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Abstract

Motivation: 16S rDNA hypervariable tag sequencing has become the de facto

method for accessing microbial diversity. Illumina paired-end sequencing, which

produces two separate reads for each DNA fragment, has become the platform of

choice for this application. However, when the two reads do not overlap, existing

computational pipelines analyze data from read separately and underutilize the

information contained in the paired-end reads.

Results: We created a workflow known as Illinois Mayo Taxon Organization from

RNA Dataset Operations (IM-TORNADO) for processing non-overlapping reads

while retaining maximal information content. Using synthetic mock datasets, we

show that the use of both reads produced answers with greater correlation to those

from full length 16S rDNA when looking at taxonomy, phylogeny, and beta-diversity.

Availability and Implementation: IM-TORNADO is freely available at http://

sourceforge.net/projects/imtornado and produces BIOM format output for cross

compatibility with other pipelines such as QIIME, mothur, and phyloseq.

Introduction

The advent of high-throughput 16S rDNA microbial population sequencing has

revolutionized our ability to carry out culture independent surveys [1] and paved

the way to understanding the microbiome from environments ranging from the

practical [2, 3] to the exotic [4, 5]. The need for bioinformatics has grown hand-

OPEN ACCESS

Citation: Jeraldo P, Kalari K, Chen X, Bhavsar J,
Mangalam A, et al. (2014) IM-TORNADO: A Tool
for Comparison of 16S Reads from Paired-End
Libraries. PLoS ONE 9(12): e114804. doi:10.1371/
journal.pone.0114804

Editor: Paul Jaak Janssen, Belgian Nuclear
Research Centre SCKNCEN, Belgium

Received: May 1, 2014

Accepted: October 29, 2014

Published: December 15, 2014

Copyright: � 2014 Jeraldo et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All the data is available at Dryad. The
data DOI is doi: 10.5061/dryad.fm67n.

Funding: This work was supported by the Mayo
Clinic Center for Individualized Medicine
Microbiome Program. PJ was funded by the Mayo-
Illinois Strategic Alliance for Technology-Based
Healthcare. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors would also
note here that Prof. Bryan White is member of the
Editorial Board of PLOS ONE. This does not alter
the authors’ adherence to PLOS ONE Editorial
policies and criteria.

PLOS ONE | DOI:10.1371/journal.pone.0114804 December 15, 2014 1 / 19

http://sourceforge.net/projects/imtornado
http://sourceforge.net/projects/imtornado
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114804&domain=pdf
http://creativecommons.org/licenses/by/4.0/


in-hand with the increasing depth and complexities of microbiome analyses [6, 7].

The importance of being able to organize such analyses is epitomized by the

popularity of microbiome analysis pipelines such as QIIME [8] and mothur [9],

which collectively to date have more than 3000 citations.

Historically, most microbiome analyses were carried out using large amplicons

(.500 bp long) sequenced on the 454 pyrosequencing platform. Recently, due to

its higher throughput and multiplexing capability, Illumina sequencers have

become the preferred platform for microbiome analyses, despite the shorter reads

produced (100 to 300 bp long) [10–12]. The Illumina platform is currently used

by the microbiome community following two preferred approaches. The first

approach consists in designing small amplicons, to force the reads from the same

amplicon ends to overlap. These reads can then be assembled into a single read

longer than the 250 bp reads, thereby increasing their specificity. The second

approach focuses on sequencing the 250 bp ends of the large amplicons originally

crafted for the 454 platform. These regions have been previously studied [13, 14]

and optimized for capturing phylogenetic or taxonomic information. However,

this can lead to reads that do not overlap when sequenced on the Illumina

platform [15–18].

The use of non-overlapping paired reads requires a large amount of tracking to

maintain the proper linkages while preserving the necessary efficiency expected of

16S rDNA analyses, which typically take advantage of redundancy in the datasets.

While cases have been explored previously [16], existing analytical pipelines are

only built for analyzing single reads and do not track the linkages between the two

non-overlapping reads produced by Illumina, and such tracking can create a

‘‘potentially more complicated downstream pipeline’’ [19]. This can create a

conundrum for the researcher who may have to choose drawing conclusions

based on a single read [20], or altering their primer design to allow for

overlapping reads [11]. These former uses less than the maximum information

available and are suboptimal in the accuracy of the analyses they provide while the

bioinformatics for the latter has already been solved elsewhere by assembling the

paired-end reads [21, 22].

