the profile

(M53.253, SE5.021, p,.001), 30˚ (M53.197, SE5.058, p,.001), and 60˚
orientation (M53.111, SE5.068, p,.001). As predicted, the frontal view is less

informative for determining the motion direction of the crawler. The main effect

of body part, F(1.315, 17.090) 5.520, p5.529, and the interaction between body

part and orientation, F(1.936, 25.170) 5.401, p5.667, were not significant. This

suggests that, in contrast to walking, for crawling both the upper and the lower

body part are diagnostic for determining the direction of articulatory motion.

In an ANOVA on c, (Fig. 6) Mauchly’s tests indicated that the assumptions of

sphericity for orientation (x2(5) 534.005, p,.001) and the interaction between

body part and orientation (x2(20) 598.790, p,.001) were violated. Therefore,

degrees of freedom were corrected using Greenhouse-Geisser estimates of

sphericity for orientation (e5.406) and the interaction (e5.377). The main effects
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Fig. 5. d’ as a function of visible body part and figure orientation for the crawling action in Experiment 3.

doi:10.1371/journal.pone.0115117.g005

Fig. 6. c as a function of visible body part and figure orientation for the crawling action in Experiment 3.

doi:10.1371/journal.pone.0115117.g006
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of body part, F(2, 26) 5.762, p5.477, and orientation, F(1.218, 15.835) 51.964,

p5.180, and the interaction between body part and orientation, F(2.262, 29.401)

5.254, p5.803, were not significant.

Experiment 4

In Experiment 4, we presented participants with a (very uncommon) action for

which the direction of articulatory motion probably is mainly perceived on the

basis of the movements of the arms and the legs carry no useful information at all,

namely hand walking. Participants again had to indicate the direction of

articulatory motion and viewpoint and visible body part were manipulated as in

the previous experiments. (Note that, because the actor is inverted, reference to

upper and lower body parts becomes ambiguous now; we refer to the arms when

we mention the upper body parts and to the legs when we mention the lower body

parts.)

Methods

Participants

13 female and 1 male new students of psychology at the KU Leuven (Mage518.59,

SDage50.41 years) and naïve with respect to the purpose of the study participated

in this experiment.

Stimuli

A point-light human hand-walker was created using Autodesk 3ds Max 2012 [48]

and a.csm file produced by Red Eye Studio [49]. The size of the stimulus was

adapted to make it equivalent to the standard sizes of the stimuli from the Leuven

Action Database used in the previous experiments.

Procedure and design

We used the same procedure and design as in Experiments 2 and 3.

Results and discussion

In a repeated measures ANOVA on d’ (see Fig. 7) Mauchly’s tests indicated that

the assumptions of sphericity for body part (x2(2) 516.402, p5,.001) and

orientation (x2(5) 519.592, p5.002) had been violated. Therefore, degrees of

freedom were corrected using Greenhouse-Geisser estimates of sphericity for body

part (e5.573) and orientation (e5.494). The ANOVA yielded a significant main

effect of body part, F(1.146, 14.899) 5164.069, p,.001, and orientation, F(1.481,

19.247) 519.377, p,.001, and a significant interaction effect between body part

and orientation, F(6, 78) 58.762, p,.001. Planned comparisons showed that d’

for the lower body part (M5.474, SE5.159) was lower than d’ for the upper body

part (M52.512, SE5.092) and the full body (M52.580, SE5.078, p,.001). As in

the previous experiments, d’ for the frontal orientation (M5.833, SE5.244) was
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lower than for the profile (M52.231, SE5.146, p5.001), 30˚(M52.264, SE5.117,

p,.001), and 60˚ orientation (M52.095, SE5.088, p,.001).

In an ANOVA on c (Fig. 8), Mauchly’s tests indicated that the assumptions of

sphericity for body part (x2(2) 512.865, p5.002) and the interaction between

body part and orientation (x2(20) 535.655, p5.021) had been violated.

Therefore, degrees of freedom were corrected using Greenhouse-Geisser estimates

of sphericity for body part (e5.631) and Huynh-Feldt estimates of sphericity for

the interaction (e5.793) (Fig. 9). The main effects of body part, F(1.206, 15.684)

5.638, p5.808, and orientation, F(3, 39) 5.862, p5.187, and the interaction

between body part and orientation, F(4.756, 61.825) 51.447, p5.471, were not

significant.

