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Abstract

Depopulation of rural areas is a widespread phenomenon that has occurred in most

industrialized countries, and has contributed significantly to a reduction in the

productivity of agro-ecological resources. In this study, we identified the main trends

in the dynamics of rural populations in the Central Pyrenees in the 20th C and early

21st C, and used density independent and density dependent models and identified

the main factors that have influenced the dynamics. In addition, we investigated the

change in the power law distribution of population size in those periods.

Populations exhibited density-dependent positive feedback between 1960 and

2010, and a long-term positive correlation between agricultural activity and

population size, which has resulted in a free-scale population distribution that has

been disrupted by the collapse of the traditional agricultural society and by

emigration to the industrialized cities. We concluded that complex socio-ecological

systems that have strong feedback mechanisms can contribute to disruptive

population collapses, which can be identified by changes in the pattern of

population distribution.

Introduction

The depopulation of rural areas, which is common in most developed countries,

has, paradoxically, increased in parallel with global population growth [1], which

is one of the most important challenges facing civilization [2]. At a time when

many areas are faced with problems associated with rapid human population

growth, others are confronted with the effects of the rapid population loss. The

effects of those changes on the distribution of populations have important
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implications for landscape conservation and socioeconomic life in rural areas

because of the high social costs associated with low population densities. In

addition, steady increases in the global population and the global food-crisis of

2007–2008, which resulted in almost a doubling of international wheat and maize

prices within two years [3], have brought greater attention to the need to conserve

agro-ecological-based production systems to enhance food security and conserve

agro-biodiversity, soil, and water [4].

The dynamics of human population growth are complex, with multiple

processes occurring sequentially or simultaneously [2, 5]. Many studies have

investigated the multitude of factors that influence population growth as a basis

for making predictions about the future [6–9]. In general, human population

dynamics are characterized by steady increases that are occasionally interrupted by

collapses that are caused by density-dependent and density-independent factors,

which are followed by rapid increases [10–12]. For thousands of years, human

populations grew very slowly, depended on natural resources and adapted to the

changes in their environment [5, 10, 13, 14]. Two hundred and fifty years ago, the

exploitation of fossil fuels during the Industrial Revolution allowed the global

population to increase from about 500 million to 6 billion in 2000 [2, 10]. The

most significant changes in the size and distribution of human populations

occurred in the 1960s, when per capita growth rate was at the maximum.

Thereafter, populations decreased steadily in rural areas [2, 15].

Rural alpine societies are complex systems that were based on the exploitation

of natural resources, where livestock grazing and crops have led to a distinctive

complex anthropogenic landscape in which the close connections between land-

use, livelihood, and socio-cultural factors influence the landscape [16, 17]. Those

complex systems organize at multiple scales through the flux of resources and

information [18, 19]. As those complex systems develop, the bonds among their

components, information, entropy, order, and structure increase, which optimizes

the distribution of energy and matter among group members [20, 21]. In time,

those systems develop into self-organized critical structures or states [22]. For

instance, in ancient human hunter-gatherer societies, the effective resource supply

increases non-linearly to the power of population size, which indicates that

densely distributed populations made the most efficient use of resources from the

environment [21]. Other mammalian social systems [23] exhibit scaling laws that

are similar to the scaling law that occurs in humans [18, 19]. Thus, like many

other complex systems, human societies self-organize and generate self-similar

patterns that are free of scale [19]; i.e., the response to what happens at the

smallest scale in a dynamic process is not restricted to this scale; rather, it can

influence the entire hierarchical structure. Those complex systems evolve and

organize over time and are resilient to perturbations unless certain thresholds are

crossed. Once those thresholds are exceeded, a transition to a different structure

and process begins, which has had important implications for humans. Simple

power laws of either emergent patterns or fluctuations can describe the statistical

properties of the system because the distribution of cluster sizes leads to a

distribution of fluctuation lifetimes; local perturbations propagate over all length
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scales, and the distribution of lifetimes can be calculated from the distribution of

cluster size [22].

