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Abstract

Construction and analyses of tissue specific networks is crucial to unveil the

function and organizational structure of biological systems. As a direct method to

detect protein dynamics, human proteome-wide expression data provide an

valuable resource to investigate the tissue specificity of proteins and interactions.

By integrating protein expression data with large-scale interaction network, we

constructed 30 tissue/cell specific networks in human and analyzed their properties

and functions. Rather than the tissue specificity of proteins, we mainly focused on

the tissue specificity of interactions to distill tissue specific networks. Through

comparing our tissue specific networks with those inferred from gene expression

data, we found our networks have larger scales and higher reliability. Furthermore,

we investigated the similar extent of multiple tissue specific networks, which proved

that tissues with similar functions tend to contain more common interactions.

Finally, we found that the tissue specific networks differed from the static network in

multiple topological properties. The proteins in tissue specific networks are

interacting looser and the hubs play more important roles than those in the static

network.

Introduction

A static protein-protein interaction (PPI) network describes a set of physical

associations that can occur between proteins. However, only a subset of proteins

can be expressed and interact with each other in any particular cell or tissue.

Integrating interaction and expression data, we can analyze the interplay between

protein expression and physical interactions in humans. The basic idea is taking

the static protein interaction network as a skeleton, and searching specific sub-

networks from it, according to the expression level changes of proteins in different
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tissues. Its main goal is constructing tissue specific PPI networks in order to

understand the dynamics of biological systems [1–3].

Through analyzing genome-wide gene expression patterns, researchers

proposed plenty of methods to identify tissue specific and ubiquitously expressed

(housekeeping) genes [4, 5]. For example, Dezso et al. measured whole genome

expression in 31 human tissues, identifying 2,374 housekeeping genes expressed in

all tissues, and genes uniquely expressed in each tissue [6]. Bossi et al. combined a

large-scale protein interaction network with gene expression profiles in 79 tissues,

to identify tissue specific proteins [7]. They found that the tissue specific proteins

have fewer physical interactions and tend to be recently evolved proteins,

compared with the universally expressed proteins. Most tissue specific proteins

do, however, bind to universally expressed proteins. This result was further

confirmed by Zhu et al.’s work [8]. These investigations showed that there were

significant differences between housekeeping proteins and tissue-specific proteins,

in both network properties and functions.

Similar to the tissue specificity of genes, the tissue specificity of interactions

were also investigated [9, 10]. Lopes et al. combined the PPI network from

multiple databases with gene expression data from 84 tissues/cells, and

constructed tissue specific sub-networks [9]. They found that tissue specific sub-

networks possess significantly fewer interactions than the original PPI databases

(between 1,25%). These sub-networks are considerably more fragmented than

the parent networks, but they have stronger biological relevance with the tissues

and more high-confidence interactions. In addition, the comparison of tissue

specific sub-networks with the global static network is of great importance to

establish high-confidence interaction networks.

However, these findings were all based on the tissue specific networks inferred

from gene expression data. With the announcement of the human proteome map

[11, 12], it is necessary to construct large-scale tissue specific networks based on

protein expression data and comprehensively analyze their functions and network

properties. In this paper, we firstly identified the tissue specific proteins and

housekeeping proteins and analyzed their particular interacting patterns.

Secondly, we focused on the tissue specificity of interactions to establish tissue

specific PPI networks. Thirdly, we investigated the differences between tissue

specific networks inferred from gene expression data and protein expression data,

as well as the similarity of various tissue specific networks. Finally, we computed

the topological properties of tissue specific networks and the static network in

order to reveal the structure characteristic of tissue specific networks.

Materials and Methods

Human protein expression data

Human protein expression data is coming from the dataset reported by Kim et al.,

who presented a draft map of the human proteome using high-resolution Fourier-

transform mass spectrometry [11]. This dataset contained the proteomic profiling
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of 30 histologically normal human samples, including 17 adult tissues, 7 fetal

tissues and 6 purified primary haematopoietic cells, resulted in identification of

proteins encoded by 17,294 genes accounting for approximately 84% of the total

annotated protein-coding genes in humans.

Conservation analysis

We calculated the dN/dS values for all expressed proteins to characterize their

evolution rates (S1 Table). The synonymous and non-synonymous substitution

rates between human and mouse were obtained from Ensembl (http://www.

ensembl.org/biomart/martview/).