Here, we present an integrated workflow, known as the Illinois-Mayo Taxon

Organization from RNA Dataset Operations (IM-TORNADO), for carrying out

common microbiome analyses leveraging the information of the paired reads

provided by the Illumina sequencers to relate reads belonging to the same

amplicon, making the use of these non-overlapping reads accessible to a broader

base of users. We use our pipeline to compare the accuracy of results obtained

from paired reads versus single reads. We find that with regards to three common

operations–making multiple alignment, inferring taxonomy, and phylogeny–

utilizing the information contained in both reads leads to better performance than

analysis of any single read. Where possible, we build upon existing tools and link

to formats for further processing other popular pipelines [8, 9, 23] in order to

augment the growing community of computational tools for microbiome

analyses. In this article, we will first outline the general methodology of IM-

TORNADO and compare the performance of with IM-TORNADO when using

IM-TORNADO: Comparison of 16S Reads
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paired reads versus either read individually. We then describe, in detail, the

methods employed at every step. Finally, we discuss the significance of IM-

TORNADO’s improved performance using paired reads and its impact on future

experimental designs.

Approach

Paired-end sequencing produces 2 reads, read 1 (R1) and read 2 (R2), each from

opposite ends of a DNA fragment. In the case of 16S rDNA hypervariable tag

sequencing, these regions are selected by primers targeted to specific regions. We

approach the case where R1 and R2 do not overlap and the sequencing of the

amplified DNA fragment is incomplete due to the gap between the two reads.

Algorithms for taxonomy, multiple alignment, and phylogeny that do not take

into account this gap cannot be employed naively and require an organizational

framework to properly manage the link between each R1 and R2 read pair.

In this section, we describe results of an analysis pipeline for preparing non-

overlapping reads for analysis as a whole unit, without sacrificing one of the reads

in the pair. Our approach, IM-TORNADO, employs a number of smaller scripts

that uniformize and merge paired-reads for analysis by widely-used analytical

tools, guaranteeing reasonable comparability with existing studies. We test our

approach using a synthetic mock dataset that simulates 16S rDNA hypervariable

tag sequencing of V3–V5 and V6–V9 regions of 16S rDNA and show that IM-

TORNADO allows us to extract meaningful improvements in accuracy from non-

overlapping paired read analyses in comparison to single-end read analyses.

Details of our methodology are provided in the ‘‘Methods for Pipeline

Implementation’’ section, and information about operational taxonomic units in

these synthetic mock communities is discussed in the S1 Text and S2 Table.

Taxonomy

Determining taxonomy relies on profiling characteristics or alignments of

sequences in a reference database. 16S rDNA-based classification tools such as

Ribosomal Database Project (RDP) taxonomy classifier use 16S rDNA databases

such as Greengenes [24]. Algorithms for determining taxonomy expect an

ungapped sequence input, adding a layer of difficulty when utilizing non-

overlapping paired-end reads. We joined the paired-end reads using an ambiguous

nucleotide character before the data is input into the classifier in order to avoid

misinterpretation of the data while still retaining the information from both reads.

Table 1 shows the overall accuracy of taxonomic calls using paired, R1, R2, and

full length 16S rDNA. Accuracy was determined by comparison to the original

sequence in the synthetic mock dataset, whose taxonomy is pre-determined by the

reference database, in this case, Greengenes 13–5. Paired reads perform better than

either single end read, and paired reads generally outperform R1 by about the

same amount by which full length 16S rDNA outperforms the paired reads. In the

IM-TORNADO: Comparison of 16S Reads
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S1 Text we also discuss the effect of read quality errors and error-trimming on the

accuracy of the taxonomy assignment (see also S1 Table).

Multiple Sequence Alignment

Before making a comparison of phylogenies, we must make sure we make a

sensible choice for the tool used to create the sequence alignment used for the

phylogenies. In the case of high-throughput 16S rDNA sequencing, specialized

tools exist to guarantee a good alignment (based on the extensive knowledge of

ribosomal RNA) while performing a very fast multiple sequence alignment. Two

tools stand out for this task. The Nearest Alignment Space Termination (NAST)

algorithm [25] uses a template of pre-aligned sequences which are used to find the

closest template reads matching the query read, align to the template, and

carefully introduce misalignments to make sure the query matches the template

structure. The other tool, Infernal [26] is a more general-purpose RNA toolkit

which contains a module which aligns queries to a reference secondary structure.

In particular, a set of 16S reads is used by the RDP Pipeline to create a secondary

structure model using Infernal, and used to align query reads.