In mountainous areas of Europe, human emigration from rural areas to

industrialized cities and the mechanization of agriculture, which reduced the

demand for labor, lead to substantial depopulation [24–26] and, subsequently, the

loss of agro-ecological lands caused by woody encroachment on abandoned lands

[27–29]. After the 1960s, rural areas in the Pyrenees experienced significant

depopulation [26, 30] while the population of the nearest industrialized city,

Zaragoza, doubled (Table S1), which contributed to the woody encroachment of

rural agricultural and grasslands areas [31–34]. For many years, much attention

has been paid to the growth of global and metropolitan populations and the

question of whether the global population will increase until the resources are

exhausted and the population crashes [10] or, whether limited resources will limit

the population growth rate until a more-or-less equilibrium is reached [35]. Given

the current rate (225,000 persons/day) at which the human population is

increasing [36], it is evident that additional grasslands will be needed to fulfill

human food requirements. Properly managed grasslands can provide food

security and alleviate poverty for millions of individuals. Yet, changes in climate

and land use are driving those ecosystems toward irreversible degradation and

reduced productivity [17, 37, 38].

In this study, the objectives were to identify the main trends in rural population

dynamics and to confirm whether density-dependent positive feedback has

contributed to the resilience of the rural populations of Spanish Central Pyrenees

(Fig. 1). A positive feedback can occur between per capita growth rate and

population size [2], which indicates that cooperative relationships and

aggregation can enhance the growth of human populations [39], as it can in

animal populations [40] and can increase population carrying capacity [39].

Complex socio-ecological systems that have strong feedback mechanisms can

exhibit emergent patterns that reflect the level of system self-organization [19],

which can be used as an early indicator of socio-ecological stability (resilience).

Although emergent spatial patterns as an indicator of critical transition have been

the subject of considerable study in the last decade [41–45], the formation of

patterns in socio-ecological societies has received limited attention [18, 19, 21, 46].

In this study, we identified the best-fit model of rural populations based on

density-independent and density-dependent estimations, and assessed the

importance of positive and negative feedbacks in rural populations. We

hypothesized that population regulation negative feedback occurred in the first

half of the 20th C, when rural population were dependent on natural resources,

and density-dependent positive feedback occurred in the second half of the 20th C

and early 21th C, when the increase in human population size promoted economic

and social development in modern societies. In addition, we assessed whether the

population distribution formed self-similar structures and, if so, how these scaling

properties differ among socio-economic conditions. We hypothesized that the

Self-Regulation and Pattern Distribution in Rural-Population

PLOS ONE | DOI:10.1371/journal.pone.0114561 December 4, 2014 3 / 17



rural population size exhibited a free-scale distribution (power law scaling) that,

when disrupted, became randomly distributed (exponential distribution), which

would be indicated by the change in the value of the power law exponent.

Figure 1. Study area in Spanish Central Pyrenees, which included 26 municipalities, location of
Ordesa and Monte Perdido National Park, ski resorts, and main and secondary roads. Dot sizes were
scaled to the size of the population in each municipality for the year (A) 1900 and (B) 2010.

doi:10.1371/journal.pone.0114561.g001
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Materials and Methods

Study Area

The study area was a 138.4-km2 portion of the Spanish Central Pyrenees

(42˚369 N, 0˚009E), where the elevation ranged between 600 and 3340 m (Fig. 1).

Historically, the local economy was based on traditional agriculture, mostly sheep

and cattle production, in which alpine and subalpine pastures were used for

grazing in summer [47]. Between 1965 and 1976, five alpine ski resorts and

associated tourist infrastructures were built in the Spanish Central Pyrenees,

which led to significant changes in the population and in pastoral activities in the

area [48, 49]. Two of those resorts were within our study area (Fig. 1). The study

included 26 municipalities, some of which were amalgamated in the 1960s, which

led to the formation of 11 municipalities in the 1970s. The study area had one of

the lowest population densities in Spain (4.45 hab. km22), which was much lower

than the density of the Autonomous Community of Aragón (28.20 hab. km22), of

which it is a part. Table S1 provides number of inhabitants in the 26

municipalities in the Spanish Central Pyrenees since 1900 to 2010.