The integrated human protein interaction network

We established an integrated human protein interaction network by combing the

PPI data from multiple databases. Firstly, we downloaded the global human

physical protein interaction network from previous material [7], including data

from 21 different sources to form a network of 80,922 physical interactions

between 10,229 human proteins. To enlarge the scale of protein interaction data,

we then combined it with the iRefIndex database [13], which extracted original

PPIs from BIND, BioGRID, CORUM, DIP, HPRD, IntAct, MINT, MPact, MPPI

and OPHID database. To ensure the reliability of protein interactions, only

interactions supported by at least one piece of direct experimental evidence were

included to demonstrate physical association between two human proteins.

Through unifying protein accessions and deleting redundant interactions, we

finally established a PPI network, containing 18,425 proteins and 193,273

interactions (S2 Table).

Results

Identification of tissue specific proteins and interactions

We defined a protein to be universal if it was expressed in all the 30 tissues and cell

lines. Accordingly, tissue specific proteins are the proteins expressed in only one

tissue or cell line. Based on human protein expression data of Kim et al. [11], we

found that proteins expressed in more tissues/cells tend to have higher expression

level (Pearson correlation coefficient R50.22, P57.006102192) and more

interacting neighbors (R50.20, P51.326102124). At the same time, proteins

expressed in more tissues/cells tend to have lower evolutionary rate (R520.23,

P51.966102180), in accordance with the previous result obtained from mRNA

dataset [7]. The method to obtain the evolutionary rates of proteins was given in

the section of Materials and Methods. Then, we defined an interaction as tissue

specific interaction if their interacting proteins can be co-expressed in one tissue/

cell, or housekeeping interaction if their interacting proteins co-expressed in all

tissues/cells. In theory, only if two genes express simultaneously in a tissue/cell,

their products can interact with each other in some specific conditions. Based on
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protein expression data of Kim et al. [11], we identified 6,792 tissue specific

interactions and 22,069 housekeeping interactions (S3 Table).

The number of tissue/cell types where a protein/interaction was observed was

counted, as shown in Fig. 1. There are certain differences between the expression

distribution of proteins and interactions in tissues/cells. The distribution of

proteins has a obvious trough of wave, meaning that the number of universally

expressed and selectively expressed proteins are much larger than those of proteins

expressed in 2,29 tissues/cells. However, the distribution of interactions followed

an unimodal pattern, in which the number of housekeeping interactions is much

larger than those of proteins expressed in 1,29 tissues/cells. This result inferred

from the dataset of Kim et al. [11] indicated that the universally expressed

proteins tend to interact with other universally expressed proteins, while

selectively expressed proteins tend to interact with all kinds of proteins.

To avoid the bias of single protein expression dataset, we used the overlap of

proteins from the datasets of Kim et al. [11] and Wilhelm et al. [12] to determine

tissue specific proteins and housekeeping proteins. As a result, we found 627 tissue

specific proteins and 1,093 housekeeping proteins (S4 Table), which were proteins

expressed in one tissue/cell or all tissues/cells in both protein expression datasets.

To illustrate the interacting pattern of proteins, we counted the number of

proteins interacting with housekeeping proteins and tissue specific proteins

according to their different tissue expression number. To eliminate the influence

of tissue expression number, we computed the average interaction ratio of

proteins according to their tissue expression number (Fig. 2). It can be confirmed

that housekeeping proteins and tissue specific proteins have significantly different

interacting patterns, meaning that compared with housekeeping proteins, tissue

specific proteins are more likely to interact with all kinds of proteins. Especially,

tissue specific proteins have extensive interactions with housekeeping proteins,

which are usually core cellular components in the PPI network. This trend well

coincides with the previous result obtained from mRNA dataset [7].

Construction of tissue specific networks

We used human protein expression data to determine the tissues/cells of the

human body in which protein interactions can occur. If two proteins co-expressed

in a tissue/cell and meanwhile they are available in the integrated human protein

interaction network, then they can physically interact with each other in this

tissue/cell in some conditions. By identifying all the specific interactions in each

tissue/cell, we established the tissue specific networks in 30 tissues/cells (S5 Table).