In Fig. 1, we show the result of comparing 100 phylogenetic trees (see

Methods), created from the same reads randomly chosen from the Greengenes

13–5 database, but using different sequence aligners. We compared PyNAST [27]

as bundled with QIIME version 1.8.0 (relaxing the minimum alignment identity

threshold down to 50%, to ensure all queries are processed), and Infernal version

1.1 [28]. We compare the maximum likelihood trees created using FastTree

version 2.7.1 [29] by examining the Gamma Log Likelihoods reported for each

tree. The trees created using Infernal have significantly higher log likelihoods

(p,0.0001, Wilcoxon signed ranked test) than the trees created using PyNAST,

meaning the multiple sequence alignments are of higher quality. This is in

agreement with previous results comparing these two algorithms [30].

Phylogeny

Phylogenetic trees are often used as part of the metric of choice [31] when

comparing organismal differences between communities. Using the multiple

Table 1. Taxonomy comparison.

Library type Domain Phylum Class Order Family Genus Species

Paired 100.0 99.95 99.91 99.59 98.25 94.32 90.78

R1 100.0 99.91 99.83 99.18 97.41 92.12 87.60

R2 100.0 99.89 99.76 99.10 97.14 87.38 80.47

Full length 100.0 99.99 99.97 99.68 99.88 96.30 94.57

Comparison of accuracy from taxonomy calls using paired, read 1 (R1), read 2 (R2), and full length 16S rDNA. Analyses were carried out using the
Ribosomal Database Project taxonomy classifier with the complete Greengenes database. Using Paired read analysis provides more accurate taxonomic
classification than either R1 or R2 alone across all taxonomic levels. Full length 16S rDNA was used for comparison purposes.

doi:10.1371/journal.pone.0114804.t001
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alignment scheme from Section ‘‘Multiple Sequence Alignment’’ to faithfully

incorporate both non-overlapping reads R1R2, we are able to obtain more

accurate phylogenies than using either R1 or R2.

We examine the quality of a given tree generated from paired-end sequencing

data by looking at how well it agrees with a tree generated using the full length 16S

rDNA from our synthetic mock dataset. Greater correlation between the branch

distances indicates more similarity between the trees. A tree that agrees well with

its full length counterpart captures the relationships between samples. Fig. 2

shows the results from 100 comparisons between full length 16S rDNA phylogeny

and its short read counterparts generated using paired reads, R1, or R2. As shown,

paired read analysis preserves significantly more of the phylogenetic tree structure

than either R1 or R2 alone.

b-diversity
Similarities and differences between microbial communities, or b-diversity, are

often calculated from a phylogenetic tree. Here, we investigate the effect of using

paired reads R1R2 versus single reads R1 or R2 on the fidelity of b-diversity.

We examine the effect of using paired versus single-end reads in determining

b-diversity between 100 randomly constructed communities. In order to assess

Fig. 1. Comparison of alignment tools. Plot of Gamma Log Likelihoods of 100 trees created from paired
reads selected from the Greengenes 13–5 database, and aligned using PyNAST and Infernal version 1.1.
Likelihoods in the trees created using Infernal are significantly better than the trees created with PyNAST
(p,0.0001, Wilcoxon signed ranked test), strongly suggesting that Infernal produces better quality alignments
than PyNAST for the same input reads.

doi:10.1371/journal.pone.0114804.g001

IM-TORNADO: Comparison of 16S Reads
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accuracy, we use the corresponding full length 16S rDNA sequences from the

reference database used to construct the synthetic mock dataset. Fig. 3 shows a

comparison between the b-diversity distance matrices generated from paired, R1

and R2 reads. Paired reads retain a significantly greater amount of information

than either single-end read alone.

Use Case

The purpose of this use case test was to create a synthetic dataset that contains

similar diversity and relatedness of organisms that might be found in a real

dataset. For our example case, we chose to mimic the characteristics of a stool

dataset (included with the validation datasets) by using closed reference mapping

to full-length 16S rDNA from Greengenes 13–5 (see Methods). These full-length

16S rDNA reference reads then allowed us to the reproduce multiple artificial

datasets using different primer regions what we could then compare against full

length 16S rDNA reads. We then tested the different read libraries by computing

their respective unweighted UniFrac matrices and compared the results of full-

length to paired, R1 and R2 libraries using a Mantel correlation test. In Table 2,

we show the results of the Mantel correlation test. We see that the paired reads

have a higher correlation to the full-length reads than the single reads. This is

concordant with the results shown in Fig. 3, which shows we expect to capture the

same improvements when using real data.