Data collection and analysis

The Instituto Nacional de Estadı́stica [50] and the Instituto Aragonés de

Estadı́stica [51] provided the data that were used to quantify the size and structure

of the human populations. The Archivo Histórico Provincial de Huesca and the

Delegación Provincial de Huesca provided the livestock data for the period

1900–2010, which were assessed at 10-yr intervals. The livestock data from the 26

municipalities between 1965 and 2010 were pooled into 11 post-1960s

municipalities. To calculate the number of small-livestock units in the area, we

assumed that six sheep are equivalent to one cow [52]. Employment data in the

main economic sectors: primary sector (e.g., farming) and tertiary sector

(services), which were used to characterize the economic structure in Spain, were

obtained from the Instituto Nacional de Estadı́stica. Population data were

available for the 26 municipalities for the period covered by this study; however,

both livestock and employment data were assessed based on the 11 municipalities

created in recent decades.

Calculation of the population parameters

The mean (m) and the variance (s2) of the log population growth rate describe the

normal probability of the distribution of the future log population size, assuming

density independence Nt+15Nt exp (mt); where Nt is population at time t, and Nt+1

is population at time t+1. When m.0, the population increases, and, when m,0,

the population decreases. The parameter values were derived from the parameter

estimates and the variance from the residuals of the linear regressions of the log

population growth rate over a time interval against the time interval. Variance of

log population growth rate increases with the time; therefore, to meet the

assumption of equal variance, the rate of population’s change and the time
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elapsed were transformed by dividing both by (ti+1–ti)
0.5 [53]. Thus we regressed

log (Ni+1/Ni)/(ti+12ti)
0.5 against (ti+12ti)/(ti+12ti)

0.5 where Ni is population at

time ti and Ni+1 is population at time ti+1. This transformation makes the variance

in the transformed population to change equal to the variance for any time

interval s2.

In addition, population counts were fit to a logistic population dynamics model

(Ricker model), which assumes that population growth is density dependent. The

Ricker model is expressed as: Nt+15Nt exp [m(12(Nt/K)] [54].

We fit the models to the data using nonlinear least squares regression of log

(Ni+1/Ni)/(ti+12ti)
0.5 against [(ti+1–ti)/(ti+1–ti)

0.5] (12Ni/K). We used the

corrected Akaike’s Information Criterion, AIC, [55] to select the best-fit model.

Statistical analysis

To identify the main factors that have influenced the dynamics of the human

population in the study area in the last century, we used generalized linear mixed-

effects models (GLMMs) that were fitted based on restricted maximum likelihood

(RMLE). We used the lme function in the nlme library of the R package [56], and

the analyses followed the protocol of Zuur [57]. The optimal structure of the

random component was identified based on the lowest Akaike’s Information

Criterion (AIC). Analyses of the distribution of the residuals and a q-q plot tested

the validity of the model.

We assessed the effects of livestock density, agricultural area (ha), and distance

to the nearest county capital on the changes in the density of the human

populations within each municipality. Location (municipality) and year can

influence the observed differences in population densities; therefore, we evaluated

the random effects of ‘‘municipality’’ and ‘‘year’’ on the intercept of the model.

The relationship between the carrying capacity and the total land allocated to

croplands and grasslands (ha) where calculated by GLMM with municipality as

random effect factor to control the variation due to municipality.

To assess the importance of density dependent positive and negative feedback

in the rural populations in the two distinctive periods in the 20th C (the first half

dominated by agronomic economy, and the second half dominated by the service

sector) we regressed per capita growth rate against the log of population size in the

period 1900–1950 and in the period 1960–2010.

We calculated the probability cumulative distribution function (CDF) for each

population census (S) between 1900 and 2010 for the 26 municipalities in the

study area. To construct the CDF (S), the n observed values (si) were ranked from

lowest to highest (i51… n). The probability of finding an observation less than or

equal to si in the CDF follows a power law: P (S#si)5k si
U+1 [58]. The exponent U

reflects the heterogeneity in population sizes: the larger the absolute value of U,

the more heterogeneous is the population size. To estimate the exponent, we used

maximum likelihood because it is the best mathematical approach [58]. The

goodness-of-fit of the power law distribution was assessed based on the coefficient

of determination R2.
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Results