Experiment 5

The purpose of the final experiment was to study perception of motion direction

in a rowing action, an action in which (in contrast to walking and crawling) the

upper limbs probably are more diagnostic than the lower limbs. Participants again

had to indicate the direction of articulatory motion and the figure’s depth

orientation and the visible body part was manipulated.

Rowing diverges from the actions presented in the previous four experiments in

several respects. First, forward direction of motion is opposite to the facing

Fig. 7. d’ as a function of visible body part and figure orientation for the hand walking action in
Experiment 4.

doi:10.1371/journal.pone.0115117.g007
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Fig. 8. c as a function of visible body part and figure orientation for the hand walking action in
Experiment 4.

doi:10.1371/journal.pone.0115117.g008

Fig. 9. d’ as a function of visible body part and figure orientation for the rowing action in Experiment 5.

doi:10.1371/journal.pone.0115117.g009
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direction of the mover. Second, like in hand walking, motion direction probably is

best signalled by the movements of the upper limbs (and not by the lower limbs),

but in contrast to hand walking the limbs produce a lot of (albeit non-diagnostic)

motion energy. Third, and maybe most importantly, unlike walking, crawling, and

hand walking (intransitive motion), direct contact of the limbs with the ground

surface is not the source of translatory motion of the body as a whole. Rather,

forward motion originates from moving (in this case rotating) an external device

(in this case peddles) indirectly acting on the external environment (transitive

motion). (Another typical example of a transitive action including rotatory

motion of a tool is cycling.)

Method

Participants

14 new students of psychology at the KU Leuven (11 women, 3 men, Mage518.93,

SDage51.01 years) participated.

Stimuli

We selected the rowing action from the point-light action database from Vanrie

and Verfaillie [12]. The action displays a man rowing in a stationary standard boat

(i.e., the translational motion component was removed). The action was again

presented in one of four possible depth orientations: 0˚ (sagittal), 30 ,̊ 60 ,̊ or 90˚
(frontal) and either the full rower or only the upper or lower body part was

shown.

Procedure

The procedure was the same as in Experiments 2, 3, and 4. Each participant was

administered two blocks of 120 trials (each block containing 5 trials in each of 24

conditions (2 directions of motion 63 types of rowers 64 orientations)).

Results and discussion

Sensitivity values (d’) as a function of visible body part and depth orientation are

shown in Fig. 9. In a repeated measures ANOVA, Mauchly’s tests indicated that

the assumptions of sphericity for body part (x2(2) 57.514, p,.023) and the

interaction between body part and orientation (x2(20) 548.920, p,.001) had

been violated. Therefore, degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity for body part (e5.682) and the interaction

(e5.529). The main effect of body part, F(1.365, 17.743) 5276.573, p,.001, and

of orientation, F(3, 39) 510.082, p,.001, were statistically significant. The

interaction between body part and orientation, F(3.174, 41.256) 51.172, p5.333,

was not significant. Planned comparisons showed that d’ for the lower body part

(M5.119, SE5.136) was lower than d’ for the upper body part (M52.759,

SE5.114) and d’ for the full body (M52.741, SE5.149, p,.001). When the rower

was seen in a frontal orientation d’ (M51.455, SE5.158) was lower than when

seen in a profile orientation (M51.903, SE5.166, p5.008), 30˚ orientation
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(M52.073, SE5.099, p5.001), or 60˚ orientation (M52.061, SE5.110, p,.001).

This confirms the prediction that, for a rowing action, the direction of articulatory

motion is mainly driven by the motion of the upper limbs and that the frontal

view is less diagnostic than the other views.

In an ANOVA on c, (Fig. 10) Mauchly’s tests indicated that the assumptions of

sphericity for the interaction between body part and orientation (x2(20) 535.349,

p5.022) had been violated. Therefore, degrees of freedom for the interaction were

corrected (e5.787). The ANOVA yielded a significant main effect of orientation,

F(3, 39) 54.377, p5.015. Apparently, when confronted with the less informative

frontal orientation, participants showed a tendency to interpret the low-

informative stimulus as moving forward rather than backward. The main effect of

body part, F(2, 26) 5.624, p5.544, and the interaction between body part and

orientation, F(4.721, 61.368) 51.131, p5.353, were not significant.