Fig. 2. Comparison of phylogenetic trees between libraries. Plot of a Mantel correlation test comparing
cophenetic distance matrices calculated from phylogenetic trees created using paired, R1 and R2 (for both the
V3–V5 and V6–V9 primer pairs) versus the distance matrix created from the corresponding full-length 16S
trees. A higher correlation value means the trees are more closely related to the full-length trees. Here, the
paired trees are significantly closer to the full-length trees than the R1 and R2 trees (p,0.0001, Wilcoxon
signed ranked test, using 100 synthetic mock communities), strongly suggesting that combining the use of
paired reads leads to phylogenies closer to what is obtained from full-length reads, even when the chosen
primers create non-overlapping reads.

doi:10.1371/journal.pone.0114804.g002

IM-TORNADO: Comparison of 16S Reads
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Methods for Pipeline Implementation

In the following, we describe the steps performed by the IM-TORNADO pipeline

to clean, merge, track, pick OTU, infer taxonomy and calculate phylogeny for a

project. A graphical outline of the pipeline is presented in Fig. 4

Input Data

The input for the IM-TORNADO pipeline is a set of demultiplexed fastq-

formatted files. A metadata file describes the samples and other data the end user

wants to be included in the output BIOM-formatted file.

Quality Filtering

Demultiplexed sequence files are subject to quality filtering using Trimmomatic

[32] version 0.30, with a hard cutoff of PHRED score Q3 for 59 and 39 ends of the

reads (parameters LEADING: 3 and TRAILING: 3), trimming of the 39 end with a

moving average score of Q15, with a window size of 4 bases (parameter

SLIDINGWINDOW: 4:15), and removing any remaining reads shorter than 75%

[10] of the original read length (for example, parameter MINLEN: 112 for 150 bp

long reads, MINLEN: 187 for 250 bp long reads or MINLEN: 225 for 300 bp long

reads). Reads with any ambiguous base calls are discarded.

Fig. 3. Comparison of b-diversity between libraries. Plot of a Mantel correlation test comparing unweighted
UniFrac distance matrices created using synthetic mock communities from paired, R1 and R2 reads (for both
the V3–V5 and V6–V9 pairs) versus the distance matrix created from the corresponding full-length 16S
synthetic mock communities. A higher correlation value means the distance matrices, and hence their b-
diversity, are more closely related to the full-length communities. Here, the communities from paired reads are
significantly closer to the full-length communities than the R1 and R2 communities (p,0.0001, Wilcoxon
signed ranked test, using 100 synthetic mock communities), strongly suggesting that combining the use of
paired reads leads to results closer to what is obtained from full-length reads, even when the chosen primers
create non-overlapping reads.

doi:10.1371/journal.pone.0114804.g003
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Merging of Reads, Length Trimming and Concatenation

Surviving read pairs are grouped into two files, one for ‘‘read 1’’ (R1) and one for

‘‘read 2’’ (R2) sequences. We keep track of the sample of origin for each read, for

later use in writing out the final OTU observation table. We trim the read lengths

down to a specified cutoff. For R1, we keep the whole read; for R2, we trim down

to around 88% of the maximum read length (e.g. 200 bp long for 250 bp long

reads), given the overall lower sequencing quality of read 2. This uniformizes the

length of both reads to satisfy the global alignabiltiy requirement of UPARSE [33].

At this stage, we keep all reads shorter than this cutoff. A third file is created by

concatenating the matching trimmed reads from both reads 1 and read 2. Only

reads with matching pairs in both read files are considered. This file will be used

for further processing. Finally, a fourth file is created by stitching matching reads

with an ambiguous nucleotide character ‘‘N’’ between read 1 and read 2. This file

is to be used for taxonomy assignment, where a k-mer based approach will ignore

k-mers containing ambiguous bases during the classification steps.

Find OTU Representatives

The reads from the ‘‘Merging of Reads, Length Trimming and Concatenation’’

section are dereplicated, building clusters of reads with 100% similarity using

mothur, and annotated with cluster size. To ensure the use of high quality reads

when finding the OTU representatives, reads shorter than the cutoff length are

discarded, as well as singleton reads. Reads are sorted by cluster size and processed

using USEARCH to find de novo the OTU representatives using the UPARSE

algorithm. This step also removes de novo chimeric reads, resulting in a set of

OTU representatives of very high sequence quality [33].

Taxonomy Assignment

Out of many possible ways of assigning taxonomy for pared-end 16S reads, we

have decided to use k-mer-based methods, since, besides their speed and accuracy,

they allow us to query reads with gaps in them (marked as unknown nucleotides)

without loss of accuracy. In particular, we use mothur’s implementation [9] of the

Ribosomal Database Project’s naive Bayesian classifier [34]. For this step, we

classify the reads against the Greengenes 13–5 database, or in the case of the paired

Table 2. Library comparison in a realistic sample.