Akaike’s Information Criterion (AIC) indicated that the density-independent

model had the best fit to the data of the dynamics of rural populations in the

Spanish Central Pyrenees in the 20th C and early 21st C with the exception of

Panticosa population that fitted better to the Ricker model (Table 1). All of the

populations except those in Panticosa, Escarrilla, and Sallént de Gállego had

negative growth rates between 1900 and 2010. Nevertheless in rural economies, we

expected the allocation of land to agriculture and pastures have influenced

carrying capacity (maximum population size). We estimated the maximum

carrying capacity of each municipality based on the density-dependent model, and

assumed that each population was dependent on internal resources.

In the Spanish Central Pyrenees, the carrying capacity, derived from the Ricker

model and the amount of land allocated to croplands and grassland (ha) derived

from 1980s Landsat images [34], were significantly positively correlated

(F1,24513.88, P,0.001) after controlling the effect of municipality, introduced as

a random effect factor in the GLMM. Thus, as expected, population density

throughout the 20th C was positively correlated with livestock density

(slope50.36¡0.07, F1,120523.92, P,0.001) and amount of agricultural area

(slope50.008¡0.002, F1,8512.00, P,0.01), and negatively correlated with

distance to the county capital (slope520.14¡0.07, F1,853.90, P50.08).

Livestock and agriculture production are the main activities in the area, which

involved .90% of the active population in 1900, 70% in the 1970s, and 1% in

2010 (Fig. 2). The industry sector was not present in the study area, and the

service sector has provided a source of employment for those not working in the

agricultural sector. Thus, the importance of density dependence feedback in the

rural populations was expected to vary in the periods 1900–1950 and 1960–2010.

Before 1950, the rural populations were stable; however, after 1950, the human

population decreased significantly (Fig. 3), t522.15, P,0.0337 (F11,110529.12,

P,0.0001). A positive correlation between per capita growth rate and log

population size indicates a positive feedback, and a negative correlation indicates a

negative feedback. Between 1960 and 2010, there was a positive feedback; but, in

the first half of the 20th C, the per capita growth rate was stable, which reflected

the negative feedback effect in the largest population in the area (Fig. 4).

The distribution of the populations changed over time: some of the population

nuclei disappeared (but not the municipalities where they were administratively

included) or were much reduced, but others persisted or increased in size.

Analyses of the power law distribution of the population sizes of the 26

municipalities at each 10-yr census interval revealed that the power law best fit the

population size distribution in the first half of the 20th C, which indicated that

population sizes had a wide range of size scales, with many small populations and

relatively few large ones. The values of the exponent (U) were similar throughout

the first half of the 20th C, and fit well the power law distribution, as indicated by

the coefficient of determination, R2 (Fig. 5a, Table 2). The power-law function

was not a good fit in the last half of the 20th C (Fig. 5b, Table 2), and the exponent
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Table 1. Parameter estimates for density independent (per capita growth rate, m¡se) and density dependent (per capita growth rate, m and carrying capacity
K) population models, residual variance, s2, and Akaike’s Information Criterion (AIC) of mountain rural populations in the Spanish Central Pyrenees.