General Discussion

The main purpose of the present study was to examine the perception of motion

direction of point-light actions on the basis of the articulatory relative motions of

the limbs. Most importantly, this question was addressed not only for the action

of walking (as done in previous studies), but also for the actions of crawling, hand

walking, and rowing. In addition, we manipulated the diagnosticity of the

information available for detection of the direction of articulatory motion by

varying the visible body part (upper, lower, vs. full body) and the viewpoint from

which the action was seen.

We observed that sensitivity for the direction of articulatory motion varies with

the action: for walking the lower limbs are most diagnostic, for crawling both the

upper and the lower limbs, for hand walking the upper limbs, and for rowing the

upper limbs. The main conclusion is that, not surprisingly, the limbs that make

contact to the ground surface and therefore enable locomotion are critical for the

perception of direction of articulation.

In addition, performance in general was worst for the least informative frontal

orientation [13]. This makes sense given that, for the actions used in the present

study, the limbs almost entirely move in the midsagittal plane, i.e., in planes

symmetrical to the facing direction of the moving figure [50, 51]. Information on

motion direction in these planes obviously is weaker as the figure approaches the

frontal/back view.

The next logical step in this research project is to try to relate sensitivity to

quantitative stimulus characteristics for different actions in different depth

orientations. We assume that for the task of classifying the horizontal direction of

articulation of point-light figures, the asymmetry in the direction of motion of the

dots is the critical information that produces performance. More specifically, we

hypothesize that the relevant kinematic properties associated to this asymmetry

are asymmetries between horizontal forward and backward motion in duration,

velocity, and/or acceleration of individual or groups of dots. For instance, in the
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case of the action of walking, the upper body part in frontal orientation might be

poorly informative because of the lack of asymmetry between forward and

backward motion characteristics. A way to measure this (a)symmetry is

calculating the absolute value of the difference between the duration, velocity, or

acceleration when moving forwards and their correspondents when moving

backwards and averaging these measures over dots. In Table 1 we present the

Pearson correlation between sensitivity on the one hand and the asymmetry

between forward and backward motion for duration, velocity, and acceleration for

the upper and lower body in the different actions (averaged across orientations)

on the other hand. As expected, for walkers performance is driven mostly by

perception of the lower limbs, for crawlers by both upper and lower limbs, for

handwalkers by upper limbs, and for rowers by upper limbs as well. We are

currently investigating the relation between sensitivity and stimulus characteristics

in more detail.

Note that, despite the long stimulus duration relative to other studies, d’ was

still low for the upper body (for walking) or lower body (for hand walking). The

long duration could have hidden differences between upper and lower limbs in

the crawling condition, as d’ was very high in all but the 90 degree orientation

condition. Future studies should examine the effects of stimulus duration on the

use of different body parts in biological motion perception, especially given our

interest in the possibility of an innate visual filter that is tuned to quickly and

automatically detect actions.

Fig. 10. c as a function of visible body part and figure orientation for the rowing action in Experiment 5.

doi:10.1371/journal.pone.0115117.g010
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As mentioned in the Introduction, Troje and colleagues suggested that a

specialized life detector is activated during the perception of animate locomotion.

Obviously, the present data do not provide direct empirical evidence for the

existence of a life detector mechanism. On the other hand, our findings are not in

disagreement with such an account. Moreover, and this is speculative, if such a

mechanism indeed underlies the behavior of the participants in the present

experiments, the observations suggest an extension of the idea of a life detector as

originally conceived of. Indeed, it is not the case that the lower limbs necessarily

and exclusively carry the most useful information. Instead, for other actions (like

crawling) both the upper and lower limbs are diagnostic for motion direction or

(like hand walking) the lower limbs are not informative at all and information on

the upper limbs drive the decision on the direction of motion. Apparently, and

almost trivially, the most important factor is which limbs are directly responsible

for direct contact with – and therefore locomotion – across the ground surface:

the feet in the case of walking, the hands in the case of hand walking, and the

hands and the feet in the case of crawling. Whether there is also something

‘‘special’’ about animate motions in the case of transitive actions (in which

locomotion results from physical action on a tool) is an open question.
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