Library type Mantel r statistic

Paired 0.931

R1 0.910

R2 0.813

Mantel r statistic comparing the unweighted UniFrac matrices for different short-read 16S libraries against a
full-length 16S library, based on a real paired-end libary sequenced from stool samples. The paired reads
have a higher correlation to the full-length library than any of the other single read libraries.

doi:10.1371/journal.pone.0114804.t002

IM-TORNADO: Comparison of 16S Reads
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Fig. 4. IM-TORNADO pipeline workflow. Schematic of the IM-TORNADO pipeline workflow.

doi:10.1371/journal.pone.0114804.g004
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reads, we look up the OTU representatives in the read library built for this

purpose in the ‘‘Merging of Reads, Length Trimming and Concatenation’’ section

and classify those reads. After classification, we remove fully unclassified reads

from the OTU representatives, as they are presumed contaminants (in most cases,

these are phiX reads leftover from sequencing).

Structural Alignment

After taxonomy assignment, reads R1 and R2 are aligned using Infernal version

1.1 [28], using a secondary structure model created using the Ribosomal Database

Project’s (RDP) [35] recommended training set. As per RDP recommendations,

options for the aligner are set at ‘‘-g –sub –notrunc’’ (with the ‘‘–g’’ and

‘‘–notrunc’’ options added as a requirement in version 1.1 of Infernal). Structural

alignments produces better multiple sequence alignments of 16S rDNA short

reads amplicons (see Fig. 1) than other template-based methods [30]. For the

paired reads, the reads are split into their R1 and R2 components by looking up

the corresponding reads in the R1 and R2 files, and then aligned separately using

Infernal. This is necessary because Infernal does not expect a large gap in between

the two components, otherwise alignment will fail. After alignment, the scores are

analyzed and all alignments with negative scores are removed, as well as the

corresponding unaligned reads. These negative scores indicate reads that aligned

very poorly to the secondary structure model. For the paired alignments, after

removing these low scoring reads, the R1 and R2 components are concatenated

back together.

Mapping to OTU Representatives

The reads output in the ‘‘Merging of Reads, Length Trimming and

Concatenation’’ section are then mapped against their corresponding set of

unaligned, clean OTU representatives using USEARCH at 97% sequence identity.

The resulting table is then parsed to obtain the different OTU counts per sample,

and finally combined with taxonomy information and other metadata into a

BIOM-formatted [36] file using the biom-format python package. The unmapped

reads are presumed to be either chimeric reads, contaminants or singletons distant

to any reported OTU.

Generation of Phylogenetic Trees

In order to obtain the evolutionary relationships between the members of the

microbial communities, the clean alignments obtained in the ‘‘Structural

Alignment’’ section are used to create a phylogeny. Empty columns are removed

from the alignments of the OTU representatives, and the trees are calculated using

FastTree version 2.1.7 [29], using options ‘‘-nt -gtr -gamma.’’

IM-TORNADO: Comparison of 16S Reads
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Methods for Validation Using Synthetic Communities

To asses the performance and accuracy of our choice of primers and tools when

compared to full-length 16S reads, we used 100 synthetic communities of 20

samples each, for two pairs of primers targeting regions V3–V5 and V6–V9. We

ran a simplified version of our pipeline and compared b-diversity metrics and

phylogeny metrics to quantify differences with the equivalent result obtained from

the corresponding full-length 16S reads.

Input Data

To create our synthetic communities, we started with the complete 16S

Greengenes 13–5 database. Using the PrimerProspector tool [37] we selected

artificial paired amplicons matching forward primer 357F (CCTACGGGA-

GGCAGCAG) and reverse primer 926R (CCGTCAATTCMTTTRAGT) for the

V3-V5 primer pair, each of length 250 bp. For the V6-V9 primer pair, we used

forward primer 968F (AACGCGAAGAACCTTAC) and reverse primer 1492R

(CGGTTACCTTGTTACGACTT), to obtain amplicons also of length 250 bp. For

the full length reads, we selected artificial amplicons matching primers 27F

(AGAGTTTGATCMTGGCTCAG) and 1492R (CGGTTACCTTGTTACGACTT).

We kept reads whose IDs were found both in the paired-end and full-length

libraries, as well as having no ambiguous nucleotide characters in their reads. The

total number of reads surviving this selection was 142,610 reads for the V3–V5

library, and 143,085 reads for the V6–V9 library. No artificial quality scores were

created, hence the reads will be assumed to be perfect.

Synthetic Communities

For each of the primer pairs used for validation, we created 100 synthetic

communities, each with 20 samples. Each sample has 2,500 unique IDs randomly

picked from the selected read set from the ‘‘Input Data’’ section. For each of the

IDs we created a set of clone reads whose size was chosen from a random

distribution resembling a log-series model of ecological communities [38]. The

selected IDs with their respective multiplicities were used to select the

corresponding reads from the master full-length and paired-end libraries to create

three different sets of communities with identical IDs: full-length, R1 and R2.