Municipality s2 m se AICc m K s2 AICc

Aso de Sobremonte 0.0805 20.0307 0.0270 9.154 20.0375 1142.35 0.0802 11.732

Barbenuta 0.0031 20.0109 0.0053 230.805 20.0142 953.48 0.0031 227.202

Biescas 0.0030 20.0019 0.0052 231.469 0.0247 1119 0.0026 229.509

Escuer 0.0037 20.0140 0.0058 228.871 20.0263 287.12 0.0034 226.134

Gavı́n 0.0029 20.0103 0.0052 231.677 20.0103 568700000 0.0029 228.015

Oliván 0.0036 20.0136 0.0057 229.080 20.0169 1378.68 0.0036 225.511

Piedrafita de Jaca 0.0170 20.0153 0.0124 210.544 20.0153 143700000 0.0170 26.884

Hoz de Jaca 0.0005 20.0074 0.0021 253.100 20.0154 240.35 0.0004 250.370

El Pueyo de Jaca 0.0049 20.0068 0.0067 225.475 0.0071 68.54 0.0047 222.368

Panticosa 0.0205 0.0004 0.0041 28.311 0.0240 630.01 0.0017 234.657

Escarrilla 0.0025 0.0012 0.0047 233.713 0.0172 189.33 0.0024 230.427

Lanuza 0.4485 20.0143 0.0639 28.721 0.0894 114.32 0.4100 31.311

Sallent de Gállego 0.0065 0.0039 0.0077 222.075 0.1080 716.47 0.0043 223.491

Tramacastilla de Tena 0.0016 20.0035 0.0038 239.080 0.0125 163.18 0.0014 236.649

Yésero 0.0078 20.0127 0.0084 219.916 20.0127 76960000 0.0078 216.250

Bielsa 0.0023 20.0057 0.0046 234.663 20.0057 573100000 0.0023 230.998

Bergua2Basarán 0.1402 20.0234 0.0357 14.771 20.0234 325500000 0.1403 18.440

Broto 0.0018 20.0032 0.0040 237.815 0.0177 263.57 0.0016 235.272

Oto 0.0017 20.0124 0.0039 238.519 20.0199 558.68 0.0015 235.623

Sarvisé 0.0033 20.0094 0.0054 230.381 20.0096 16720 0.0033 226.717

Fanlo 0.0322 20.0182 0.0171 22.897 20.0182 579900000 0.0322 0.744

Puértolas 0.0069 20.0126 0.0079 221.444 20.0126 370900000 0.0068 217.785

Sin2Salinas 0.0047 20.0125 0.0065 226.038 20.0159 1174.37 0.0065 218.430

Tella 0.0038 20.0036 0.0059 228.472 0.0061 217.60 0.0058 219.712

Linás de Broto 0.0040 20.0169 0.0060 227.884 20.0285 637.81 0.0036 225.361

Torla 0.0012 20.0071 0.0033 242.232 20.0071 562100000 0.0012 238.568

doi:10.1371/journal.pone.0114561.t001

Figure 2. Employment rate in the agricultural sector in the 20th C and early 21st C in the Spanish
Central Pyrenees.

doi:10.1371/journal.pone.0114561.g002
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of the power law function decreased dramatically, which indicated a randomi-

zation of the population size distribution. The maximum likelihood estimation

(mle) indicated the poor fit of the power law distribution in that period (Table 2).

Figure 3. Averaged human population sizes in 26 municipalities in the Spanish Central Pyrenees,
between 1900 and 2010. Error bars indicate the standard error.

doi:10.1371/journal.pone.0114561.g003

Figure 4. Per capita growth rate and log of population size for the periods (a) 1900–1950 and (b) 1960–
2010 in the Spanish Central Pyrenees.

doi:10.1371/journal.pone.0114561.g004
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The slope of the power law and the heterogeneity of the population size

distributions were positively correlated; i.e., the higher the slope, the more

heterogeneous were the population sizes and the greater were the differences

between large and small towns. Thus, the change in the power-law exponent in the

20th C reflects the change in the spatial distribution of the population. Between

1900 and 1960, the U parameter was stable at about 0.4 (Fig. 6). After 1970, the

parameter U decreased dramatically to values close to 20.4, before it began to

increase in the last decade.

Figure 5. Empirical cumulative distribution function and confidence bounds that describe the
probability that a random population (S) is equal to or lower than (s). In green the theoretical exponential
function: (a) year 1900; (b) year 2010. The power-law coefficient of determination is 0.842 and 0.560 for the
year 1900 and 2010, respectively.

doi:10.1371/journal.pone.0114561.g005
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Discussion

In the Spanish Central Pyrenees, rural populations fit well to the density-

independent model for the entire period evaluated in our study; however, in the

first half of the 20th C, rural society was characterized by competition among

individuals for limited resources (negative feedback), which is common in rural

populations that are dependent on natural resources. At the global scale, studies

have shown that negative feedback processes occur in human populations

[2, 59, 60], and socio-economic and natural resources are the forces that drive that

dynamic [2].