Differed from the static network with 13,509 proteins and 172,848 interactions,

only a part of proteins (88.05,91.55%) and interactions (50.06,62.95%) were

observed in the tissue specific networks. As shown in Table 1, the percent of

interactions in tissue specific networks occupying the static network is generally

lower than that of proteins. This result is reasonable because the tissue specific

interaction required the co-expression of two proteins, which is more difficult to

achieve than the expression of single protein. Since proteins usually play roles by
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interacting with each other, we deemed that it is more meaningful to analyze the

tissue specific interactions rather than tissue specific proteins. In addition, the

tissue specific networks established by our methods are much larger than those

reported by Lopes et al. [9]. The reason may be lie in the high coverage of human

protein expression data we used.

Comparison of tissue specific networks inferred from protein and

mRNA expression data

Investigators usually identified tissue specific networks from gene expression data,

before the proteome-wide protein expression data was available. For typically,

Bossi et al. used gene expression data [14] to determine the cells and tissues of the

human body in which each of these interactions can occur [7]. If two genes are co-

expressed in a cell, then under some conditions their products can physically

interact in that cell. To compare these two different data sources, we extracted

tissue specific networks in 19 tissues/cells inferred from human protein and

mRNA expression data (Fig. 3).

As shown in Fig. 3, the scales of most tissue specific networks inferred from

protein expression data are larger than those of networks inferred from mRNA

expression data. Especially, the overlap of interactions inferred from different data

sources only occupied about a half of those inferred from protein expression data

(10.58,53.14%). This can be attributed to that the co-expression genes will not

certainly lead to protein interactions. Since mRNA expression data is an indirect

method to observe protein expression, we can deem that the tissue specific

networks inferred from protein expression data are more credible than those

Fig. 1. The distribution of proteins and interactions expressed in tissues/cells.

doi:10.1371/journal.pone.0115074.g001
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inferred from mRNA expression data. This also means that previous biological

findings based on microarrays might have to be re-examined using protein

expression datasets.

Fig. 2. The interaction ratio of (A) housekeeping proteins and (B) tissue specific proteins.

doi:10.1371/journal.pone.0115074.g002
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Analyses of overlap interactions across tissue specific networks

Based on the tissue specific networks established, we counted the number of

common interactions across different tissue specific networks. By computing the

percent of overlap interactions occupying each tissue specific network, the

similarity of different networks can be investigated (Fig. 4). Some tissue specific

networks show very high similarity, such as fetal liver and fetal gut (90.88%), adult

retina and adult spinal cord (90.65%), adult colon and adult rectum (90.65%). In

general, we can infer that tissues with similar functions tend to contain more

common interactions. By contrast, there are only moderate similarity between

Table 1. Tissue specific networks inferred from protein expression data.

Tissue/Cell Number of proteins Percent of proteins(%) Number of interactions Percent of interactions(%)

Fetal Heart 12,368 91.55 101,864 58.93

Fetal Liver 12,055 89.24 92,323 53.41

Fetal Gut 12,522 92.69 108,548 62.80

Fetal Ovary 12,096 89.54 93,672 54.19

Fetal Testis 12,365 91.53 104,401 60.40

Fetal Brain 11,972 88.62 86,524 50.06

Adult Frontal Cortex 12,374 91.60 101,715 58.85

Adult Spinal Cord 12,081 89.43 92,704 53.63

Adult Retina 12,506 92.58 108,809 62.95

Adult Heart 12,151 89.95 93,794 54.26

Adult Liver 12,391 91.72 104,517 60.47

Adult Ovary 11,962 88.55 86,563 50.08

Adult Testis 12,376 91.61 101,865 58.93

Adult Lung 12,106 89.61 92,324 53.41

Adult Adrenal 12,506 92.58 108,549 62.80

Adult Gallbladder 12,157 89.99 93,673 54.19

Adult Pancreas 12,389 91.71 104,402 60.40

Adult Kidney 11,965 88.57 86,525 50.06

Adult Esophagus 12,361 91.50 101,716 58.85

Adult Colon 12,112 89.66 92,705 53.63

Adult Rectum 12,551 92.91 108,810 62.95

Adult Urinary Bladder 12,138 89.85 93,795 54.26

Adult Prostate 12,381 91.65 104,518 60.47

Placenta 11,894 88.05 86,564 50.08

B Cells 12,396 91.76 101,865 58.93

CD4 Cells 12,109 89.64 92,325 53.41

CD8 Cells 12,534 92.78 108,550 62.80

NK Cells 12,162 90.03 93,674 54.19

Monocytes 12,379 91.64 104,403 60.40

Platelets 11,931 88.32 86,525 50.06

Static network 13,509 100 172,848 100

doi:10.1371/journal.pone.0115074.t001
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fetal tissues and their corresponding adult tissues, for example fetal liver and adult

liver (83.05%), fetal heart and adult heart (71.08%), indicating the tissue specific

networks change largely in the course of growth and differentiation.