Merging of Reads and Concatenation for Validation

As in the ‘‘Merging of Reads, Length Trimming and Concatenation’’ section. the

R1 and R2 libraries were grouped into a single file for each read. Read lengths in

both library R1 and R2 were left unmodified. A third library was created by

concatenating the corresponding reads from both R1 and R2, created the paired

library.

IM-TORNADO: Comparison of 16S Reads
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Finding OTU Representatives for Validation

The three libraries from the ‘‘Merging of Reads and Concatenation for

Validation’’ section and the full-length library are dereplicated, building clusters

of reads with 100% similarity using mothur, and annotated with cluster size. To

ensure the use of high quality reads when finding the OTU representatives,

singleton reads are discarded. No inspection of read lengths is necessary because,

in the case of libraries R1, R2 and paired, the reads are of uniform length by

construction, and in the case of the full-length library, the reads are globally

alignable by construction (from primers at both ends of the reads). Reads are

sorted by cluster size and processed using USEARCH to find de novo the OTU

representatives using the UPARSE algorithm. This step also removes de novo

putative chimeric reads, resulting in a set of OTU representatives of very high

sequence quality [33].

Structural Alignment for Validation

Libraries R1, R2 and full-length are aligned using Infernal version 1.1 [28], using a

secondary structure model created using the Ribosomal Database Project’s (RDP)

[35] recommended training set. As per RDP recommendations, options for the

aligner are set at ‘‘-g –sub –notrunc’’ (with the ‘‘–g’’ and ‘‘–notrunc’’ options

added as a requirement in version 1.1 of Infernal). For the paired reads, the reads

are split into their R1 and R2 components by looking up the corresponding reads

in the R1 and R2 libraries, and then aligned separately using Infernal. This is

necessary because Infernal does not expect a large gap in between the two

components, otherwise alignment will fail. Alignment scores are not inspected

since the reads are free of contaminants by construction.

Mapping to OTU Representatives for Validation

The reads output in the ‘‘Merging of Reads and Concatenation for Validation’’

section are then mapped against their corresponding set of unaligned, clean OTU

representatives using USEARCH at 97% sequence identity. The resulting table is

then parsed to obtain the different OTU counts per sample, and finally combined

with taxonomy information and other metadata into a BIOM-formatted [36] file

using the biom-format python package. The unmapped reads are presumed to be

either chimeric reads or singletons distant to any reported OTU.

Generation of Phylogenetic Trees for Validation

In order to obtain the evolutionary relationships between the members of the

microbial communities, the clean alignments obtained in the ‘‘Structural

Alignment for Validation’’ section are used to create a phylogeny. Empty columns

are removed from the alignments of the OTU representatives, and the trees are

calculated using FastTree [29]. These trees will be used for comparisons of

b-diversity.

IM-TORNADO: Comparison of 16S Reads
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These trees are not suitable for direct comparison of the phylogenetic structure

between the different libraries, since the OTU picking procedure may choose

different reads as representatives, as well as a different number of OTUs. To solve

this, we took as a reference the trees created for the full-length reads, created the

equivalent libraries with R1, R2 and paired reads and re-run the alignment and

calculate the new trees. This way, the trees will have the same number of leaves,

same leaf IDs and hence directly comparable.

Comparison of b-Diversity Between the Libraries for Validation

For each of the 100 synthetic communities, we took the resulting BIOM files and

phylogenetic trees (for all four libraries, R1, R2, paired and full-length), and

calculated the unweighted UniFrac distance matrix [31] between the 20 samples of

each community, using QIIME 1.7.0 [8]. We compared the distance matrices of

the libraries R1, R2 and paired to the corresponding full-length distance matrix

using a Mantel correlation test, as implemented by the R package vegan [39] (see

Fig. 3), and assessed the significance of the results using a signed, ranked

Wilcoxon test as implemented in R.

Comparison of Phylogenies Between the Different Libraries for

Validation

For each of the 100 synthetic communities, we took the full-length tree and the

equivalent and comparable trees created using libraries R1, R2 and paired, and

calculated the cophenetic distance matrix (which measures the distances between

leaves of the phylogenetic tree through branch lengths), as implemented in the R

package ape [40]. The distance matrices were compared using a Mantel

correlation test, as implemented in the R package vegan [39] (see Fig. 2), and

assessed the significance of the results using a signed, ranked Wilcoxon test as

implemented in R.