In the second half of the 20th C., the rural populations exhibited a positive

feedback between per capita growth rate and log population size, which occurred

in the global population between 1700 and 1960 [2]. Those results are consistent

with the hypothesis that cooperative human interactions exert positive feedback

on population growth [39, 61, 62]. Those complex socio-ecological systems that

have strong positive feedback mechanisms exhibited emergent free-scale

Table 2. Power low parameters, maximum likelihood estimator, mle and determination coefficient, R2, of the human population distribution between 1900
and 2010 in 26 municipalities in the Spanish Central Pyrenees.

Human population

Year 1900 1910 1920 1930 1940 1950 1960 1970 1981 1991 2001 2004 2010

Exponent
(U)

0.3764 0.3531 0.2961 0.3393 0.4007 0.2460 0.2484 20.1885 20.3835 20.3434 20.1970 20.2257 20.233-
0

intercept 29.1287 20.9013 28.6461 28.9024 29.1349 28.0900 27.8464 24.9755 23.7646 23.9365 24.9970 24.5968 24.627-
1

mle 20.2535 20.2632 20.2931 20.2216 20.1049 20.2316 20.2890 20.4543 20.5300 20.5124 20.4820 20.5233 20.555-
2

R2 0.842 0.847 0.8067 0.7867 0.8167 0.831 0.819 0.704 0.745 0.729 0.662 0.611 0.560

All distributions fitted with P-values,0.001.

doi:10.1371/journal.pone.0114561.t002

Figure 6. Power law exponent of the human population distribution between 1900 and 2010 in 26
municipalities in the Spanish Central Pyrenees.

doi:10.1371/journal.pone.0114561.g006
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population distribution patterns that reflected the level of system self-organiza-

tion.

To model population growth, ecologists and population biologists have used

the density-dependent model of population dynamics [63], which is based on the

assumption that, in the presence of unlimited resources, i.e., space and food,

populations will grow exponentially. If resources become limited, however, the

growth rate decreases until the population is below the maximum population size

that the resources can support.

Density-independent and density-dependent models indicated that, between

1900 and 2010, most of the rural populations in the Central Pyrenees had negative

per capita growth rates, with the exception of populations that were close to ski

resorts, e.g., Sallent de Gállego and Panticosa. Rural populations are likely to be

dependent on natural resources and, consequently, to be density-dependent;

however, when they are well below the carrying capacity, they fit well density-

independent models. Although, as in the pre-industrial era [12, 13], in model

rural economies, the allocation of land to agriculture and pastures is likely to

influence carrying capacity.

A strong positive correlation between carrying capacity and the amount of land

allocated to agriculture and livestock production reflected the dependence of the

rural populations on agricultural resources. Studies have demonstrated the need

to have data on food supply to adequately fit the logistic model of human

population dynamics, which suggests that increases in human populations are a

function of an increase in food availability, which occurs in non-human

populations [35]. In our study, the GLMM indicated a positive correlation

between ecosystem services such as cultivable land and livestock density, and the

negative effect of distance to developing socio-economic centers (county capital)

on population dynamics, which confirm that natural resources have significant

effects on population density.

Various mechanisms such as reduced probability of finding mate, impaired

group dynamics, or conditioning of the environment can cause density-dependent

positive feedback, depensation [64], which occurs in many species of animals and

plants, e.g., predator detection increases with group size in Spanish ibex [65],

hunting success increases with population size in social hunters as Lycaon pictus

[66] or seed density is lower in small populations because they likely attract less

pollinators [67]. Density-dependent positive feedback mechanisms in human

populations are the basis for the hypothesis that aggregation and cooperation in

human societies accentuate the growth of populations [2, 39].

The positive correlation between per capita growth rate and population size in

the Spanish Central Pyrenees in the second half of the 20th C was consistent with

the hypothesis that human population size promotes economic development and

enhances technological innovation and food production [62, 68], which suggests

that high population densities in rural areas increase living standards. That

positive feedback effect however, reaches an upper limit as population density

increases to a point at which the resources are insufficient to meet human needs;

hence, the reduction in per capita population growth as population density

Self-Regulation and Pattern Distribution in Rural-Population
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increases. Cooperative feedback can occur at low population densities [39] but, at

high densities, competition and negative feedback dominate the dynamics [2, 61].