By computing the average percent of overlap interactions occupying each tissue

specific network, we obtained the extent of tissue specificity in each tissue/cell type

(Fig. 5). The result shows that the CD8 Cells have the lowest tissue specificity in

all the tissues/cells, because their network has average maximum common

interactions (79.23%) with the networks in other tissues/cells. Platelets have the

strongest tissue specificity, since their tissue specific network has average fewest

common interactions (67.26%) with other networks. In general, there is a

relatively high percent of common interactions across different tissues/cells

(average 67.26,79.23%), indicating different tissues/cells usually play roles

through similar interactions or working mechanism despite of their various

functions.

Analyses of topological properties in tissue specific networks

As reported, most biological networks have scale-free, small-world property and

modularity [15]. Here, we investigated the general topological properties of tissue

specific networks, in order to reveal their particular characteristics compared with

the static PPI network.

We selected six typical topological indexes of networks, including degree

exponent, average degree, average path length, diameter, betweeness and average

clustering coefficient. Based on the degree of individual nodes, the degree

distribution of a network, P(k), is defined, which gives the probability that a

selected node has exactly k links. Most biological networks are scale-free [16],

Fig. 3. The comparison of tissue specific networks inferred from protein and mRNA expression data.

doi:10.1371/journal.pone.0115074.g003
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which means that their degree distribution approximates a power law, P(k),k2c,

where c is the degree exponent. The smaller the value of c, the more important the

role of the hubs is in the network. An undirected network with N nodes and L

links is characterized by an average degree ,k.52L/N. The mean path length

represents the average over the shortest paths between all pairs of nodes and offers

a measure of a network’s overall navigability [17]. The diameter of a network is

the longest shortest path within a network. Betweeness of network represents the

average loading flux of all nodes. In addition, the average clustering coefficient

characterizes the overall tendency of nodes to form clusters or groups [18]. The

closer the local clustering coefficient is to 1, the more likely it is for the network to

form clusters.

Using the network analysis tool Pajek [19] and self-developed programs, we

computed six topological indexes of 30 tissue-specific networks and the static

Fig. 4. The heat map of network similarity.

doi:10.1371/journal.pone.0115074.g004
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network (S6 Table). As most biological networks, the tissue specific networks have

scale-free, small-world property and modularity. However, the tissue specific

networks have larger degree exponents (P58.96610229), network diameter

(P57.35610210) and mean path lengths (P53.02610236), smaller average

degrees (P50.013), betweeness (P51.49610234) and average clustering coeffi-

cients (P51.69610227) than the static network (Fig. 6). This result indicated that

the tissue specific networks are linked looser, their hubs play more important

roles, they have longer communication paths and contain less clusters than the

static network.

Conclusion

In this paper, we constructed 30 tissue specific networks based on human protein

expression data, and analyzed their properties and functions. Through the

analyses of tissue specific networks, we found that housekeeping proteins and

tissue specific proteins have significantly different interacting patterns. The

housekeeping proteins tend to interact with other housekeeping proteins, while

tissue specific proteins tend to interact with all kinds of proteins. Especially, we

focused on the tissue specificity of interactions considering which is higher than

that of genes. Due to the high coverage of protein expression data, we established

larger-scale tissue specific networks than those reported in [9]. Based on the

overlap interactions across different tissues/cells, we compared the similar extent

of multiple tissue specific networks. As a result, we found that tissues with similar

Fig. 5. Average overlap percent across different networks occupying each tissue specific network.

doi:10.1371/journal.pone.0115074.g005
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functions tend to contain more common interactions, while the tissue specific

networks change largely in the course of growth and differentiation. Furthermore,

we found that the tissue specific networks differed from the static network in

many aspects. The proteins in tissue specific networks are interacting looser and

have less interacting neighbors than those in the static network. These findings can

help understand the function and structure of tissue specific networks and reveal

the inherent working mechanism of biological systems.
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