Data Availability

All the data created for the synthetic communities analysis, including reads,

resulting OTU tables and scripts, are available for download from the Dryad

repository. The data DOI is doi: 10.5061/dryad.fm67n.

Methods for Validation Using a Sample-Modeled Synthetic

Mock Community

As another validation of our approach, we used an existing set of read libraries

from stool samples to create a synthetic mock community based on real

gastrointestinal microbiome data, for a more realistic case testing.

IM-TORNADO: Comparison of 16S Reads
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Ethics Statement and Sample Collection

Subjects were consented under IRB #11-002697, which was approved and

reviewed by the Mayo Clinic Institutional Review Board. Written consent was

provided by all subjects. A total of 20 multiple sclerosis patients were consented

under Mayo Clinic IRB #11-002697 and stool samples were collected either in

clinic or using a specimen mailer tube. Upon arrival, samples were frozen at

280 C̊ until they were ready to be processed.

DNA Library Preparation

DNA extraction was carried out according to the Manual of Procedures on the

Human Microbiome Project website http://www.hmpdacc.org using physical and

chemical lysis with a FastPrep-24 (MP Biomedicals, Santa Ana, CA) and

PowerSoil Extraction Kit (MoBio, Carlsbad, CA). Amplification targeted V3 and

V5 regions, whose performance has been previously characterized [41, 42], using

primers 357F (AATGATACGGCGACCACCGAGATCTACACTATGGTAATTG-

TCCTACGGGAGGCAGCAG) and 926R (CAAGCAGAAGACGGCATACGAGA-

T-NNNNNNNNNNNN-AGTCAGTCAGCCCCGTCAATTCMTTTRAGT) with

barcodes 55–76 from Caporaso et al. [10]. PCR was run through 34 cycles of 98 C̊

for 15 seconds, 70 C̊ for 20 seconds, 72 C̊ for 15 seconds, in accordance to the

temperatures from the polymerase hotstart mix for Kapa Hi-Fi (Kapa Biosystems,

Boston, MA). Electrophoresis was then carried out using a 2200 TapeStation

(Agilent Technologies, Santa Clara, CA). After verifying there were no other large

bands besides the amplicon, purification was carried out using magnetic beads.

Concentrations for each sample were then diluted to 10 nM and pooled for

sequencing. Amplicons were then sequenced on a MiSeq sequencer (Illumina, San

Diego, CA) using a 500 cycle kit and custom read1 (TATGGTAATTGTCCT-

ACGGGAGGCAGCAG), read2 (AGTCAGTCAGCCCCGTCAATTCMTTTR-

AGT), and index (ACTYAAAKGAATTGACGGGGCTGACTGACT) sequencing

primers.

Sample Modeling

To create the synthetic full-length 16S samples, we mapped five of the short-read

libraries onto the full Greengenes 13–5 database using USEARCH’s

‘‘-usearch–global’’ option [43], selecting the database reads that matched at 97%

sequence identity. Using PrimerProspector [37] we extracted 250 bp long V3 and

V5 paired reads from the matches, and also created an almost-full-length 16S

library by trimming their read lengths down to 1300 bp long.

OTU Representatives, Alignment and Phylogeny

As in the previous synthetic library processing, we dereplicated each library, sorted

by cluster size, discarded singleton clusters and picked OTUs at 97% sequence

identity using USEARCH [33]. Then the libraries were mapped onto the OTU

IM-TORNADO: Comparison of 16S Reads
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representatives using USEARCH to obtain the OTU sizes. We multiple sequence

aligned the OTU representatives to a model secondary structure of the 16S gene

using Infernal 1.1 [28] and created a phylogenetic tree using FastTree 2.1.7 [29].

All of the above information was consolidated into BIOM files using

IM-TORNADO scripts.

Comparison of b-Diveristy
For each of the BIOM files correspoonding to each library (R1, R2, paired and

full-length), we calculated the corresponding unweighted UniFrac distance matrix

using QIIME 1.7.0 [8]. We compared the matrices of the three short libraries (R1,

R2 and paired) against the full-length UniFrac matrix using a Mantel correlation

test, as implemented in the R package vegan [39].

Data Availiability

All the data created for the sample synthetic mock community, including original

reads and synthetic reads, resulting OTU tables and scripts, are available for

download at the Dryad repository. The data DOI is doi: 10.5061/dryad.fm67n.