Other mechanisms external to the populations can contribute to the increase in

the population, independent of the population size: e.g., subsides given to rural

populations to help maintain the population size. In Spain, however, rural

populations continue to decline despite subsides received since the country joined

the European Community.

Resource availability, socio-economic crises, and climate change have created

delayed feedback loops and long-term cycling oscillations [14, 61, 69], which

reflects the difficulty in preventing population collapses. Although the reduced per

capita growth rate in the Spanish Central Pyrenees has been reversed in some of

the municipalities because of the development associated with ski resorts [70], the

reduced population size will affect population dynamics for several decades

because there are still numerous small villages in the hands of elderly farmers, who

will retire soon. In the near future, most of the farms will be removed from

agriculture and livestock production, which will favor the transition of pastures

and cultivated areas to woodlands after abandonment, exacerbating the loss of

productive pastures and crops caused by woody encroachment [34].

Population reduction is the most direct measure of depopulation in rural areas;

however, complex socio-ecological systems that have strong feedback mechanisms

can respond non-linearly, which can lead to catastrophic population collapses. In

the Spanish Central Pyrenees, the rural mountain society exhibited a fractal-like

structure in which population size increased free-scale on multiple scales. Self-

similar group size distribution free of scale occurs in some hunter-gather societies

[18, 19] and other mammal societies [23]. The mechanisms underlying the

distribution patterns and the buffering capacity of the complex system dictate the

change in distribution patterns. In our study, the scaling exponent U of the power

law distribution reflected the capacity of the system to resist perturbation. Even

under the extreme conditions of the Spanish Civil War, the distribution patterns

of the rural population persisted in spite of the reduction in the population. After

the industrial development in the 1960s, however, the population distribution

patterns changed dramatically, which reflected the important changes that had

occurred in the area. Although the power-law distribution has been identified in

some biological systems [71, 72], to our knowledge, temporal changes in

population distribution power laws have not been investigated. Our results are

consistent with the hypothesis that a change in the scaling exponent provides

information about the level of system self-organization and complexity [73, 74].

With the population declining, the free-scale population size distribution was lost,

which resulted in a homogeneous population distribution. The long-term positive

correlations between agricultural activity and population size generated a scale-

free population distribution. When population sizes were reduced because of the

breakdown in the traditional agronomic society and the emigration of individuals

to the industrialized cities, the scale-free distribution was disrupted. In the same

period, the population of the industrialized city of Zaragoza increased from
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99,118 inhabitants in 1900 to 674,725 in 2010, while the population in the study

area decreased from 12,424 to 6,163 in the same period (SI).

Conclusions

In the Spanish Central Pyrenees, two limiting factors regulated rural populations:

(i) negative feedback occurred when limited resources did not provide sufficient

work and benefits to the population, and (ii) positive feedback occurred at low

population densities, when a minimum population size was required to avoid the

effects of stochasticity and to ensure that the basic services needed to maintain the

rural populations were present. Changes in the structure of a population

distribution can provide important clues about the likelihood of population

collapses, and is more informative and cost-effective measurement than are mean

rates in assessing the relative risks of population extinction and as an aid in

establishing the priority of rural developments projects.
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44. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, ElAich A, et al. (2007) Spatial vegetation patterns and
imminent desertification in Mediterranean arid ecosystems. Nature 449: 213–218.

45. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, et al. (2009) Early-warning signals
for critical transitions. Nature 461: 53–59.

46. Malacarne LC, Mendes RS, Lenzi EK (2001) q-exponential distribution in urban agglomeration.
Physical Review E 65: 1–4.

47. Daumas M (1976) La vie rurale dans le haut Aragon oriental. Madrid: Instituto de Estudios Oscenses y
de Geografı́a Aplicada. CSIC. 774 p.

48. Laguna M, Lasanta T (2003) Competing for meadows. A case study on tourism and livestock farming in
the Spanish Pyrenees. Mountain Research and Development 23: 169–176.

49. Lasanta T (2010) El turismo de nieve como estrategia de desarrollo en el Pirineo aragonés. Cuadernos
de Investigación Geográfica 36: 145–163.
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