Discussion

We have shown that the use of paired reads improves performance over R1 or R2

alone. Moreover, significance tests revealed that in all cases R1 and R2 together

almost always provided a better reflection of the results from full length 16S

rDNA. By itself, this fact is unsurprising since R1 or R2 both use only a subset of

the information available to paired reads, which are made up of both R1 and R2

together. On the other hand, what may seem more surprising is that paired read

approaches are not utilized as the norm. However, the overall gains from using

paired reads is moderate when considering the enormous amount of book-

keeping and tracking involved (shown in Fig. 4). It is clear that the travails of

making maximal use of paired reads outweighs the benefit for many microbiome

researchers. It is our hope that with the introduction and public availability of IM-

TORNADO that microbiome researchers will be able to overcome the logistical

barrier to use of non-overlapping paired-end 16S rDNA reads.

It is our view that the most valuable tools are also the most widely usable. Now

more than ever, community standards within the field of microbiome research are

becoming increasingly important as the field (and the data) continues to grow at a

rapid pace. One of the important design principles of IM-TORNADO is our

adherence to already widespread analyses in microbiome studies. This allows

results from IM-TORNADO to be readily compared to results from pipelines such

as QIIME or mothur [8, 9]. Furthermore, we utilize the BIOM format popularized

by QIIME which allows for our results to be manipulated by existing tools that

accept the BIOM format, such as mothur and phyloseq [44]. The scripts and tools

IM-TORNADO: Comparison of 16S Reads
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for running IM-TORNADO are available at http://sourceforge.net/projects/

imtornado.

Finally, as an important consideration in future studies, the ability to use non-

overlapping paired end 16S rDNA reads means added flexibility to experimental

design. This comes in direct contrast to overlapping paired read designs which

require primers to be adjacent to each other. While overlapping primer design has

potential advantages (see Supplemental Materials) and could in principle use

nearly the same amount of information as non-overlapping reads, with a small

number of bases given to assemble the reads, primer choice ideally would vary

between studies due to emphasis on different taxa in particular environments.

Creating a means for the more holistic analysis of non-overlapping paired reads

allows for greater flexibility in primer choice, allowing researchers to target a

larger variety of regions to maximize sensitivity and specificity for a particular

environment without using only adjacent regions or resorting to single end read

analysis. This applies not only to 16S applications. For example, studies using the

18S rDNA gene [45] will benefit from a paired-end sequencing approach. And

these benefits extend to any other structurally alignable RNA molecule. Being able

to utilize non-overlapping reads also ameliorates issues arising from poor

sequencing quality and shorter than expected read lengths after quality trimming

by enabling analysis of data from lower quality sequencing runs.

Conclusions

We implemented a workflow for computing taxonomy, OTUs, and phylogeny

from non-overlapping 16S rDNA paired-end reads. As a quality metric for our

particular implementation, we demonstrate the differences between the use of

single versus non-overlapping paired-end reads. This is meant to address another

possible methodology for data analysis in studies that utilize primer designs where

there are non-overlapping paired-end reads [12, 15].

As shown by the results of our tests on synthetic mock datasets in Tables 1 and

2, as well as Figs. 2 and 3, including both reads in the computational analysis of

taxonomic classification, phylogeny, and b-diversity produces results that have

greater agreement with those from full length 16S rDNA then when using either

single-end read alone. Given the implied increase in accuracy when analyzing

environmental data, it is evident that paired-end analysis should be used when

possible in these cases.

Supporting Information

S1 Table. Taxonomy comparison. Accuracy of taxonomy assignments for

different read lengths, with errors and read trimming. The table shows the effect of

base errors in the accuracy of the taxonomy assignment process (Paired, with

errors, average 15.6 errors per read pair, standard deviation 3.7). It also shows the

improvement in accuracy after applying the read trimming step pf the pipeline
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(Paired, trimmed, with errors, average 6.0 errors per read pair, standard deviation

2.9, average read pair length 438.7 bp, standard deviation 28 bp).

doi:10.1371/journal.pone.0114804.s001 (PDF)

S2 Table. Comparison of OTU counts for synthetic mock communities.

Comparison of OTU counts at 97% sequence identity, averaged for the 100

synthetic mock communities used for validation. From the table we can observe

the trend of Full length reads showing comparable or higher OTU counts than the

short read types, and among these short reads, R1 shows the higher OTU counts.

doi:10.1371/journal.pone.0114804.s002 (PDF)

S1 Text. Supplemental Information for ‘‘IM-TORNADO: A Tool for

Comparison of 16S Reads from Paired-End Libraries’’.

doi:10.1371/journal.pone.0114804.s003 (PDF)

S1 Code. Source code for the IM-TORNADO pipeline, version 2.0.0. This and

subsequent versions of the pipeline are available in the SourceForge repository at

http://sourceforge.net/projects/imtornado.

doi:10.1371/journal.pone.0114804.s004 (GZ)
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